
LEARNABILITY AND ROBUSTNESS OF USER INTERFACES
Towards a Formal Analysis of Usability Design Principles

Steinar Kristoffersen
Østfold University College, Halden, Norway

Keywords: Logical modeling, precise analysis of usability evaluation, model checking.

Abstract: The paper is concerned with automatic usability assessment, based on heuristic principles. The objective is to
lay the ground, albeit still rather informally, of a programof assessing the usability of an interactive system
using formal methods. Further research can then extend thisinto an algebra of interactive systems.

1 INTRODUCTION

We know that the effect of poor usability is difficult
to measure (Lund, 1997). Usability itself is difficult
to define, at least at any level of precision deeper than
by example. Researchers agree that improving usabil-
ity may save considerable time and resources (Myers,
1994). Few in industry will say that usability has lit-
tle value, although perceived user-friendliness is not
a significant determinant of adoption in the first place
(Davis, 1989). Vredenburg et al. found that ca. 20%
of a project’s resources will be spent on activities re-
lated to usability, but that the effectiveness of user-
centered design activities are not usually measured
(Vredenburg et al., 2002).

When can we tell that our usability goals have
been reached? Many forms of usability assessment
exist (Holzinger, 2005), but for recurring reasons such
as lack of resources, time and technology, the most
widely encompassing and precise methods are often
ignored (Mulligan et al., 1991).

Various forms ofheuristic evaluationbased on
experts or users benchmarking of a specification or
prototype again pre-defined usability design princi-
ples, have proven to be quite efficient (Nielsen, 1992),
compared to other techniques (Jeffries et al., 1991).
Nevertheless, it may require as many as 15 evaluators
for an optimal result (Nielsen, 1993), which is well
beyond the reach of most projects.

Information technology is becoming commodi-
tized and the time of stake-holders is a relatively
scarce resource. Many project have to be developed
for the web or with mobile clients, which tends to
limit the degrees of freedom even more. Most users

are experienced with similar applications already, and
want to be able to apply the skills that they already
have. Less software is built “from scratch”. These
trends towards standardization may lead to a reduc-
tion in the resources available for an expert-based,
manual evaluation of usability.

Moreover, it has been proven that theevaluator
effectsin heuristic evaluation are significant and that
they may invalidate the results of using many evalua-
tors (Hertzum and Jacobsen, 2003). In order to make
better interfaces, and iin the next instance even as-
sess the usability process itself, as well as communi-
cate clearly the results and intentions coming out of
an evaluation, a stable set of usability criteria and de-
sign principles needs to be observed.

It is, however, difficult to say if and to which re-
spect, one set of usability guidelines or design princi-
ples is going to perform better than another (Nielsen,
1994). The sets of guidelines and design principles
that we have today are arguably the result of experi-
ence and well-founded theoretical reasoning, but they
have not themselves been subjected to scientific test-
ing. This is the long-term objective of the research
described in this paper. In order to get there, some
groundwork entailing the operationalization of the
underlying heuristics is an absolute prerequisite. A
stricter approach to expertise-based evaluation, based
on well-defined methods embedding a fixed set of
principles is necessary to develop a stable “best prac-
tice” of usability principles, since evaluation of the
approach is otherwise impossible.

Experience indicates that human actors, however,
will not meticulously follow à priori rules (Carl-
shamre and Rantzer, 2001). Moreover, it is difficult to

261
Kristoffersen S. (2008).
LEARNABILITY AND ROBUSTNESS OF USER INTERFACES - Towards a Formal Analysis of Usability Design Principles.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 261-268
DOI: 10.5220/0001869402610268
Copyright c© SciTePress

isolate the usability concerns from everyday develop-
ment activities (Gentner and Grudin, 1990). Ivory and
Hearst found many studies confirming that designers
find it difficult to adhere to guidelines, and that they
are biased towards an esthetically pleasing design re-
gardless (Ivory and Hearst, 2001). The development
of automatic usability evaluation techniques is there-
fore essential to advance the research in this area.

2 PERTAINING SYSTEMS FOR
USABILITY ASSESSMENT

Many guidelines and standards turn out to be poorly
formulated and difficult to use, upon closer inspec-
tion (Thovtrup and Nielsen, 1991). The tools that ex-
ist for automating the assessment of usability correct-
ness criteria are often not sufficiently oriented towards
efficient software development. Many tools require
dedicated mark-up or tool-chain facilitation. Others
are directed towards post-hoc evaluation. This re-
dundancy aspect may explain why they have had rel-
atively limited industrial success. Some tools have
simply been too cumbersome for designers and de-
velopers to be able to adopt (Ivory and Hearst, 2001).

Some progress has been made in the realms of
HCI (Human-Computer Interaction) research, how-
ever. The Catchit project has taken the need for ef-
ficient integration in the software development tool-
chain seriously. It addresses evaluation in predic-
tive terms as well as development-oriented model-
ing of user behavior. Its software automatically in-
struments the source code with a monitor which de-
tects deviation from the expected work-flow (Cal-
vary and Coutaz, 2002). Most previous approaches
needed such instrumentation to be carried out manu-
ally (Coutaz et al., 1996), which is error-prone in it-
self. Catchit represents an improvement, since it does
this automatically. It needs, however, a running code-
base to instrument. This limits the usefulness of the
tool to stages in which a running version of the system
has been implemented.

Another example of an integrated user interface
design and evaluation environment, is AIDE. It sup-
ports the assessment of a precisely defined set of met-
rics related to efficiency on the keystroke-level, the
alignment and balance of elements on the screen, and
eventual violations of constraints given by the de-
signer (Sears, 1995). It can generate layouts, but is
perhaps limited in spite of its precision by this strong
focus exactly on the layout of a single dialogue. It
leaves the implementation of more broadly scoped us-
ability principles almost as an “exercise for product
developers”. We believe that it is exactly in the for-

mal modeling of deeper relations between multiple el-
ements (rather than widgets) that an improvement of
user experiences can be mostly improved.

One early example of an automatic tool aim-
ing at improving the usability of projects, based
on guidelines which are then compared to the ac-
tual performance of the implemented system or at
least its specification, is the KRI/AG (Löwgren and
Nordqvist, 1992). The project builds, like ours, on a
selected number of operationalized user interface de-
sign guidelines. The interface is encoded and then
subjected to automatic analysis. It does not, on the
other hand, see this as an instance of a more general
model-driven approach to software engineering, and
in spite of encouraging results from its initial trials, it
is now a near-forgotten endeavor.

3 RESEARCH OBJECTIVES

Our paper aims to pick up where the KRI/AG project
left off. A novel contribution of our work compared
to Löwgren and Nordqvist’s work are the improve-
ments that we suggest to the modeling approach, in
order for this type of effort to succeed. This is cru-
cial if we want to see it as part of a more ambi-
tious, general approach, and even if we look only at
the more widespread interest lately in automatic eval-
uation of the usability of web-pages (Chevalier and
Ivory, 2003).

Ideally, any project should have some form of au-
tomatic usability evaluation support available, which
is itself easy to use, stable and transparent to com-
plement. We may in some situation wish to be able
to substitute dedicated expertise if that is not avail-
able, but ideally of course, we would be offering it as
a complement tool.

The research projects that we outlined above have
not spawned into successful commercial products.
Looking at the formulations of usability principles
themselves, in research papers (Gould and Lewis,
1985) as well as in the HCI curriculum (Dix et al.,
1997), this should come as no surprise. They are usu-
ally left rather vague, even for a human student of the
principles, and implementing automatic tool support
on the current conceptual platform is thus impossible.

In order to be able to develop an improved and
partly (at least) automatic checking of usability guide-
lines adherence as an integrated element in the devel-
opment tool-chain, so that it will be able to detect fail-
ure of invariants based on well-known usability prin-
ciples in an efficient manner, these principles need to
be properly operationalized. It is therefore necessary
to take a step back and look at the specification of the

ICSOFT 2008 - International Conference on Software and Data Technologies

262

criteria themselves.
In order to prepare the ground for an even more

ambitious theoretical endeavor, which we outlined
above, a walk-through and discussion of the “user re-
quirements” is warranted. In order to study the cor-
relation of perceived usability and formal assessment,
the guidelines need to be stable, well understood and
operationalizable. This is what we do next. The prin-
ciples are ordered within categories of broader usabil-
ity concerns, which are learnability, flexibility, robust-
ness and task conformance. We deal only with two of
the categories in this paper, due to page number limi-
tations. We are going to deal with the remaining two
categories in a completely analogous fashion, in fu-
ture work.

4 RESULTS

In this section we will discuss and then summarize the
analysis that we did with respect to the operational-
izability of the design principles. The purpose is to
uncover at least one possible precise (albeit still in-
formal, in terms of the notation that we apply) for-
mulation of the principles, and sketch the research
problems that we believe must be solved in order to
implement a fully automatic check of the principles.

4.1 Learnability Principles

4.1.1 Predictability

The user ought to be able to judge what system re-
sponse is going to be as a response to the next user
action, and which state it will lead to. An informal
specification of this principle, as a “theorem of us-
ability” might be that it ought to be impossible to get
from any to state to a state that is invisible, or to apply
(inadvertedly) a rule which has not made itself known
to the user.

The problem is that the requirement takes to its
logical consequence, instructs that all states in the
path of action that may be performed without user
interruption (or some other definition of “closure”),
from the current state, need to be visible. This is
usually neither possible nor desirable and it is an em-
pirical question if it really does encourage learnabil-
ity much. It certainly may leave the impression of a
messy interface. Some of the published actions in the
next sequence of possible steps, may now be “out of
context” for the user, and therefore diffcult to com-
prehend.

4.1.2 Synthesizability

The user should be able to understand which user ac-
tions have lead to the current state, and what the sys-
tem did to get there. We need to find out if the there
are somehow invisible states that lead to the current
state. Thus, this is the criteria representing the inverse
of predictability.

The problem is similar to the one above, and the
trivial solutions equally unproductive. Unless the user
can learn to remember any possible path leading up to
an identifiable state, the publishing of possible paths
(at least a small handful of steps back) seems to be
necessary. Unfortunately, that will totally clutter the
interface.

4.1.3 Consistency

The system should offer the same or similar function-
ality from comparable situations, and in a familiar
fashion. The same or similar actions should yield the
same response. This means that we expect the same
or similar components to look alike and to respond
similarly on user input. We summarize it as the extent
to which similar appearances offer the same function-
ality. We think that this colloquially resembles the
second of Grudin’s consistency types: “External con-
sistency of interface features with features of other in-
terfaces familiar to the users (Grudin, 1989).”

The principle of consistence is, to be fair, not un-
contested. Grudin’s paper is one strong voice in this
respect (Grudin, 1989). One can imagine situations in
which consistency does not encourage learnability. It
is outside the scope of this paper to enter that discus-
sion, however, at least from a theoretical angle only.
Our ambition is to prepare the grounds in this paper
to do this empirically at a later stage.

4.1.4 Generalizability

Generalizability is sometimes described as “a form of
consistency,” except that it applies more broadly to
situations, rather than just operations. It is a state
where existing knowledge can be successfully ap-
plied; as such it digs even deeper into the question of
what is “the existing knowledge”. We summarize this
as being the extent to which related functionality can
be grouped, or a sequence of actions can be seen as
coming to some form of “closure.” Thus, it is aligned
with Grudin’s first type of consistency, which he calls
“Internal consistency of an interface design (Grudin,
1989).”

In terms of operationalizing this principle, it is, to
start with, difficult to know exactly what to match, and

LEARNABILITY AND ROBUSTNESS OF USER INTERFACES - Towards a Formal Analysis of Usability Design
Principles

263

certainly there is no useful ontological or etymologi-
cal answers at the surface anywhere. We have already
pinned downconsistencyas a criteria which stipulates
yielding the same effect from similar actions. Re-
lying on the abstraction mechanisms well-described
in object-oriented programming, we now definegen-
eralizability as the property of categorizing sensibly,
so that similar action-effect pairs can be grouped to-
gether under more abstract headings, which seen from
outside the group behave in a coherent manner.

4.1.5 Familiarity

This is an externally oriented criteria, which capture
the extent to which the user experiences a real-world
parallel to the system. Can we match the actions that
we work with to similar activities outside the sys-
tem, so that lessons learned can be exploited either
directly or metaphorically? This criteria attempts to
measure the correlation of users’ knowledge with the
skills needed for effective interaction. We summarize
it as the extent to which functionality offered by the
system is similar to “a priori” or at least widely held,
experiences. It overlaps nicely to Grudin’s third con-
sistency definition; which is “correspondence of inter-
face features to familiar features of the world beyond
computing. (Grudin, 1989).”

The biggest problem here is of course to be able
to match anything within the system with a theo-
retically infinite and unspecifieable universe without.
The character and number of “experiences” held by
the users will be vast, and even if human beings can
be expected to, to some extent, make their mind up
about what constitutes a priori knowledge, we cannot
expect to make analgorithmwhich does.

4.2 Robustness Principles

4.2.1 Observability

The question about observability asks if it is possible
for the users to decide which state the system is in,
from what they are observing. Are there states which
cannot be assessed from the interface?

We find an unresolved problem right away, when
we try to operationalize this principle, namely identi-
fying which states we shall judge as being significant.
It is likely to clutter the interface and overwhelm the
user if too many such states are “listed” at the inter-
face, so the majority of states will and should be hid-
den from the user. But the user still need be able to
find out what is “going on,” in order to diagnose and
repair the interaction if it does not proceed according
to the intention. The next principle, of browsability,
is partly an answer to this question.

4.2.2 Browsability

The principle of browsability concerns whether there
there states which cannot be assessed from other
states, i.e., can the user cycle through all the states
once one is presented at the interface, to assess all
others.

This is an equally tricky claim to respond to, theo-
retically as well as technically. The systems which we
are interested in is often going to have infinitely many,
even uncountable states and the interactivity of the
system as such makes it non-deterministic. Heuristics
to constrain and limit the search strategies and algo-
rithms that act out the user options fairly, will be a
prerequisite to establish fulfillment of this criteria.

4.2.3 Defaults

Next, a simpler criteria is often listen, namely if all
input states have default value suggestions. We might
want to allow an empty input be the default, but is is
important that this is at the designers discretion and
a conscious choice. Pragmatically, this might simply
mean that some explicit choice needs to have been
made.

Given that a modeling language is available which
makes implicit that an element is of typeinput field,
we can quite straightforwardly implement a check for
default values and alert the designer is one is not given
(and preferablyexplicitly not given). This is not dif-
ficult in a static description. Given that we are in-
terested in the dynamic behavior of an applications,
some problem may arise in which it is difficult to sep-
arate a default value (“output”) from user input.

4.2.4 Reachability

The main notion ofreachability concerns whether
the user can navigate from any given state to any other
state. This criteria is easily operationalized, although
it may not be practical to check since the number of
states is usually very large, and potentially infinite.
Thus, we expect to have to devise clever search strate-
gies in order to be able to check our model. It may
even be necessary to built assumptions about which
subset of states that are relevant from any given “posi-
tion” in the application. This is perhaps ideologically
unfortunate. Often one tends to assert that the under-
lying models, and the actions and analysis which is
furnishes ought to be independent. In extrapolation
from this failure to separate concerns, errors may be
introduced into the model. Moreover, maintenance
and extension of the entire framework of formal anal-
ysis may be made more difficult. This is also a con-

ICSOFT 2008 - International Conference on Software and Data Technologies

264

cern which we need to dig deeper into in further re-
search.

4.2.5 Persistence

The idea is that system communication to the user at
any state needs to be easily retrievable, unless (and
perhaps in spite of, sometimes) having been explic-
itly deleted. This criteria overlaps nicely in abstract
terms with the previous one, by a fortunate side-effect
of our choice of checking not the static model, but
the dynamic trace of entire state universe from the ap-
plication. Communication with the user is going to
be captured by states, and the question can then be
translated into one of reachability of these states from
those which follow. It highlights the general question
of ordering of states, of which chronological ordering
is but one of the simplest of orderings. Logical and se-
mantic ordering of (communication) states is also an
area of which our perspective invites further research.

4.2.6 Recoverability

The challenge of making sure that is is possible to
recognize and repair errors when they are detected is
a much harder one. The literature distinguishes be-
tween several interesting aspects.

• “Forward error recovery,” i.e., is it possible to
move forward to a state without errors.

• “Backward error recovery,” in other words, are
there states from which an action is irreversible?

Both of the above may be seen as instances of reach-
ability, since they stipulate an extent to which other
states (bearing in mind that we are investigating prop-
erties of the total dynamically generated state-space)
can be reached.

Additionally, the ”commensurate efforts” aspect is
associated with recoverability. It denotes the extent to
which the length of the path of actions that lead from
one statep to another stateq, is equal to the one which
goes back fromq to the first statep. In other words,
if something is difficult to repair, it should be difficult
to break in the first place.

In terms of our research, the biggest challenge that
we have recognized so far is to be able to recognize
the start and stop of a user action (in some meaningful
sense of “closure”). This is also related to the “calcu-
lus” of user interface behavior that we implicitly pre-
pare the ground for now, similarly to ordering, since
it concerns the capability of “grouping” state transi-
tions.

4.2.7 Responsiveness

Finally, in therobustnesscategory we find the crite-
ria that if re-action is not immediate, there needs to
be mechanisms in place that indicate to the user how
long it is going to take before it is finished. A his-
torical measure is also. according to Dix, useful, in
the sense that ”time stability” is desirable (Dix et al.,
1997). It means that the time it takes to execute ac-
tions needs to be approximately the same every time.

We see this criteria as bringing to the fore a set
of research questions related to the dimensions dis-
cussed above, concerning grouping and ordering of
state transitions. In addition, it demonstrates the need
to introduce real-time aspects into the modeling ap-
proach. This has so far been under-emphasized in
formal research on interaction design. It is by now
evidently clear that we need to separate between con-
cepts more clearly, and give some of them a more ex-
act interpretation in relation to the domain of user in-
teraction. The most important are listed here:

• Significant State. This is a state that is modeled. A
“real” program during execution will have a vast
number of states that we do not need to model,
since they have no bearing on the properties that
we wish to analyze. Our theorems only describe
significant states, by definition.

• Visible State. This is a state that makes itself
known to the user as the state or a previous one, is
entered.

• Published Rule. This is a rule that is visible at the
state from which the rule can applied, or earlier.

• Published state. This is a state that is visible at a
state from which a rule can be applied, which will
lead to the state, or earlier.

• Aggregate Action. A “macro” of state-changes,
which are in themselves atomic in the sense that
they can be performed individually or in other ag-
gregate actions.

• Compound Action. A “procedure” of state-
changes, in which individual statements are not
independently meaningful.

5 DISCUSSION

At the very first point of reflection, it becomes clear
that the usability guidelines and principles that one
aims to assert in some formal fashion, will need to
be operationalizable at an entirely different level from
what we know today. This turns out to be very hard,
though, as noted by Farenc et al. (Farenc et al., 1999).

LEARNABILITY AND ROBUSTNESS OF USER INTERFACES - Towards a Formal Analysis of Usability Design
Principles

265

An effort such as the one described in his paper con-
tributes to advance this situation, by attempting to re-
specify usability design principles in a form that may
be decidable “even by” computers. One should be
careful not to expect to be able to capture every aspect
of each rule in this way, however. Our attempts at for-
malizing design ambitions may make them more triv-
ial. Clearly, we do not expect such an effort to elimi-
nate the competencies of a human evaluator and see it
instead as a complement and a first stab at tool support
for usability engineering. Lack of precision is not, of
course, an advantage, on the other hand(Doubleday
et al., 1997), and one should arguably be doubtful of
design principles that cannot at least be exemplified
or seem to detect simple instances of non-adherence.

When we know about the divergence caused by
the evaluator effect and the time and resources needed
to do robust usability testing, tool support for inves-
tigation the the HCI (Human-Computer Interaction)
aspects is clearly warranted. Some systems for usabil-
ity testing exist, relying on guidelines and standards,
which turn out to be hard to use even on their own
(Thovtrup and Nielsen, 1991). The tools for automat-
ing the assessment of usability correctness criteria is
often not efficiently integrated with software develop-
ment, or facilitate only post-hoc evaluation (Ivory and
Hearst, 2001). This introduces redundancy aspects,
which may explain why they have had relatively lim-
ited industrial success.

Usability engineering is often limited to infor-
mal user testing and ad-hoc observations (Holzinger,
2005), which, apart from the problems of divergence
and user/expert involvement needed, suffer from the
lack of generalizability and predictive force. Thus,
a “theory of usability” is needed. Many such at-
tempts to make a formal argument of usability is re-
lated to GOMS (Goals-Operators-Methods-Selection
rules) or similar rational or at least goal-oriented mod-
els (Gray et al., 1992). There has been reasonable
correlation of GOMS-based predictions with experi-
ments established in the literature (Gray et al., 1992).
Unfortunately, creating such models is labor-intensive
and error-prone. Using it for evaluation requires a
low-level specification or finished software which can
be run to elicit a task model which is sufficiently high-
fidelity, since the GOMS family of model represents
user actions down to the level of singular keystrokes
(John and Kieras, 1996a).

As a dedicated medium, theoretical representation
of the users’ interaction with the system can be seen
as facilitating the job of evaluating usability. On the
other hand, it is not usually viable as a modeling ap-
proach that is going to drive the development of the
interface in the first place, although this is a possi-

bility (John and Kieras, 1996b). Too often, it relies in
the first instance on an existing computer system or an
implementation level specification (Card et al., 1980),
which arguably is exactly what one wants it for in the
first place.

Ideally, the formal modeling of user interfaces,
which are input to the evaluation, should be exactly
the same specification as the one used for the design
in the first place. It makes it more likely that it will ac-
tually be used, since it does not create redundant spec-
ification work. More importantly, however, a multi-
purpose specification would make it possible to con-
duct continuous evaluation of usability aspects. In-
deed, it could be built into the software development
environment.

LOTOS is one alternative specification language
for interactive user interfaces (Paternó and Faconti,
1993), which could be seen as aiming to fill this role.
It is more akin to a general design language than the
syntax of the keystroke-level GOMS. This could also
be seen as its biggest downside also, since it becomes
almost as complex to make the specification as the
actual programming of the user interface. It is simi-
lar enough to a full-blown programming language for
an even more overlapping representation in the form
of running code to be a tempting alternative in many
projects, and the advantages of formal specification is
lost if it is not robustly simple and abstract enough for
the designer to be able to verify that the model is ac-
curate. Still, it is not an executable specification, so
the work entailed by making the test aid is easily per-
ceived as redundant. We believe that a declarative ap-
proach is needed, and preferably one that can rely on
model-checking of the logical properties of the speci-
fication.

Approaches used in formal research in HCI, such
as GOMS and LOTOS, are not widely used in the
industry. Some argue they have fundamental prob-
lems, which means they only succeed in narrow do-
mains and will not realistically be useful in actual
design projects (Bannon and Bødker, 1991). In this
paper, instead, we see the problem as being the lack
of proper operationalization of the underlying usabil-
ity design principles. As a first step toward resolving
that, we have offered a re-specification of a subset of
the most commonly taught usability principles (Dix
et al., 1997). Additionally, we think for further work
that creating or extending a formal modeling language
so that it is not only suited for describing interactive
user interfaces in a platform-independent fashion, but
also testing its logical properties in a precise way, is
absolutely necessary.

ICSOFT 2008 - International Conference on Software and Data Technologies

266

6 CONCLUSIONS

It is important to remind ourselves that we do not take
for granted that implementing the principles in accor-
dance with any of the definitions above, isà priori,
in itself, virtuous or necessary (although it seems rea-
sonable) to achieve usability. We see this as an em-
pirical question, which needs to be assessed indepen-
dently. It will, however, be a much more doable as-
sessment in the first place, if as we have suggested, a
precise and formal definition of what each principle
entails. Moreover, the availability of a tool which can
identify fulfillment or breakage of consistency criteria
will be necessary for any quantitative assessment of
the correlation between practice and theory. A subjec-
tive or example-dependent qualification of each prin-
ciple may be sufficient for teaching the notion com-
prised by each principle, but it will not do as a point
of departure for experiments of a more quantitative
nature. We believe that the latter will be a strong sup-
plement to the existing body of work.

Another equally important contribution of the re-
search presented in this paper is that it documents
shortcomings of modeling techniques when their ob-
jective has not been taken properly into account. We
know that many of the more generic frameworks for
describing user interfaces are not suitable for the dual
task of development and formal analysis. In many re-
spects that we have touched upon in this paper, they
are not suited for formal validation of usability de-
sign principles. There are many drawbacks. The vol-
ume and verbose nature of the specifications make
them hard to write and understand for the “human
model checker,”who at least has to be able to check
the model checker. We are of course aware of the
irony in this, but improvement of practice must be
seen as desirable even if it is stepwise rather than to-
tal, in our opinion.

It will, as we see it, be a great advantage compared
to most other automatic usability evaluation methods
based on models, if one can devise an approach which
does not need be ”made to match” an existing artifact,
i.e. a dedicated format or tool. These approaches
suffer from an ”impedance mismatch” problem, by
which we mean that the representation of the artifact
intended for checking may itself be an inaccurate im-
age (or it may not be one-to-one). By definition, us-
ing a declarative product from the software life-cycle
product chain itself, will make our ”substrate” corre-
spond more accurately with the manifest artifact that
one aims to implement in the next instance, namely
the dynamic user interface. Th result may still not
be exactly what the users wanted, but at least we can
check it properly and know that it represents correctly

the artifact, since the relationship between themis
one-to-one. On the other hand, this may represent a
problem for the specification of the search strategies
that perform the model checking.

Finally, we need to state that in our opinion the
possibility of a nice framework and associated toolkit
for logical and precise analysis of usability principles
in an interactive application, does not pre-empt the
need to work closely with users. Notwithstanding the
internal validity of our contribution, which is to some
extent only depending on our efforts to formulate an
abstract world, the usefulness of such a framework
depends wholly on the “real world”. Thus, we look
forward to being able to compare the predictions of
a formal analysis with traditional usability evaluation
of the same systems. Only when correlation on this
level has been established, of course, one may con-
clude that this type of approach is really viable.

REFERENCES

Bannon, L. J. and Bødker, S. (1991).Beyond the interface:
encountering artifacts in use, pages 227–253. Cam-
bridge University Press, New York, NY, USA.

Calvary, G. and Coutaz, J. (2002). Catchit, a development
environment for transparent usability testing. InTA-
MODIA ’02: Proceedings of the First International
Workshop on Task Models and Diagrams for User In-
terface Design, pages 151–160. INFOREC Publishing
House Bucharest.

Card, S. K., Moran, T. P., and Newell, A. (1980). The
keystroke-level model for user performance time with
interactive systems.Commun. ACM, 23(7):396–410.

Carlshamre, P. and Rantzer, M. (2001). Dissemination of
usability: Failure of a success story.interactions, 8(1).

Chevalier, A. and Ivory, M. Y. (2003). Web site designs:
influences of designer’s expertise and design con-
straints.Int. J. Hum.-Comput. Stud., 58(1):57–87.

Coutaz, J., Salber, D., Carraux, E., and Portolan, N. (1996).
Neimo, a multiworkstation usability lab for observing
and analyzing multimodal interaction. InCHI ’96:
Conference companion on Human factors in comput-
ing systems, pages 402–403, New York, NY, USA.
ACM.

Davis, F. D. (1989). Perceived usefulness, perceived ease of
use, and user acceptance of information technology.
MIS Quarterly, 13(3):319–340.

Dix, A., Finlay, J., Abowd, G., and Beale, R. (1997).
Human-computer interaction. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA.

Doubleday, A., Ryan, M., Springett, M., and Sutcliffe, A.
(1997). A comparison of usability techniques for eval-
uating design. InDIS ’97: Proceedings of the 2nd con-
ference on Designing interactive systems, pages 101–
110, New York, NY, USA. ACM.

LEARNABILITY AND ROBUSTNESS OF USER INTERFACES - Towards a Formal Analysis of Usability Design
Principles

267

Farenc, C., Liberati, V., and Barthet, M.-F. (1999). Au-
tomatic ergonomic evaluation: What are the limits?
In Proceedings of the Third International Conference
on Computer-Aided Design of User Interfaces, Dor-
drecht, The Netherlands. Kluwer Academic Publish-
ers.

Gentner, D. R. and Grudin, J. (1990). Why good engineers
(sometimes) create bad interfaces. InCHI ’90: Pro-
ceedings of the SIGCHI conference on Human factors
in computing systems, pages 277–282, New York, NY,
USA. ACM.

Gould, J. D. and Lewis, C. (1985). Designing for usability:
key principles and what designers think.Commun.
ACM, 28(3):300–311.

Gray, W. D., John, B. E., and Atwood, M. E. (1992). The
precis of project ernestine or an overview of a valida-
tion of goms. InCHI ’92: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 307–312, New York, NY, USA. ACM.

Grudin, J. (1989). The case against user interface consis-
tency.Commun. ACM, 32(10):1164–1173.

Hertzum, M. and Jacobsen, N. E. (2003). The evaluator ef-
fect: A chilling fact about usability evaluation meth-
ods.International Journal of Human-Computer Inter-
action, 15(1):183–204.

Holzinger, A. (2005). Usability engineering methods for
software developers.Commun. ACM, 48(1):71–74.

Ivory, M. Y. and Hearst, M. A. (2001). The state of the art
in automating usability evaluation of user interfaces.
ACM Comput. Surv., 33(4):470–516.

Jeffries, R., Miller, J. R., Wharton, C., and Uyeda, K.
(1991). User interface evaluation in the real world:
a comparison of four techniques. InCHI ’91: Pro-
ceedings of the SIGCHI conference on Human factors
in computing systems, pages 119–124, New York, NY,
USA. ACM.

John, B. E. and Kieras, D. E. (1996a). The goms fam-
ily of user interface analysis techniques: comparison
and contrast. ACM Trans. Comput.-Hum. Interact.,
3(4):320–351.

John, B. E. and Kieras, D. E. (1996b). Using goms for user
interface design and evaluation: which technique?
ACM Trans. Comput.-Hum. Interact., 3(4):287–319.

Löwgren, J. and Nordqvist, T. (1992). Knowledge-based
evaluation as design support for graphical user inter-
faces. InCHI ’92: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages
181–188, New York, NY, USA. ACM.

Lund, A. M. (1997). Another approach to justifying the cost
of usability. interactions, 4(3):48–56.

Mulligan, R. M., Altom, M. W., and Simkin, D. K. (1991).
User interface design in the trenches: some tips on
shooting from the hip. InCHI ’91: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 232–236, New York, NY, USA. ACM.

Myers, B. (1994). Challenges of hci design and implemen-
tation. interactions, 1(1):73–83.

Nielsen, J. (1992). Finding usability problems through
heuristic evaluation. InCHI ’92: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 373–380, New York, NY, USA. ACM.

Nielsen, J. (1993).Usability Engineering. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

Nielsen, J. (1994). Enhancing the explanatory power of
usability heuristics. InCHI ’94: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 152–158, New York, NY, USA. ACM.

Paternó, F. and Faconti, G. (1993). On the use of lotos to de-
scribe graphical interaction. InHCI’92: Proceedings
of the conference on People and computers VII, pages
155–173, New York, NY, USA. Cambridge University
Press.

Sears, A. (1995). Aide: a step toward metric-based inter-
face development tools. InUIST ’95: Proceedings of
the 8th annual ACM symposium on User interface and
software technology, pages 101–110, New York, NY,
USA. ACM.

Thovtrup, H. and Nielsen, J. (1991). Assessing the usability
of a user interface standard. InCHI ’91: Proceedings
of the SIGCHI conference on Human factors in com-
puting systems, pages 335–341, New York, NY, USA.
ACM.

Vredenburg, K., Mao, J.-Y., Smith, P., and Carey, T. (2002).
A survey of user-centered design practice. InProceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, page 471478, New York. ACM
Press.

ICSOFT 2008 - International Conference on Software and Data Technologies

268

