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Abstract: It is quite common in real world situations to form beliefs under Dempster-Shafer (DS) theory on various 
variables from a single source. This is true, in particular, in auditing. Also, the judgment about these beliefs 
is easily made in terms of simple support functions on individual variables. However, for propagating 
beliefs in a network of variables, one needs to convert these beliefs on individual variables to beliefs on the 
joint space of the variables pertaining to the single source of evidence. Although there are many possible 
solutions to the above problem that will yield beliefs on the joint space with the desired marginal beliefs, 
there is no method that will guarantee that the beliefs are derived from the same source, fully dependent 
evidence. In this article, we describe such a procedure based on a maximal order decomposition algorithm. 
The procedure is computationally efficient and is supported by objective chi-square and entropy criteria.  
While such assignments are not unique, alternative procedures that have been suggested, such as linear 
programming, are more computationally intensive and result in similar m-value determinations.  It should 
be noted that our maximal order decomposition (i.e., minimum entropy) approach provides m-values on the 
joint space for fully dependent items of evidence. 

1 INTRODUCTION 

It is quite common, especially in auditing, to use one 
source of evidence to form beliefs under Dempster-
Shafer theory (Shafer 1976, Srivastava & Mock 
2002) on two or more variables in a decision. For 
example, in an audit of the financial statements, the 
auditor performs a test of confirmation of accounts 
receivables where he/she sends letters to a given 
number of randomly selected customers of the 
company being audited asking whether they owe the 
specified amount of money to the company. Such a 
confirmation provides support to two assertions, 
‘Existence’ and ‘Valuation’. Valuation implies that 
the account balance is correctly stated and Existence 

implies that the customer really exists, i.e., the 
customer is not fictitious. The level of support or 
belief that the account is valued correctly, in general, 
would differ from the level of belief that the 
customer does really exist. These beliefs can easily 
be expressed in terms of simple support functions on 
each variable, ‘Existence’ and ‘Valuation’. 
However, for the purpose of propagating beliefs in a 
network (Shenoy and Shafer 1990) one needs to 
convert these beliefs into a belief function on the 
joint space of the variables pertaining to the single 
source of evidence. This paper deals with such a 
conversion algorithm. 

The main purpose of this article is to describe an 
algorithm that converts beliefs in terms of m-values, 
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the basic probability assignment function (Shafer 
1976), that are defined on individual variables but 
have come from the same source of evidence to m-
values on the joint space of the variables.  Such a 
conversion is needed in order to propagate beliefs in 
a network of variables and to preserve the 
interdependencies among the items of evidence.  In 
auditing, it is quite common to use one source of 
evidence to form beliefs on different variables.  
Before we describe an example of the above 
situation, we want to give a brief introduction to the 
audit process below and show how important the 
above issue is for the auditor. 
The accounting profession defines auditing as (see, 
e.g., Arens, Elder, and Beasley 2006): 
“Auditing is the accumulation and 
evaluation of evidence to determine and 
report on the degree of correspondence 
between the information and established 
criteria (p. 4).” 

There are three important steps in the above 
definition that one should make a note of.  The first 
step, of course, is the accumulation of evidence. The 
second step is the evaluation of evidence in terms of 
the degree of correspondence between the 
information and established criteria.  The third step 
deals with the aggregation of all the evidence to 
form an opinion whether the information of the 
entity is in accordance with the established criteria.  
For the audit of financial statements (FS),1 the 
information consists of the account balances 
reported on the FS and the established criteria are 
the Generally Accepted Accounting Principles 
(GAAP).  Examples of accounts on the balance 
sheet would be cash, accounts receivable, inventory, 
etc., and on the income statement would be sales, 
cost of goods sold, expenses, etc. 

In essence, the auditor accumulates sufficient 
evidence related to the financial statements to 
express an opinion that the financial statements 
present fairly the financial position of the company 
in accordance with GAAP.  The question is what is 
fairly?  It is assumed that the FS are the repre-
sentations of management of the company.  When a 
company issues its FS, the management is making 
certain assertions about the numbers reported in the 
FS. These assertions are called management asser-
tions. The American Institute of Certified Public 
Accountants through the Statement on Auditing 
Standards No. 31 (AICPA 1980, see also SAS 106, 
AICPA 2006) classifies these assertions into five 
categories: ‘Existence or Occurrence’, 
‘Completeness’, ‘Rights and Obligation’, ‘Valuation 

or Allocation’, ‘Presentation and Disclosure’.  It is 
assumed that when all the assertions related to an 
account are met then the account is fairly stated. 

In order to facilitate accumulation of evidence to 
determine whether each management assertion is 
met, the AICPA has developed its own nine 
objectives called audit objectives: Existence, 
Completeness, Accuracy, Classification, Cutoff, 
Detail Tie-in, Realizable value, Rights and 
Obligations, Presentation and Disclosure (Arens, 
Elder, and Beasley, 2006, p. 150).  These objectives 
are closely related to the management assertions.  
For example, audit objectives: Existence, 
Completeness, and Rights and Obligations, re-
spectively, correspond to management assertions: 
Existence or Occurrence, Completeness, and Rights 
and Obligation.  The audit objectives: Accuracy, 
Classification, Cutoff, Detail Tie-in, and Realizable 
value relate to ‘Valuation and Allocation’ assertion 
because they all deal with the valuation of the 
account balance on the FS.  The audit objective 
‘Presentation and Disclosure’ relates to the 
management assertion ‘Presentation and 
Disclosure’. 

Thus, in an audit, the auditor collects enough 
evidence to make reasonably sure that each assertion 
of an account is met and consequently each account 
is fairly stated and finally making a decision on the 
fair presentation of the whole FS.  There are two 
important points related to the above decision 
process.  One deals with the nature of uncertainties 
associated with the audit evidence and the other 
deals with the structure.  Srivastava and Shafer 
(1992) have argued that belief functions provide a 
better framework for representing uncertainties 
associated with the audit evidence than probability 
theory (see also, Akresh , Loebbecke, and Scott 
1988, Harrison, Srivastava, and Plumlee 2002, 
Srivastava 1993, Shafer and Srivastava 1990). 
Regarding the structure of evidence, it is well known 
that it forms a network of variables; variable being 
the accounts on the FS, the audit objectives of the 
accounts, and the FS as a whole (see, e.g., 
Srivastava 1995, Srivastava, Dutta and Johns 1996, 
Srivastava and Lu 2002).  Thus, the process of 
aggregating all the audit evidence to form an 
opinion is essentially the process of propagating 
beliefs in a network of variables (Shenoy and Shafer 
1990, Srivastava 1995). 

The network structure arises because one item of 
evidence bears on more than one variable in the 
network. For example, confirmations of receivables2 
bear on the following two audit objectives of the 
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account:  'Existence' and 'Valuation'. The auditor can 
obtain certain level of belief from this evidence 
whether the accounts receivable exist (non-
fictitious) or do not exist (fictitious) and also 
whether the account balance is valued properly or 
not valued properly.  In general, the level of beliefs 
may differ from one variable to another.  For 
example, in the above case, the auditor may have a 
high level of belief, say 0.8, that the 'Existence' (e) 
objective of accounts receivable is met but may have 
a low level of belief, say 0.6, that the 'Valuation' (v) 
objective of the account is met3.  A lower belief for 
the 'Valuation' objective may be due to the auditor’s 
discovery of some clerical errors in the calculation 
of the related sales.  The above judgment of the 
auditor can be written in terms of belief functions as: 

Bel(e) = 0.8, Bel(~e) = 0, 
Bel(v) = 0.6, Bel(~v) = 0, 

The question is how should we represent the 
above beliefs in terms of m-values on the joint space 
of 'Existence' and 'Valuation'?  Shafer, Shenoy, and 
Srivastava (1988) use the concept of nested beliefs 
(Shafer 1976) to achieve the above task.  However, 
they did not provide a general solution to the 
problem, especially, for the cases where you have 
both positive and negative beliefs on each variable 
and also where the number of variables involved is 
bigger than two.  Dubois and Prade (1986, 1992, 
and 1994) have discussed the above issue and shown 
that one can set-up a Linear Programming problem 
to find a solution.  In the present article we propose 
an alternative algorithm that provides a solution 
without the computational effort of solving a linear 
program.4 Our algorithm is also supported by a least 
squares criterion which may be applied to empirical 
evidence, further encouraging its use in practice.  
Furthermore, our approach provides m-values for 
maximally dependent items of evidence (fully 
dependent items of evidence) which is the situation 
in auditing. 

In the next section of the paper, we describe the 
algorithm and illustrate its application to a specific 
example.  We follow this section with some 
concluding remarks. 

2 THE ALGORITHM AND AN 
EXAMPLE 

In order to illustrate the algorithm, let us consider a 
little more complex example than the one described 

in the introduction.  Let us consider that the auditor 
is evaluating the internal accounting control ‘batch 
totals are compared with computer summary reports 
for cash receipts’.  This evidence bears on three 
variables: existence, completeness, and valuation of 
cash receipts (for more examples see Arens et al 
2006).  In general, the level of support from such 
items of evidence for each variable may differ.  For 
example, in such a case, the auditor’s assessment of 
the levels of support may be as follows: (1)  0.6 
degree of support that the ‘existence’ objective is 
met (‘e’), and no support for its negation (‘~e’), (2)  
0.4 degree of support that the ‘completeness’ objec-
tive is met (‘c’), and no support that it is not met 
(‘~c’), and (3) 0.3 degree of support that the 
‘valuation’ objective is met (‘v’) and 0.1 degree of 
support that it is not met (‘~v’).  The auditor's 
judgments can be written5 in terms of belief 
functions on each variable as: 

Bel(e) = 0.6 and Bel(~e) = 0, 
Bel(c) = 0.4 and Bel(~c) = 0, 
 Bel(v) = 0.3 and Bel(~v) = 0.1. 

We will use this example to illustrate an algorithm 
for the simple assignment of m-values to the frame 
of discernment.  

The Algorithm 
Step 1: Express the beliefs in terms of m-values on 
the individual frames of the variables.  For the above 
example, we will get: 
m(e) = 0.6, m(~e) = 0, and m({e,~e}) = 0.4, 
m(c) = 0.4, m(~c) = 0, and m({c,~c}) = 0.6, 
m(v) = 0.3, m(~v) = 0.1, and m({v,~v}) = 0.6. 

Step 2: List the m-values for each variable in a 
columnar form; columns for variables, and rows for 
their values (see Table 1). 

Step 3: Select the smallest non-zero m-value in each 
column (i.e., for each variable).  These values are 
written inside highlighted boxes in Table 1.  These 
values define the elements of the joint space. 

Step 4: Select the smallest m-value among the set 
obtained in Step 3.  This value represents the m-
value for the set of elements on the joint space 
generated by the product of individual elements 
corresponding to the m-values selected in Step 3. 

Step 5: Subtract the m-value obtained in Step 4 from 
each selected m-value in Step 3. 

Step 6: Repeat Steps 3 - 4 until all entries are zero. 

BELIEFS ON INDIVIDUAL VARIABLES FROM A SINGLE SOURCE TO BELIEFS ON THE JOINT SPACE UNDER
DEMPSTER-SHAFER THEORY - An Algorithm

193



Table 1: Algorithm steps in calculation m-values on the joint space of variables. 

 
The Resulting m-values 
The m-values generated on the joint space through 
the above algorithm for our example are (see Table 
1). 
m({ec~v, ~ec~v}) = 0.1, 
m({ecv, ~ecv}) = 0.3, 
m({ecv, ec~v, e~cv, e~c~v, }) = 0.6. 

As we can see, the above m-values are not nested.  
However, for the case of two variables with only 
positive beliefs, one would obtain nested m-values 
as used by Shafer, Shenoy, and Srivastava (1988). 

If we marginalize the above m-values on the 
individual variable space then we do get the beliefs 
that the auditor had estimated.  The above approach 
is valid even for non-binary variables.  Of course, m-
value assignments with this property are not unique.  
However, the merit of this particular assignment 
algorithm may be argued in two ways.   

First, the algorithm is computationally economic 
relative to other approaches such as linear 
programming.  Moreover, it is possible to show that 
the present algorithm produces the same assignments 
as linear programming under certain conditions. 

Second, we can show that this algorithm 
produces an assignment of m-values which 
minimizes the squared differences between each 
pairwise assignment and the consequent belief value 
in the case of two variables.   

As Dubois and Prade (1986) discuss, the 
existence of criteria-dependent solutions to the m-
value assignment problem is not surprising.  
However, the computational simplicity of the present 
algorithm suggests its consideration in practice.   

3 MAXIMAL ORDER 
DECOMPOSITION 

The creation of m-values with the algorithm 
described in the previous section is computationally 
efficient.  In this section, we wish to explore the 
mathematical properties of the algorithm.  It is 
difficult to develop insights in the general case, so 
we restrict our attention to the case of two variables.  
This is similar to the approach taken by Dubois and 
Prade (1986). 

Consider the two variables c and v from the 
previous section.  m-values on their values are easily 
summarized in : 

Table 2: M-values for two variables. 

Var v ~v (v,~v) m 

C 0.3 0.1 0.0 0.4 

~c 0.0 0.0 0.0 0.0 

(c,~c) 0.0 0.0 0.6 0.6 

M 0.3 0.1 0.6  

Many allocations of these m-values are possible 
consistent with the row and column totals.  The 
allocations in Table 2 from our algorithm can be 
shown to have some very attractive properties. 

For comparative purposes with other 
assignments, we may calculate two statistics.  First, 
the entropy, Entropy ln

i ip p= −∑  and second, the 

value of the chi-square statistic for testing the 

Step Variable m-value Variable m-value Variable m-value Result 
1 e 0.6 c 0.4 v 0.3  
 ~e 0.0 ~c 0.0 ~v 0.1  
 {e,~e} 0.4 {c,~c} 0.6 {v,~v} 0.6 m({ec~v,~ec~v})=0.1 
2 e 0.6 c 0.3 v 0.3  
 ~e 0.0 ~c 0.0 ~v 0.0  
 {e,~e} 0.3 {c,~c} 0.6 {v,~v} 0.6 m({ecv,~ecv})=0.3 
3 e 0.6 c 0.0 v 0.0  
 ~e 0.0 ~c 0.0 ~v 0.0  
 {e,~e} 0.0 {c,~c} 0.6 {v,~v} 0.6 m({ecv,ec~v,e~cv,e~c

~v})=0.6 
4 e 0.0 c 0.0 v 0.0  
 ~e 0.0 ~c 0.0 ~v 0.0  
 {e,~e} 0.0 {c,~c} 0.0 {v,~v} 0.0 Stop 
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hypothesis of independence, 
2

2
( )O E

E

−
Χ = ∑ , where 

O is the observed table value and E is the table value 
expected if rows and columns were independent.  In 
the case of independence, table values would be 
assigned by multiplying row and column marginal 
totals.  For our algorithm, 

Entropy=-0.3ln(0.3) -0.1ln(0.1) -0.6ln(0.6) = 0.8979, 

2Χ = (0.3-0.12)2/0.12 + . + (0.6-0.36)2/0.36 = 1 

If m-values were allocated according to 
independence, we obtain Entropy = 1.572 and X2 = 
0.0. 

The entropy for a joint distribution of two 
random variables E(X,Y) is known to satisfy E(X,Y) 
>= E(X), E(X,Y) >= E(Y), and E(X,Y) <= E(X) + 
E(Y), with the last being an equality if and only if X 
and Y are independent random variables.  In the 
above table, denote the entropy for the rows and 
columns by E(C) and E(V).  It is easily seen that 
E(C) = 0.673 and E(V) =0.898.  In this example, our 
algorithm produces a joint entropy equal to that of 
the columns which, in turn, is the smallest possible 
joint entropy consistent with the row and column 
totals.  The assignment of m-values via the 
independence assumption, alternatively, yields a 
joint entropy that is the highest possible, namely the 
sum of E(C) and E(V). 

Thus our algorithm, when compared with 
independent allocation, minimizes entropy and 
maximizes the chi-square statistic.  Since entropy is 
a measure of disorder, we are maximizing order, and 
hence we term our approach, Maximal Order 
Decomposition. Thus we have a clear distinction 
with the Dubois and Prade algorithm, which is based 
on linear programming and maximizes entropy. Thus 
we have two competing approaches, that of 
independence, which is equivalent to maximum 
entropy, and our algorithm, which results in 
minimum entropy.  In our case, the two sets of m-
values originate from the same source, so we cannot 
assume independence.  The minimum entropy 
approach provides m-values for the more realistic 
fully dependent case. 

We believe ours is clearly superior on 
computational grounds, making it the algorithm of 
choice in large complex systems.  Note also that 
while independence requires simple multiplication to 
allocate m-values, the number of nonzero elements 
in the frame grows exponentially with the number of 
variables.  In the two-variable case, our frame has 

only three nonzero m-values, while independent 
variables would have nine.  With 25 variables, our 
approach would yield 25 nonzero m-values, while 
independent variables would require 325 = 8.5E11 
nonzero assignments. 

A proof that our approach maximizes chi-square 
and minimizes entropy is unattainable in the general 
case, but a proof is available for the simplest 2 x 2 
case, which was considered by Dubois and Prade.  
We will use their notation for ease of comparison.  
First, consider assigning m-values of α  and β  to 
variable a and b.  An assignment is defined by XAB , 
XA , XB , Xw , as in the table below: 

Table 3: Feasible assignment of m-values. 

Variabl
e 

b ~b m-value 

a 
ABX  ABXα −  α

~a 
ABX−β

 1 ABXα β− − +  

1 α−  

m-value β  1 β−   

 
The minimum chi-square statistic is zero when 

XAB= *α β . The maximum chi-square statistic can 
be found by maximizing 

2 2( ) /( (1 ) (1 ))ABX αβ α α β βΧ = − − −  

subject to the constraints 

 max(0, 1α β+ − ) ABX≤ ≤min( ,α β ). 

Clearly the maximum will occur at either the upper 
or lower bound on XAB, and we may simply examine 
all (four) possible orderings of the m-values to 
verify that our algorithm maximizes chi-square. We 
will not repeat the proof for all possibilities.  The 
interested reader may find it informative to do so, 
however.  As an example of one of the possibilities, 
suppose that 1 1α β β α≤ ≤ − ≤ − .  Our algorithm 
produces the solution corresponding to XAB=α .  For 
this particular ordering of m-values, the previously 
stated limits become 0 ABX α≤ ≤ .  Maximum chi-
square occurs at XAB=α  if and only if 

2 2( ) (0 )α αβ αβ− ≥ −  which is true for this chosen 
case.  Similar arguments hold for any permutation of 
the m-values, and therefore our Maximum Order 
Decomposition Algorithm maximizes the chi-
square statistic for any given set of m-values. 

To   also  prove   that   the  algorithm  minimizes  
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entropy, consider any arbitrary allocation as a 
function of XAB.  After writing the expression for 
Entropy as a function of XAB we note that the same 
upper and lower bounds as for the chi-square 
calculation must be preserved.  We also note that 
Entropy is (1) concave downward and (2) has a 
derivative of zero only at XAB=αβ .  This point is 
therefore a global maximum for E, and is identical to 
the minimum chi-square point.  The minimum 
entropy therefore must be at either the upper or 
lower limit on XAB as was the case previously 
considered.  The proof that our algorithm minimizes 
E proceeds in the same way as before.  For each of 
the (four) possible m-value orderings, we can prove 
that our assignment minimizes E and coincides with 
the upper or lower limit on XAB. 

Our algorithm therefore maximizes chi-square 
while minimizing entropy.  Because of these 
properties, we may refer to it as the Maximal Order 
Decomposition Algorithm.  We should note also 
that in the simplest case examined by DuBois and 
Prade, our assignments are identical to theirs. 

4 SUMMARY AND 
CONCLUSIONS 

We have described a sequential algorithm for the 
assignment of m-values to subsets of the frame of 
discernment that are consistent with an overall 
assignment of beliefs to individual variables.  While 
many such assignments are possible, our algorithm 
is computationally simple, completely general, and is 
supported by objective chi-square and entropy 
criteria.  In the simplest case of two variables, this 
algorithm produces an assignment identical to that of 
more complicated algorithms. 

FOOTNOTES 

1.  There are several types of audit: the audit of 
financial statements of a company, compliance 
audit, income tax audit, operational audit, and 
assertion audit.  In principle, they are all the 
same; they all involve collection, evaluation, 
and aggregation of evidence to form an opinion.  
However, the nature of assertions and the 
corresponding items of evidence may differ 
from one type of audit to another.  In this article, 
we use examples from the audit of financial 
statements. Financial Statements consist of a set 

of four statements in the USA: balance sheet, 
income statement, statement of cash flow, and 
statement of retained earnings. (see, e.g., Arens, 
Elder, and Beasley 2006, for details on the 
definitions of various types of audit). 

2.   In auditing accounts receivable, auditors usually 
send letters of confirmation to some selected 
customers of the client to verify the following; 
(1) whether they owe any money to the com-
pany, and (2) the amount they owe is the 
amount given in the confirmation letter. 

3.   As a convention, we will use the first letter in the 
lower case in the name of a variable to represent 
the values of the variable.  For example, for 
‘Existence’, we will use ‘e’ and ‘~e’, respec-
tively for the two values that the objective is 
met, and not met. 

4.   The set of m-values on the joint space that yields 
the desired beliefs on individual variables is not 
unique. 

5.   It should be pointed out that this judgment of the 
auditor can not be easily represented in terms 
probabilities. 
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