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Abstract: The recovery of three dimensional structures from moving elements is one of the main abilities of the 
human perception system. It is mainly based on particularities of how we interpret moving features, 
especially on the enforcement of geometrical grouping and definition of relation between features. In this 
paper we evaluate how the human abilities of motion based feature clustering can be transferred to an 
algorithmic approach to determine the structure of a rigid or articulated body in an image sequence. It shows 
how to group sparse 3D motion features to structural clusters, describing the rigid elements of articulated 
body structures. The location and motion properties of sparse feature point clouds have been analyzed and it 
is shown that moving features can be clustered by their local and temporal properties without any additional 
image information. The assembly of these structural groups could allow the detection of a human body in an 
image as well as its pose estimation. So, such a clustering can establish a basis for a markerless 
reconstruction of articulated body structures as well as for human motion recognition by moving features. 

1 INTRODUCTION 

One of the main abilities of the human perception 
system is the interpretation of structure from motion. 
It is possible for us to estimate the form and the 
underlying body-structure of any object by only few 
moving elements like lines and points. Additionally, 
this ability is mostly independent from any 
environmental influences like e.g. a moving 
background, but also from the visual representation 
of the object itself as e.g. its size, colour or surface 
appearance.  

This ability of motion perception is mainly based 
on particularities of how we perceive and interpret 
moving features, as has been shown in the 
experiments with moving light displays of 
Johansson (Johansson, 1973). The human perception 
usually forces a geometrical grouping and definition 
of relation between features. This can be based on 
spatial relations who are partly defined and 
summarized under the gestalt-principles, but also on 
the analysis of motion properties. The alignment and 
grouping of features allows the reconstruction of 
complex structures and their recognition even under 
not-optimal circumstances and with incomplete 
visual information. 

In this paper we present three different feature 
clustering methods for 3D space and evaluate them 
with respect to their applicability for articulated 
body tracking. It is assumed, that every motion, and 
so also the motion of a human body in an image will 
result in some moving feature points. The motion of 
these feature points can allow determining the 
structure of the underlying rigid or articulated body. 
One main step towards such an application 
comprised the correct clustering of the moving 
features in order to detected rigid moving elements 
in the image. The presented approaches will show 
how to group motion features to structural clusters, 
describing the rigid elements of articulated body 
structures.  

For the practical realization, we captured several 
image sequences with human motion. A motion 
based feature tracking method is applied to extract 
the moving features and to reconstruct their 3D 
positions. The 3D positions and motion properties of 
the resulting feature points are analysed in order to 
find structural clusters. These structural clusters 
describe feature sets with position and motion 
properties, characteristically for moving rigid 
structures, so that these clusters can be considered as 
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candidates for the determination and tracking of 
underlying rigid body elements. 

The assembly of these structural clusters could 
allow the detection of a human body in an image as 
well as its pose estimation and, considering a longer 
observation period, even motion recognition. So 
such a clustering can establish a basis for a 
markerless reconstruction of articulated body 
structures as well as for human motion recognition 
by moving features. 

2 STATE OF THE ART 

Automatic detection and tracking of people in 
different contexts has become a more and more 
relevant area in computer vision, especially in the 
context of motion analysis and recognition. The 
growing importance of this field is shown by the 
increasing number of surveys dealing with this 
subject (Moeslund, 2001 and 2006; Aggarval, 1999).  

Feature-based human motion detection and 
analysis in this context is mainly based on marker 
tracking as presented by Cedras et al. or Holstein et 
al. (Cedras, 1994; Holstein, 2002), because 
predefined marker positions usually allow direct 
reconstruction of the underlying skeleton as shown 
by Silaghi et al. (Silaghi, 1998). A first approach for 
an application of markerless feature-based 
techniques in the context of human motion 
recognition is described by Song et al. (Song, 1999 
and 2003). Here the motion of image features is used 
to detect human motion in an image sequence and to 
distinguish it from other moving elements, but the 
overall motion is not analysed  

The second thematic focused in the here 
presented approach, the computation of feature 
grouping based on motion primitives, has been first 
described by Ullman (Ullman, 1983) and later by 
Aggarval et al. (Aggarval, 1994). Here, the 
applications range from basic computational studies 
of about interpretation of structure and motion up to 
optical flow based image segmentation (Nicolescu, 
2002). We can see that, especially in the area of 
optical flow segmentation most techniques are 
designed for dense motion fields and so would 
probably not work for sparse feature maps with 
small structures, overlapping and twists, as they 
occur in articulated body tracking.  

But the perception of moving structures based on 
the interpretation of motion is also still an open 
problem in neuroscience (Giese, 2003). 

 

3 THEORETICAL APPROACH 

In order to group moving features to structural 
clusters, it is first necessary to find acceptable 
criteria, describing the location and motion 
properties of points on rigid elements. The selection 
of clustering criteria is mainly based on three 
different approaches. The first two criteria are based 
on human interpretation of perception of rigid 
objects from 2-D motion presented e.g. by Ullman 
(Ullman, 1983): The first one is the velocity-based 
interpretation, where it is assumed that features that 
move in the same direction belong to one object. 
The second is the location-based interpretation, 
which means, that features that lay close together 
have a higher probability to belong to one object 
than features that are far away from each other.  

In the here presented approach these criteria are 
extended to the three dimensional space. The 
transfer of the location- and velocity-based criterion 
from 2D to 3D is straight forward. And additionally 
for 3D space, a third, distance-variation-based 
criterion can be added. Assumed, that the features 
are fixed on the underlying element and do not 
change their 3D position relative to each other, they 
will also preserve the distance to all features that are 
lying on the same element. So, features whose 
distance relative to each other does not change over 
time are also probably suitable candidates to 
determine a rigid object. 

Assuming features are situated on one rigid 
element, they will probably follow one or more of 
follow criteria: 

Location Criterion. Two feature points, a and b, are 
rather located on the same rigid element if their 3D 
mean distance d(a, b) over n frames, shown in 
equation 1, is small:  

,
1

, , . ,   (1) 

Velocity Criterion. If two feature points, a and b, 
have the same or a similar motion vector v(a) at the 
same time i, as described in equation 2, they are also 
likely to be located on the same rigid element: 

1
, 1   
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Figure 1: Visual representation of a) location-based, b) 
velocity-based and c) distance-variation-based cluster 
criterion. 

Distance Criterion. If two feature points, a and b, 
do not change their distance d(a, b) to each other 
over time, as defined in equation 3, they are also 
likely to be located on the same rigid element: 

,  
1

 ,  1 , 1  (3) 

A visual representation of these criteria is 
presented in Figure 1. Here the three different 
distance measurements are applied to one, marked 
feature point. The distance is shown by the 
brightness of the related feature points. In Figure 1 
b) the motion vector intensity is additionally 
displayed by the size of the feature point. Depending 
on the distance criterion, different feature regions 
are highlighted. Whereas the location-based distance 
in Figure 1a) is comprehensible, we can see that the 
distance measurement for the velocity- (Figure 1b) 
and distance-variation-based measurement (Figure 
1c) shows a more structural result, where the 
highlighted regions mainly belong to currently rigid 
parts.  

4 MOTION-BASED CLUSTERING 

For the tracking and clustering of feature points the 
here presented approach proceeds as follows: For the 
detection and tracking of motion features, we used a 
motion based feature tracking approach described in 
(Koehler, 2008), which is mainly based on the 
pyramidal implementation of the KLT feature 
tracking method described in (Bouget, 2002), 
following the 'good features to track' method of Shi 
and Tomasi (Shi, 1994) and applied this to a set of 
stereo images. Then, the 3D position of the feature 
points is reconstructed and the result is a sparse 3D 
cloud of feature points, which are tracked over time. 
So it is also possible to apply time-based criteria e.g. 

the velocity and relative distance over time etc. The 
clustering is done for every single frame without the 
integration of precedent clustering results. So every 
frame is treated separately.  

The criteria mentioned above, mean position, 
velocity and distance variance, are calculated for 
every 3D feature point. Then it is measured how 
much these features criteria f, e.g. the mean position, 
velocity or distance deviate from one feature point to 
the others. The deviation is computed as the 
Euclidean distance between pairs of feature 
primitives fa and fb described in equation 4. 

,   (4) 

 

 
Figure 2: Clustering results for a) location-, b) velocity- 
and c) distance-variation-based cluster criterion. 
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Then, the clustering is done by arranging the 
resulting deviations d(fa,fb) in a hierarchical cluster 
tree by preserving the minimum sum of squares of 
the distances between all cluster elements ci in the 
cluster C and its centre point  (see equ. 5). 

 
1

  (5) 

A fixed number of clusters are constructed from 
the resulting cluster tree by combining them with 
respect to the minimum distance criterion, whereas 
the linkage distance between two clusters Ca and Cb 
with the number of elements nCa and nCb and the 
centre points  and  is defined in equation 6 as:  

,  
,

  (6) 

Examples for the results of the different criteria 
can be seen in Figure 2.  

5 RESULTS 

The approach has been tested on 12 stereo videos 
captured by a BumbleBee stereo camera with 20 fps 
and a resolution of 640x480px with 12 motion 
variations with duration from 5 - 20 sec. To get 
ground truth for the requested clustering, we labelled 
the features of 200 images by hand, defining 10 
clusters representing the significant rigid parts of the 
human body as shown in Figure 3.  

To evaluate the performance, the clustering 
correctness for the described criteria, local distance 
and velocity as well as distance variation has been 
analyzed. The mean results of the true-positive, 
false-positive, false-negative and true negative rate 
for the different criteria are shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 

 
1. head 
2. body 
3. upper right arm 
4. lower right arm 
5. upper left arm 
6. lower left arm 
7. upper right leg 
8. lower right leg 
9. upper left leg 
10. lower left leg 

Figure 3: Ground truth for the evaluation of clustering and 
corresponding labelling of body segments. 

 
Figure 4: Overall true-positive, false-positive, false-
negative and true negative rate for location-based, 
velocity-based and distance variation based clustering. 

 
Figure 5: True-positive, false-positive, false-negative and 
true negative rate for different anatomical groups of 
clusters. 

There is usually a high true-positive rate for the 
location-based as well as for the distance-variation-
based clustering. Their mean true-positive rate over 
all body segments is 82.00 % for the location-based 
clustering and 81.37% much higher than the rate of 
the velocity based clustering which lies at 47.34%. 
Concerning the specificity of the clustering, the 
proportion of false-positive matches is very high. 
Here the tendency of the true positive rate repeats 
with a much better result of 42.87% and 51.40% for 
location-based and distance-variation-based 
clustering than for velocity-based clustering 
(70.23%). The results for the false-negative rates are 
in the best case for location based clustering at 
17.20% (26.03% and 51.87% for distance-variation 
and velocity-based clustering). So we can see a 
tendency for under rather than for over 
segmentation. 
It is also important to remark the qualitative 
differences of clustering correctness between the 
different body segments. As can be seen in Figure 5,  
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Figure 6: Relation of true-positive rate and motion intensity and false-positive rate and motion intensity for position based 
clustering, Figure a) and b), velocity based clustering, Figure c) and d) and distance variation based clustering, Figure e) 
and f). Especially for velocity based clustering, Figure c) and d), high motion intensity leads to an increase of the true-
positive rate and to a decrease of the false positive rate. 

the mean true-positive rates for the upper and lower 
extremities are usually over 80% whereas the head 
and especially the torso tend to show a significantly 
lower mean true-positive rate. This is mainly caused 
by the fact that the torso is often segmented into two 
or three different clusters. It usually divides into an 
upper and a lower part, defining a pelvis segment 
and a chest segment. The chest segment is, 
depending on the actual motion sometimes also 
divided into a left and right part, mainly because the 
motion of the chest muscles usually support the 
motion of the upper arm, so that they form two 
independent segments. This peculiarity has not been 
taken into account for the here presented evaluation 
but should be respected in the future, especially 
when it comes to the definition of an underlying 
motion model.  

Considering that only motion based criteria are 
used, it is easy to see that the evaluation will fail 
sometimes, e.g. if the person stands still, just 
because there would not be any meaningful input 
data when nothing moves. So, it is important to 
know under which conditions a clustering would 
conform to appropriate motion requirements. 

So is the outstanding position of velocity-based 
clustering in the overall correctness evaluation 
(Figure 4) mainly based on the fact that it depends 

on a certain amount of motion in the image. So, the 
more features are moving in the image, the more 
precise this method works. On the other hand side, 
when there are only few moving features in the 
image, this method usually fails. This close relation 
between motion and the amount of true-positive and 
true-negative features is display in Figure 6c) and d). 
It is clear to see, that high motion intensity also leads 
to an increase of the true-positive rate and to a 
decrease of the false positive rate and vice versa, 
whereas e.g. the location-based clustering is not 
affected by the motion intensity (Figure 6a) and b)). 
Concerning the reliability of clustering, we can see 
that frames with a high proportion of moving feature 
usually also have a equal or even higher specificity 
of clustering (Figure 6, all) than those with only few 
moving features. So, moving elements in an image 
usually improve the overall clustering results. This is 
comprehensible, considering the fact that especially 
the distance-variation-based and even more the 
velocity-based clustering depend on temporal 
interpretation of the data.  

For a further combination of the different 
criteria, it can be useful to take advantage of this 
characteristic by integrating the motion intensity as 
an additional factor. This allows to concentrate on 
the results of location-based clustering, when there 
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is only low motion intensity and to integrate 
distance-variation- and velocity-based clustering 
when the motion intensity increases as well as to 
estimate the reliability of the actual result, which 
could be useful for subsequent processing.  

6 CONCLUSIONS 

We presented three different feature clustering 
methods and evaluated them with respect to their 
applicability for articulated body tracking. We 
showed that moving features can be clustered just by 
their local and temporal properties without any 
additional image information and so, that the feature 
motion can allow determining the structure of the 
underlying e.g. rigid or articulated body. The results 
showed that an acceptable correctness can be 
archived by the presented cluster techniques, 
according to various circumstances. The here 
presented evaluation can serve as a basis to combine 
the strong points of every cluster criterion. This 
becomes important with regarding further 
development up to a consistent cluster tracking for 
longer motion sequences, but also regarding e.g. the 
connection of the feature clusters in order to define 
an underlying articulated motion model.  

So, the here presented alignment and grouping of 
features provides a basis for the reconstruction of 
complex structures and their recognition. 
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