
LANGUAGE-NEUTRAL SUPPORT OF DYNAMIC INHERITANCE

Jose Manuel Redondo, Francisco Ortin
University of Oviedo, Computer Science Department,Calvo Sotelo s/n, 33007, Oviedo, Spain

J. Baltasar Garcia Perez-Schofield
University of Vigo, Computer Science Department, As Lagoas s/n, 32004, Ourense, Spain

Keywords: Dynamic inheritance, structural reflection, dynamic languages, JIT compilation, SSCLI, virtual machine,
prototype-based object-oriented model.

Abstract: Virtual machines have been successfully applied in diverse scenarios to obtain several benefits. Application
interoperability and distribution, code portability, and improving the runtime performance of programs are
examples of these benefits. Techniques like JIT compilation have improved virtual machine runtime perfor-
mance, becoming an adequate alternative to develop different types of software products. We have extended a
production JIT-based virtual machine so they offer low-level support for structural reflection, in order to obtain
the aforementioned advantages in dynamic languages implementation.
As various dynamic languages offer support for dynamic inheritance, the next step in our research work is to
enable this support in the aforementioned JIT-based virtual machine. Our approach enables dynamic inheri-
tance in a language-neutral way, supporting both static and dynamic languages, so no language specification
have to be modified to enable these features. It also enables static and dynamic languages to interoperate, since
both types are now low-level supported by our machine.

1 INTRODUCTION

Dynamic languages like Python (Rossum and Drake,
2003) or Ruby (Thomas et al., 2004) are frequently
used nowadays to develop different kinds of appli-
cations, such as adaptable and adaptive software,
Web development (the Ruby on Rails framework
(Thomas et al., 2005)), application frameworks (JSR
223 (Grogan, 2008)), persistence (Ortin et al., 2004)
or dynamic aspect-oriented programming (Ortin and
Cueva, 2004). These languages build on the Smalltalk
idea of supporting reasoning about (and customizing)
program structure, behavior and environment at run-
time. This is commonly referred to as the revival of
dynamic languages (Nierstrasz et al., 2005).

The main objective of dynamic languages is to
model the dynamicity that is sometimes required in
building high context-dependent software, due to the
mobility of both the software itself and its users. For
that reason, features like meta-programming, reflec-
tion, mobility or dynamic reconfiguration and distri-
bution are supported by these languages. However,
supporting these features cause two main drawbacks:
the lack of static type checking and a considerable

runtime performance penalty.
Our past work (Ortin et al., 2005) (Redondo et al.,

2008) (Redondo et al., 2006a) (Redondo et al., 2006b)
has been focused on applying the same approach that
made virtual machines a valid alternative to develop
commercial software. Since many virtual machines of
dynamic languages are developed as interpreters, we
have used an efficient virtual machine JIT compiler to
evaluate whether it is a suitable technique to achieve
advantages like improving their runtime performance.
The chosen virtual machine was the Microsoft Shared
Source implementation of the .Net platform (SSCLI).

Nowadays, there are initiatives to support dy-
namic languages modifying a production JIT-based
virtual machine, such as (Rose, 2008). Our approach
also adds new features to an existing virtual machine,
but we want to introduce full low-level support for the
whole set of reflective primitives that support the dy-
namicity of these languages, as part of the machine
services. The main advantages of our approach are:

1. Language processors of dynamic languages can
be implemented using the modified machine ser-
vices. Low-level support of structural reflection

5
Manuel Redondo J., Ortin F. and Baltasar Garcia Perez-Schofield J. (2008).
LANGUAGE-NEUTRAL SUPPORT OF DYNAMIC INHERITANCE.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 5-12
DOI: 10.5220/0001870400050012
Copyright c© SciTePress



eases the implementation of its dynamic features.

2. Full backwards compatibility with legacy code.
Instead of modifying the syntax of the virtual ma-
chine intermediate language, we extended the se-
mantics of several instructions.

3. Reflective primitives are offered to any present or
future language (they are language-neutral).

4. Interoperability is now possible between static
and dynamic languages, since the machine sup-
ports both of them.

5. Obtain a performance advantage, since it is not
necessary to generate extra code to simulate dy-
namic functionalities –see section 2.2.

Existing implementations do not offer all the ad-
vantages and features of our approach. For exam-
ple, the Da Vinci virtual machine (OpenJDK, 2008)
(prototype implementation of the JSR292 specifica-
tion (Rose, 2008)) will likely add new instructions to
its intermediate language. By doing this, its new fea-
tures will not be backward compatible, since compil-
ers must be aware of these instructions to benefit from
the extended support they provide. Another example
is the Microsoft DLR (Chiles, 2008), which aims to
implement on top of the CLR several features to sup-
port dynamic languages. Languages must be designed
to target the DLR specifically to benefit from its fea-
tures, so this implementation is not language-neutral.

In our past work we had successfully implemented
most of these primitives into the machine, enabling
low-level support to add, modify or delete any object
or class member. Prototype-based object-oriented se-
mantics (Borning, 1986) were also appropriately in-
troduced to solve those cases in which the existing
class-based model had not enough flexibility to imple-
ment the desired functionality. The original machine
object model evolved into a hybrid model that support
both kinds of languages without breaking backwards
compatibility, also allowing direct interoperability be-
tween static and dynamic languages (Redondo et al.,
2008). The research prototype that incorporates all
these dynamic features is named Reflective Rotor or
zROTOR.

In this paper we will explain the next step of our
work, designing and implementing a new reflective
primitive into our system which will enable the users
to effectively use single dynamic inheritance over
the hybrid object model that zROTOR now supports.
Languages that support this feature (such as Python
(Rossum and Drake, 2003)) make possible, for exam-
ple, to change the inheritance hierarchy of a class at
run time (Lucas et al., 1995), allowing a greater de-
gree of flexibility to its programs. With the addition of

this new primitive, the full set of structural reflective
primitives will be low-level supported by zROTOR.

The rest of this paper is structured as follows.
Section 2 describes the background of our work, ex-
plaining several concepts involved in its development
and the current state of our implementation prototype.
Section 3 details the design of the dynamic inheri-
tance support over the existing machine. Section 4
presents details about the implementation of our de-
sign and finally section 5 describe the final conclu-
sions and future lines of work.

2 BACKGROUND

2.1 Type Systems of Dynamic
Languages

Dynamic languages use dynamic type systems to en-
able runtime adaptability of its programs. However,
a static type system offers the programmer the advan-
tage of early detection of type errors, making possible
to fix them immediately rather than discovering them
at runtime or even after the program has been de-
ployed (Pierce, 2002). Another drawback of dynamic
type checking is low runtime performance, discussed
in the following section. There are some research
works that try to partially amend the disadvantages of
not being able to perform static type checking. These
include approaches like integrating unit testing facil-
ities and suites with dynamic languages (MetaSlash,
2008) or allowing static and dynamic typing in the
same language (Meijer and Drayton, 2004) (Ortin,
2008). This is the reason why we have focused our
efforts in improving runtime performance.

2.2 Runtime Performance of Dynamic
Languages

Looking for code mobility, portability, and distribu-
tion facilities, dynamic languages are usually com-
piled to the intermediate language of an abstract ma-
chine. Since its computational model offers dynamic
modification of its structure and code generation at
runtime, existing virtual machines of dynamic lan-
guages are commonly implemented as interpreters.
This fact, plus the runtime type checking additional
cost, cause an important performance penalty when
compared to “static” languages.

Since the research in customized dynamic com-
pilation applied to the Self programming language
(Chambers and Ungar, 1989), virtual machine imple-
mentations have become faster by optimizing the bi-

ICSOFT 2008 - International Conference on Software and Data Technologies

6



nary code generated at run time using different tech-
niques. An example is the dynamic adaptive HotSpot
optimizer compilers. Speeding up the application ex-
ecution of dynamic languages by using JIT compila-
tion facilitates their inclusion in commercial develop-
ment environments.

Most works that use virtual machine JIT compil-
ers to improve runtime performance of dynamic lan-
guages are restricted to compilers that generate Java
or .Net bytecodes. These machines do not support
structural reflection, as they were created to support
static languages. Generating extra code is then needed
to simulate dynamic features over these machines,
leading to a poor runtime performance (Udell, 2003).
Examples of this approach are Python for .Net from
the Zope Community, IronPython from Microsoft or
Jython for the JVM platform.

Our approach uses a virtual machine with JIT
compilation to directly support any dynamic lan-
guage. Unlike existing implementations, we extended
the static computational model of an efficient virtual
machine, adding the reflective services of dynamic
languages. This new computational model is then dy-
namically translated into the native code of a specific
platform using the JIT compiler. Instead of generat-
ing extra code to simulate the computational model
of dynamic languages, the virtual machine supports
these services directly. As a result, a significant per-
formance improvement is achieved -see section 2.4.

2.3 Structural Reflection

Reflection is the capability of a computational system
to reason about and act upon itself, adjusting itself
to changing conditions (Maes, 1987). In a reflective
language, the computational domain is enhanced with
its own representation, offering its structure and se-
mantics as computable data at runtime. Reflection has
been recognized as a suitable tool to aid the dynamic
evolution of running systems, being the primary tech-
nique to obtain the meta-programming, adaptiveness,
and dynamic reconfiguration features of dynamic lan-
guages (Cazzola et al., 2004).

The main criterion to categorize runtime reflec-
tive systems is taking into consideration what can
be reflected. According to that, three levels of re-
flection can be identified: Introspection (read the
program structure), Structural Reflection (modify the
system structure, adding fields or methods to ob-
jects or classes, reflecting the changes at runtime)
and Computational (Behavioral) Reflection (System
semantics can be modified, changing runtime behav-
ior of programs).

2.4 zROTOR

Compiling languages to the intermediate code of a
virtual machine offers many benefits, such as plat-
form neutrality or application interoperability (Diehl
et al., 2000). In addition, compiling languages to a
lower abstraction level virtual machine improves run-
time performance in comparison with direct interpre-
tation of programs.

Therefore, we have used the Microsoft .Net plat-
form as the targeted virtual machine to benefit from
its design, focused on supporting a wide number of
languages (Meijer and Gough, 2000) (Singer, 2003).
The selection of an specific distribution was based
on the necessity of an open source implementation
to extend its semantics and an efficient JIT compiler.
The SSCLI (Shared Source Common Language In-
frastructure, aka Rotor) implementation has been our
final choice because it is nearer to the commercial
virtual machine implementation: the Common Lan-
guage Runtime (CLR) (Stutz et al., 2003).

To date, we have successfully extended the exe-
cution environment to adapt the semantics of the ab-
stract machine, obtaining a new reflective computa-
tional model that is backward compatible with exist-
ing programs. We have also extended the Base Class
Library (BCL) to add new structural reflection prim-
itives (add, remove and modify members of any ob-
ject or class in the system), instead of defining new IL
statements. We refer to this new platform as Reflec-
tive Rotor or zROTOR.

The assessment of our current zROTOR implemen-
tation has shown us that our approach is the fastest if
compared to widely used dynamic languages such as
Python and Ruby (Redondo et al., 2008). When run-
ning reflective tests, our system is on average almost 3
times faster than the fastest commercial dynamic lan-
guages implementations. When running static code,
our system is 3 times faster than the rest of tested
implementations, needing a significantly lower mem-
ory usage increment (at most 102% more). Finally,
we have also evaluated the cost of our enhancements.
When running real applications that do not use reflec-
tion at all, empirical results show that the performance
cost is generally below 50%, using 4% more memory.

2.5 The Object Model of zROTOR

The current object model of our machine is the re-
sult of the needed evolution of the original SSCLI
class-based model to give proper support to the re-
flective primitives. There are some inconsistencies
between the class-based model and structural reflec-
tion. As stated in the MetaXa project (Kleinder and

LANGUAGE-NEUTRAL SUPPORT OF DYNAMIC INHERITANCE

7



Golm, 1996), a single object structure is very diffi-
cult to modify without altering the rest of its class
instances (a class must reflect the structure of all its
instances). This fact causes several problems (main-
taining the class data consistency, class identity, using
class objects in the code,...) involving a really com-
plex and difficult to manage implementation (Golm
and Kleinder, 1997). This is why we introduced the
prototype-based object-oriented model into zROTOR.

In the prototype-based object-oriented computa-
tional model the main abstraction is the object, sup-
pressing the existence of classes (Borning, 1986). Al-
though this computational model is simpler than the
one based on classes, any class-based program can
be translated into the prototype-based model (Ungar
et al., 1991). In fact, this model has been considered
as a universal substrate for object-oriented languages
(Wolczko et al., 1996).

For our project, the most important feature of the
prototype-based object-oriented computational model
is that it models structural reflection primitives in a
consistent and coherent way. Dynamic languages use
this model for the same reason. Modifying the struc-
ture (fields and methods) of a single object is per-
formed directly, because any object maintains its own
structure and even its specialized behavior. Shared
behavior could be placed in the so called trait objects,
so its customization implies the adaptation of types.

Although the so called Common Language In-
frastructure (CLI) tries to support a wide set of lan-
guages, the .Net platform only offers a class-based
object-oriented model optimized to execute “static”
languages. In order to allow prototype-based dynamic
languages to be interoperable with any existing .Net
language or application, and to maintain backward
compatibility, we supported both models. This way
we can run static class-based .Net applications and
dynamic reflective programs. .Net compilers could
then select services of the appropriate model depend-
ing on the language being compiled. Consequently,
compilers for a wider range of languages could be
implemented. These compilers will generate the in-
termediate code of our machine, that is in fact syn-
tactically the same as the original machine (to main-
tain backward compatibility). Examples of these lan-
guages are:

• Class-based languages with static typing (C#).

• Prototype-based languages with dynamic typing
(e.g. Python (Rossum and Drake, 2003)).

• Class-based languages with static and dynamic
typing (e.g. Boo (CodeHaus, 2008) or StaDyn
(Ortin, 2008)).

• Prototype-based languages with static typing (e.g.

StrongTalk (Bracha and Griswold, 1993)).

2.6 Dynamic Inheritance

When passing messages to a particular object, con-
ventional class-based languages use a concatenation-
based inheritance strategy. This means that all mem-
bers (either derived or owned) of a particular class
must be included in the internal structure of this
class. Using this approach enables compile-time type
checking. This will prove that there can never be
an error derived from invoking a non existing mes-
sage (Ernst, 1999), but at the expense of flexibil-
ity. In contrast, dynamic languages use delegation-
based inheritance mechanism, iterating over the hier-
archy of an object searching for the intended member.
Since our system introduced prototype-based seman-
tics, we also implemented a delegation-based inheri-
tance mechanism to be used together.

Delegation - based inheritance is complemented
with dynamic inheritance. In contrast with con-
ventional class-based languages, prototype-based lan-
guages allow a inheritance hierarchy to be changed at
run time (Lucas et al., 1995). More specifically, dy-
namic inheritance refers to the ability to add, change
or delete base classes from any class at run time.
It also includes the ability to dynamically change
the type of any instance. This results in a much
more flexible approach, allowing objects and classes
of any program to better adapt to changing require-
ments. This type of inheritance is implemented by
languages such as Python (Rossum and Drake, 2003),
Self (Chambers and Ungar, 1989), Kevo (Taivalsaari,
1992), Slate (Project, 2008) or AmbientTalk (Cutsem
et al., 2007).

Therefore, it is necessary to create the means to
provide adequate support for dynamic inheritance to
give a complete support of the dynamic features of
dynamic languages.

3 DESIGN

In this section we will analyze the semantics of dy-
namic inheritance when applied over the object model
of zROTOR. Therefore, we must take into account
both class-based and prototype-based semantics. It
is important to state that, while either models are sup-
ported, they will not be both present at the same time.
Languages could be either class-based or prototype-
based, but they will not use both models together.
The implementation of dynamic inheritance will be
done creating a new setSuper primitive, which will be

ICSOFT 2008 - International Conference on Software and Data Technologies

8



added to the already existing ones. We consider two
main operations over each object model:

1. Instance Type Change (setSuper applied over an
object). Substituting the current type of an in-
stance with another one, performing the appropri-
ate changes on its structure to match the new type.

2. Class Inheritance Tree Change (setSuper ap-
plied over a class). Substituting the base type of a
class with another one, performing the necessary
changes over the class hierarchy and instances.

In order to give a precise description, we will for-
malize the behavior of the new setSuper primitive. We
assume that:

• Ca is the attribute set of class C.

• Cm is the method set of class C.

• Cp is the member set of class C (Cp = Ca ∪ Cm)

• C+
a = Ca ∪ D+

a , ∀ D superclass of C. Represents
the full set of attributes (including inherited) of C.

• C+
m = Cm ∪ D+

m , ∀ D superclass of C. Represents
the full set of methods (including inherited) of C.

• C+
p = C+

a ∪ C+
m .

The described formalizations have been designed
without breaking the restrictions of the object model
over which they are applied. This design also relies on
the reflective primitives that were implemented in our
previous work –see section 2.4. Each formalization is
given an example to clarify its functionality. All the
given examples will refer to the class diagram shown
in figure 1.

 

+ma()

-a

A

+mb()

-b

B

+mg()

-g

G

+md()

-d

D

+me()

-e

E

+mf()

-f

F

+mc()

-c

C

Figure 1: Example class diagram.

3.1 Class-based Model

The design of an instance type change is formalized
as follows. Figure 2 shows an example of this opera-
tion:

• Let X, Y be classes and o: X.

• The setSuper(o, Y) primitive call modifies o struc-
ture this way:
– Delete from o the member set D (D = X+

p - (X+
p

∩ Y+
p ))

– Add to o the member set A (A = Y+
p - X+

p )

Figure 2: Type change (class-based model).

The design of an inheritance tree change of a
class is formalized as follows. Figure 3 shows an ex-
ample of this operation:
• Let X, Y be classes. Let Z be the base class of X.
• The setSuper(X, Y) primitive call modifies class X

structure this way:
– Delete from X the member set D (D = Z+

p - (Z+
p

∩ Y+
p ))

– Add to X the member set A (A = Y+
p - Z+

p )
It should also be noted that instance members of

modified classes are dynamically updated when they
are about to be used (lazy mechanism). The exist-
ing primitives already use this mechanism (Redondo
et al., 2008), so we will take advantage of it. This
is much faster than actively modifying all instances
when a change is performed, specially if a large num-
ber of them are present.

Figure 3: Inheritance tree change (class-based model).

3.2 Prototype-based Model

The design of an instance type change is formalized
as follows. Figure 4 shows an example of this opera-
tion:

LANGUAGE-NEUTRAL SUPPORT OF DYNAMIC INHERITANCE

9



• Let X, Y be classes and o: X.

• The setSuper(o, Y) primitive call modifies o struc-
ture this way:

– Delete from o the method set D (D = X+
m - (X+

m
∩ Y+

m))
– Add to o the method set A (A = Y+

m - X+
m)

It should also be noted that existing attributes are
always maintained in the instances (no attribute is
added nor deleted).

Figure 4: Type change (prototype-based model).

The design of an inheritance tree change of a
class is formalized as follows. Figure 5 shows an ex-
ample of this operation:

• Let X, Y be classes. Let Z be the base class of X.

• The setSuper(X, Y) primitive call modifies class X
structure this way:

– Delete from X the method set D (D = Z+
m - (Z+

m
∩ Y+

m))
– Add to X the method set A (A = Y+

m - Z+
m)

Figure 5: Inheritance tree change (prototype-based model).

The only difference between both models formal-
ization is that the prototype-based model maintain in-
stance attributes. Finally, it must be remarked that all
operations will comply the following assumptions:

• The computational complexity of any operation is
O(n), being n the number of classes present in the
involved classes (X, Y) hierarchies. The algorithm
goes through each class once to perform the re-
quested operation.

• In zROTOR, when we ask via introspection for the
type of an object or the base type of a class, it must
respond with the dynamically assigned type.

• Adding a member to a set that already contains it
has no semantics (no computation is performed).

• When new attributes are incorporated to instances
or classes as a consequence of any of the de-
scribed operations, default values are assigned ac-
cording to the value that was assigned to them in
its original declaration.

4 IMPLEMENTATION

The implementation could be divided in three impor-
tant aspects. We will describe the techniques followed
in each part to implement the described design.

4.1 The setSuper Primitive Interface

As we made with the primitives to add, modify and
remove members, we changed our NativeStructural
BCL class to allow access to the new setSuper primi-
tive. The virtual machine core is then extended to in-
corporate this new service, linking the primitive call
interface to its low-level implementation (Redondo
et al., 2008). Therefore, our new extension naturally
integrates with the already created infrastructure, be-
ing part of the virtual machine services. The simplest
way to distinguish what object model is going to be
used is adding a third boolean parameter to the prim-
itive. This way, a user can easily choose either model
and the system will select the appropriate behavior.

4.2 Instance Manipulation

One of the most challenging tasks in this work is how
to effectively translate the designed dynamic inheri-
tance model into the machine internals. The new set-
Super primitive will take advantage of the primitives
added in our previous work to successfully implement
its features. However, these primitives never needed
to modify parent-child or instance-class relationships,
so this concrete part of the system must be studied.
The capability to add or remove members to any ob-
ject or class in the system alone fell short to imple-
ment the desired functionality. Although the changed
entity could have the exact interface we pretend, its
internal type will not be correct.

So, in order to achieve an instance type change,
we have to carefully review the low-level infrastruc-
ture representation of instances (Stutz et al., 2003).
This way, we found that every instance is bound to its

ICSOFT 2008 - International Conference on Software and Data Technologies

10



class using a pointer to a unique class: the Method-
Table. We found that dynamically changing an in-
stance method table produces the desired effect, and
the system responds as expected when types of in-
stances are dynamically requested.

Therefore, by appropriately combining our exist-
ing structural reflection primitives with a Method-
Table substitution of the involved instance we can
achieve the desired type change functionality. Once
this is solved, it was easy to compute the A and D
member sets and apply them to implement the de-
scribed model design using the primitives of our pre-
vious work (Redondo et al., 2008).

4.3 Class Manipulation

Although in the internal structure of a class there ex-
ist a pointer to its base type, dynamically changing
this pointer to the desired class would not work. This
is because the original SSCLI virtual machine im-
plements introspection routines that interacts directly
with internal structures of classes to obtain members
and other requested data. It was found that this intro-
spection code uses several built-in integrity tests and
internal checking that produced wrong behavior if we
change the aforementioned pointer. These checks are
also invoked in several parts of the system to maintain
class integrity, so it is not possible to modify them.

The implementation of the reflective primitives in
our previous work forced us to use an auxiliary SS-
CLI class in order to store the information we need
(Redondo et al., 2008). This element is called the
SyncBlock, and every object and class in the system
have one attached to its internal structure. We use
this SyncBlock to our advantage in order to imple-
ment the desired functionality and solve the afore-
mentioned implementation problems.

By storing a pointer to the dynamically assigned
base class in this Syncblock, we can modify the im-
plementation of the desired introspection primitives
without modifying the “real” base type pointer. This
way, any introspection primitive implementation in
the system (Type.getMethods(), Type.getFields(), Ob-
ject.GetType(), ...) could be modified to produce cor-
rect results, taking into account the dynamically as-
signed base class only if it is present. By using this
approach we achieve two main benefits:

1. If no new base type is assigned, the original code
will be executed, causing no performance loss.

2. The built-in integrity checks will continue work-
ing, since the static relationships between classes
established at compile time appear to be left un-
changed.

5 CONCLUSIONS

The major contribution of our work is the design and
implementation of language-neutral dynamic inher-
itance support over a production high-performance
JIT-based virtual machine. Nowadays, there is an ac-
tive research line whose aim is to give more support to
dynamic languages using JIT-based virtual machines
(OpenJDK, 2008) (Chiles, 2008). Our system can be
classified into this research line, trying a different ap-
proach to attain these objectives. Our dynamic inher-
itance support is combined with the already imple-
mented reflective primitives, to offer complete sup-
port to structural reflection fully integrated into the
machine internals. This enables the machine to offer
the following benefits:

1. Any language (class or prototype-based) could
benefit from structural reflection without altering
its specifications. Semantics of this primitive is
defined for both object models.

2. Low-level support of all the structural reflection
primitives into the virtual machine, allowing any
dynamic language to be completely implemented
over its services, without adding any extra ab-
straction layer to simulate dynamic features.

3. Extend the interoperability present in the original
machine to include dynamic languages, enabling
them to interoperate with static ones.

4. Full backward compatibility with legacy code,
since the intermediate code of the machine is not
syntactically changed.

5. Due to the commercial character of the original
virtual machine, it is possible to directly offer
its new services to existing frameworks and lan-
guages designed to work with it.

Future work will incorporate meta-classes to the
machine, taking advantage of the existing dynamic
features. We are also developing a language that sup-
ports both dynamic and static typing, making the most
of our zROTOR implementation (Ortin, 2008).

ACKNOWLEDGEMENTS

This work is funded by Microsoft Research with the
project entitled Extending dynamic features of the SS-
CLI. It is part of a project who also define a program-
ming language capable of offering both static and dy-
namic typing (Ortin, 2008).

Our work is supported by the Computational Re-
flection research group (http://www.reflection.
uniovi.es) of the University of Oviedo (Spain).

LANGUAGE-NEUTRAL SUPPORT OF DYNAMIC INHERITANCE

11



The materials presented in this paper are available in
http://www.reflection.uniovi.es/rrotor.

REFERENCES

Borning, A. H. (1986). Classes versus prototypes in object-
oriented languages. In ACM/IEEE Fall Joint Com-
puter Conference, pages 36–40.

Bracha, G. and Griswold, D. (1993). Strongtalk: Type-
checking Smalltalk in a production environment. In
OOPSLA 93, ACM SIGPLAN Notices, volume 28,
pages 215–230.

Cazzola, W., Chiba, S., and Saake, G. (2004). Evolv-
able pattern implementations need generic aspects. In
ECOOP’04 Workshop on Reflection, AOP, and Meta-
Data for Software Evolution, pages 111–126.

Chambers, C. and Ungar, D. (1989). Customization: Opti-
mizing compiler technology for Self, a dynamically-
typed object-oriented programming language. In ACM
PLDI Conference.

Chiles, B. (2008). CLR inside out: IronPython and the
Dynamic Lang. Runtime. http://msdn2.microsoft.com
/en-us/magazine/cc163344.aspx.

CodeHaus (2008). Boo. a wrist friendly language for the
CLI. http://boo.codehaus.org/.

Cutsem, T. V., Mostinckx, S., Boix, E. G., Dedecker, J.,
and Meuter, W. D. (2007). AmbientTalk: Object-
oriented event-driven programming in mobile ad hoc
networks. In XXVI International Conference of the
Chilean Computer Science Society, SCCC 2007.

Diehl, S., Hartel, P., and Sestoft, P. (2000). Abstract ma-
chines for programming language implementation. In
Future Generation Computer Systems, page 739.

Ernst, E. (1999). Dynamic inheritance in a statically typed
language. Nordic Journal of Computing, 6(1):72–92.

Golm, M. and Kleinder, J. (1997). MetaJava - a platform
for adaptable operating system mechanisms. In LNCS
1357, page 507.

Grogan, M. (2008). JSR 223. scripting for the Java plat-
form. http://www.jcp.org/en/jsr/detail?id=223.

Kleinder, J. and Golm, G. (1996). MetaJava: An efficient
run-time meta architecture for Java. In International
Workshop on Object Orientation in Operating Sys-
tems, pages 420–427.

Lucas, C., Mens, K., and Steyaert, P. (1995). Typing dy-
namic inheritance: A trade-off between substitutabil-
ity and extensibility. Technical Report vub-prog-tr-95-
03, Vrije Universiteit Brussel.

Maes, P. (1987). Computational Reflection. PhD thesis,
Vrije Universiteit.

Meijer, E. and Drayton, P. (2004). Static typing where pos-
sible, dynamic typing when needed: The end of the
cold war between programming languages. In OOP-
SLA Workshop on Revival of Dynamic Languages.

Meijer, E. and Gough, J. (2000). Technical overview of the
CLR. Technical report, Microsoft.

MetaSlash (2008). PyChecker: a Python source code check-
ing tool. http://pychecker.sourceforge.net/.

Nierstrasz, O., Bergel, A., Denker, M., Ducasse, S., Gaelli,
M., and Wuyts, R. (2005). On the revival of dynamic
languages. In Software Composition 2005, LNCS.

OpenJDK (2008). The Da Vinci machine. http://openjdk.
java.net/projects/mlvm/.

Ortin, F. (2008). The StaDyn programming language.
http://www.reflection.uniovi.es/stadyn/.

Ortin, F. and Cueva, J. M. (2004). Dynamic adaptation of
application aspects. In Journal of Systems and Soft-
ware. Elsevier.

Ortin, F., Lopez, B., and Perez-Schofield, J. B. (2004). Sep-
arating adaptable persistence attributes through com-
putational reflection. In IEEE Soft., Vol. 21, Issue 6.

Ortin, F., Redondo, J. M., Vinuesa, L., and Cueva, J. M.
(2005). Adding structural reflection to the SSCLI. In
Journal of .Net Technologies, pages 151–162.

Pierce, B. P. (2002). Types and Programming Languages.
The MIT Press.

Project, T. (2008). The Tunes project. http://slate.tunes.org/.
Redondo, J. M., Ortin, F., and Cueva, J. M. (2006a). Diseño

de primitivas de reflexión estructural eficientes in-
tegradas en SSCLI. In Proceedings of the JISBD 06.

Redondo, J. M., Ortin, F., and Cueva, J. M. (2006b). Op-
timización de las primitivas de reflexión ofrecidas
por los lenguajes dinámicos. In Proceedings of the
PROLE 06, pages 53–64.

Redondo, J. M., Ortin, F., and Cueva, J. M. (2008). Opti-
mizing reflective primitives of dynamic languages. In
Int. Journal of Soft. Engineering and Knowledge En-
gineering. World Scientific.

Rose, J. (2008). JSR 292. supporting dynamically typed
languages on the Java platform. http://www.jcp.org/
en/jsr/detail?id=292.

Rossum, G. V. and Drake, F. L. (2003). The Python Lan-
guage Reference Manual. Network Theory.

Singer, J. (2003). JVM versus CLR: a comparative study. In
ACM Proceedings of the 2nd international conference
on principles and practice of programming in Java.

Stutz, D., Neward, T., and Shilling, G. (2003). Shared
Source CLI Essentials. O’Reilly.

Taivalsaari, A. (1992). Kevo: A prototype-based OO lan-
guage based on concatenation and module operations.
Technical report, U. of Victoria, British Columbia.

Thomas, D., Fowler, C., and Hunt, A. (2004). Programming
Ruby. Addison-Wesley Professional, 2nd edition.

Thomas, D., Hansson, D. H., Schwarz, A., Fuchs, T., Breed,
L., and Clark, M. (2005). Agile Web Development with
Rails. A Pragmatic Guide. Pragmatic Bookshelf.

Udell, J. (2003). D. languages and v. machines. Infoworld.
Ungar, D., Chambers, G., Chang, B. W., and Holzl, U.

(1991). Organizing programs without classes. In Lisp
and Symbolic Computation.

Wolczko, M., Agesen, O., and Ungar, D. (1996). Towards a
universal implementation substrate for object-oriented
languages. Sun Microsystems Laboratories.

ICSOFT 2008 - International Conference on Software and Data Technologies

12


