
Interaction Patterns for Refining Behaviour
Specifications of Context-Aware Mobile Services*

Laura Daniele, Luís Ferreira Pires and Marten van Sinderen

Centre for Telematics and Information Technology
University of Twente, Enschede, The Netherlands

Abstract. In the context of Model-Driven Architecture (MDA), little attention
has been given to behavioural aspects of service design. This paper proposes a
MDA-based approach that considers these aspects in the development of
context-aware mobile services. Starting from the specification of the external
observable behaviour of a service, we gradually refine this behaviour
considering the internal structure of the service. Particularly, we present a
structure that is general enough to be used for several context-aware mobile
services. However, it may be configured based on the specific service to be
developed. An important step of our approach consists of identifying sequences
of interactions, which we call interaction patterns, which can be mapped into a
behaviour model of the components that execute the service. This model is
platform-independent and may be realized in terms of several specific target
technologies.

1 Introduction

Context-aware mobile services are capable to sense changes in the user’s environment
and consequently adjust their behaviour in order to provide relevant functionality to
their user anywhere and at anytime. The design of such services is a challenging task,
which has justified the development of novel methods, abstraction and infrastructures
[19, 20, 21, 22]. Moreover, the complexity, diversity and fast-changing nature of
enabling technology platforms require design approaches that shield designers from
platform-specific details in order to concentrate their efforts on the services to be
developed [3]. A valuable alternative to face the challenge of designing such services
consists of using the OMG’s Model Driven Architecture (MDA) [1], which aims at
facilitating service design through the separation of platform-independent (PIMs) and
platform-specific models (PSMs), and the use of model transformations.

Although considerable effort has been done in MDA to define technologies and
techniques for designing services, behavioural aspects of design are still neglected. In
order to address these behavioural aspects, we have developed within the A-MUSE
project [2] an MDA-based design process, which is described in [3, 10]. The process
defines three different levels of models with different degrees of abstraction and

* This work is part of the Freeband A-MUSE Project (http://a-muse.freeband.nl). Freeband is sponsored by

the Dutch government under contract BSIK 03025.

Daniele L., Ferreira Pires L. and van Sinderen M. (2008).
Interaction Patterns for Refining Behaviour Specifications of Context-Aware Mobile Services.
In Joint Proceedings of the 5th International Workshop on Ubiquitous Computing (IWUC 2008) 4th International Workshop on Model-Driven Enterprise
Information Systems (MDEIS 2008) 3rd International Workshop on Technologies for Context-Aware Business Process Management (TCoB 2008),
pages 64-76
DOI: 10.5220/0001739800640076
Copyright c© SciTePress

platform-independence. The highest level of abstraction, which we call service
specification, specifies the external observable behaviour of a context-aware mobile
service. The intermediate level, which we call platform-independent service design,
describes the service in terms of its internal structure and the interactions between
components within this structure. The lowest level, which we call platform-specific
service design, describes the realization of the service in terms of specific target
technologies.

This paper focuses on model transformations between the behaviour specification
and the platform-independent design of context-aware mobile services, given a
specific structure for these services. This structure is general enough to be used for
several context-aware mobile services. However, it may be configured based on the
specific service to be developed. Particularly, we propose a systematic approach for
this model transformation that is based on refinements and interaction patterns. This
approach should allow us to guarantee correctness and consistency between the
behaviour service specification and the platform-independent design model that
reveals the service internal structure.

The structure of the paper is the following: Section 2 presents an overview of the
A-MUSE design process, Section 3 describes our approach to realize the model
transformation between service specification and platform-independent design levels,
Sections 4 and 5 discuss the service specification level and the platform-independent
service design level in further detail by using a case study, Section 6 discusses some
related work in the context of MDA, and Section 7 presents our conclusions and
identifies topics for future work.

2 A-MUSE Design Process

According to MDA principles, the A-MUSE design process divides the design of
context-aware mobile services in different levels of models with different degrees of
abstraction and platform-independence. Fig. 1 shows this process [3,10].

The service specification level describes the behaviour of a context-aware mobile
service from an external perspective. At this level, we specify the functionality that
our service offers to its user and we do not consider any structural detail of the
service, i.e., its internal components. Towards this aim, we use a language specially
developed in the A-MUSE project, which is called A-MUSE Domain-Specific
Language (DSL). The A-MUSE DSL supports the specification of context-aware
mobile services at a high abstraction level during the initial phase of the service
design process. This language allows us to specify the behavioural aspects of our
service in terms of user inputs, user outputs, data actions, and their causality relations.

The platform-independent service design level describes a context-aware mobile
service from an internal perspective. At this level, we refine the service specification
while considering a (given) internal structure for our service. Fig. 1 shows that this
structure consists of context sources, action providers, coordination component,
service trader and user components. Context sources sense events in the user’s
environment and provide these events to the coordination component, which as a
consequence triggers actions that are executed by action providers. Context sources
and action providers are registered in the service trader in order to be dynamically

65

available to the coordination component. Each user accesses the service through a
user component, which provides the user interface and forwards requests to the
coordination component [3]. The core of our structure consists of the coordination
component, since it orchestrates all the internal interactions. These interactions are: (i)
user requests from user components, (ii) context events from context sources, (iii)
actions to be executed by action providers, and (iv) resources registered in the service
trader. At the platform-independent service design level, we use the A-MUSE DSL
for the refinements, the Interaction System Design Language (ISDL) [4,5] for
specifying component behaviours and interactions between components, and UML
class diagrams for the data models.

The platform-specific service design level describes the realization of a context-
aware mobile service in terms of specific target technologies. Since the relation
between the platform-independent service design and the platform-specific service
design levels is flexible, it is in principle possible to use different middleware
technologies, such as, for example, web services or CORBA, as it is shown in Fig. 1.

patform-
specific

service design

service
specification

T1

T2

patform-
independent

service design

platform
selection

platform-
independent

design

platform-
specific
design

T3

patform-
specific

service design

Web Services
(WSDL + UDDI)

CORBA
(OMG Trader)

action
providers

service
trader

context-aware
mobile service

service refinement

coordination
component

 models

context
sources

model transformations

user
components

Fig. 1. Design process with different levels of abstraction and platform-independence.

The rest of this paper focuses on the first two levels of the design process shown in
Fig. 1, namely the service specification level and the platform-independent service
design level.

3 Approach

The aim of this work consists of defining a platform-independent model that specifies
the behaviour of the components that realize the service. This model, which preserves
the service behaviour specification, should be used as input to the platform-specific
service design in order to concretely realize these components in terms of specific
target technologies. Fig. 2 shows the approach we have taken towards this aim.

The starting step consists of the service specification, in which we define the
functionality offered to the user in terms of actions and causality relations between
these actions. The actions at this level are too abstract to be directly realized with
platform-specific technologies. Therefore, the second step consists of defining a
platform-independent service design model in which we refine these actions into

66

service specification

refinement refinement
refinement

refinement

Component 1

Component 2

Component 3

Component N

platform-independent
service design

mapping mapping mapping

mapping

Fig. 2. Refinement of behaviour specifications by using interaction patterns: approach.

multiple actions that can be directly supported by the realization platform. While
doing these refinements, we consider the internal structure of our service in order to
create a correspondence between refined actions and components that performs these
actions. Fig. 2 shows the refinement of actions at the service specification level into
multiple actions at the platform-independent level.

A further step in our approach consists of comparing all the refinements in order to
identify sequences of actions, which we call interaction patterns, recurring in several
refinements. Since the concept of interaction pattern is extremely important in our
approach and this concept differs from the one is commonly used in the literature [6],
we give here the following definition:

“When designing a service and considering its internal perspective, we define an
interaction pattern as a recurring sequence of actions performed by two (or more)
components interacting to each other”. Fig. 2 shows two interaction patterns
represented with dash and dot lines.

Once we have identified interaction patterns in the refinements, the last step of the
platform-independent service design consists of mapping these patterns into the
behaviour of components. In our example, these components are the coordination
component, context sources and action providers, as presented in Section 2. Since an
interaction pattern involves two (or more) components, the mappings must create a
proper correspondence from refined actions of the pattern to components, and
guarantee the correct functioning of the interacting components.

4 Service Specification

This section introduces a more detailed view on the steps performed at the service
specification level and presents examples of the specification by using a case study.
This case study is called Live Contacts [7] and consists of a context-aware mobile
service running on Pocket PC phones, Smartphones, desktop PCs that allows its users
to contact the right person, at the right time, at the right place, via the right
communication channel. Further information about specific functionality that Live
Contacts offers to its user can be found in [8].

67

4.1 Models

In order to guarantee consistency between service specification and service design
levels, we have produced two models for the service specification. The first model has
been defined from a “pure” user perspective, in which we describe the functionality
that our service offers to the user in terms of user inputs and outputs. We consider the
service from an external view without any internal detail and the user is only aware of
what he/she can ask to the service and, eventually, get back from the service. Fig. 3
presents an example of this model within the Live Contacts case study. The Grizzle
tool [9] has been used for model editing and simulation of service specifications.

Fig. 3. Service specification: example of first model (exported from Grizzle [9]).

Fig. 3 shows that a user may ask information about all his/her contacts
(buddyListReq) and receive back a list containing this information (buddyListRsp).
The user may also remove a contact from his/her list (removeReq) and receive a
confirmation (removeAcc) or a rejection (removeRej) for this request. Moreover, the
user may contact one of his/her buddies by selecting a specific means of
communication, such as SMS, phone, chat or e-mail.

The second model we have produced for the service specification adds to the user
perspective a global view on the status information handled by the service to provide
the user with the functionality of the previous model. However, internal components
of the system are not introduced at this point. This second model, which is a
refinement of the previous model, consists of an intermediate step towards the
platform-independent design. Fig. 4 presents an example of this second model within
the Live Contacts case study.

Fig. 4 shows the status information that the Live Contacts service uses to handle
user requests. For example, when the user wants to remove a buddy from his/her list,
the Live Contacts service first selects this buddy from the user’s buddy list (findR).
Afterwards, if the buddy is in the user’s list (findR.b != null), the list is updated by
removing the buddy (remove), otherwise (findR.b == null) the user request is
rejected.

68

Fig. 4. Service specification: example of second model.

4.2 Interactions Classification

In the service specification we have defined the external behaviour of a context-aware
mobile service. This external behaviour presents some general-purpose characteristics
that are common to context-aware mobile service independent of the specific service
to be developed. We decided to classify these general-purpose characteristics based
on the kind of interaction that they imply. For example, all context-aware mobile
services are characterized by the capability to retrieve context information from the
user context and provide relevant functionality to their user based on this information.
This implies two kinds of interactions, namely an interaction with context sources in
order to retrieve context information, and an interaction with action providers in order
to provide the relevant functionality to the user. By identifying these interactions, we
can relate the total functionality provided by our service to a classification, which is
general enough to be (re)used with a wide range of context-aware mobile services
regardless of the specific service to be realized. Particularly, we have identified the
following set of basic interactions:
1. simple → it provides a way to receive input from the user and, eventually, present

output to the user;
2. search → it provides a way to retrieve information stored in some knowledge

source of the service;
3. update → it provides a way to update information stored in some knowledge

source of the service;
4. context → it provides a way to retrieve context information from the user context;
5. invocation → it provides a way to invoke external services;
6. discovery → it provides a way to discover external services that are available in a

certain place and at a certain moment.

69

We can combine these basic interactions to define more complex interactions and
mark the second model of our service specification as a preparation for the
transformation to the platform-independent service design model. For example,
considering the Live Contacts case study, we can mark the model of Fig. 4 as follows:
• buddyList → simple + search, since the user asks for his/her buddy list (simple)

and Live Contacts retrieves the list that is stored in some information source
(search).

• removeBuddy → simple + search + update, since the user asks to remove a buddy
from his/her buddy list (simple), Live Contacts retrieves this buddy from the
information source (search) and, eventually, removes this buddy from the list
(update).

• contactBuddy → simple + search + discovery + invocation, since the user asks to
contact a buddy (simple), Live Contacts retrieves this buddy’s number from the
information source (search) in case the means of communication is SMS or work
phone, discovers the proper service to open the communication (discovery) and,
finally, invokes this service (invocation).

5 Platform-Independent Service Design

This section introduces a more detailed view on the steps performed at the platform-
independent service design level and presents examples of refinements and mappings
from the Live Contacts case study. The Grizzle tool [9] has been used for model
editing and simulation of platform-independent service design.

5.1 Refinements

At the platform-independent service design level we refine the service specification
while considering the internal structure of the service that is depicted in Fig. 1.
Although this structure considers all the components typically involved in context-
aware mobile services, in order to realize correct refinements we need to define this
structure in more detail. Fig. 5 shows the specific structure that we use in the Live
Contacts case study. This structure has been defined within the A-MUSE project to

Fig. 5. Service structure.

70

realize the Live Contacts case. However, it can be reused for other context-aware
mobile services by simply redefining context sources and action providers that are
specific to that service.

The presentation component takes care of the interactions with the end-user. There
is one presentation component for each user. The user agent acts on behalf of the user
with the other components. There is one user agent for each user. Particularly, the
user agent interacts with the presentation component in order to obtain user input and
present user output, and provides the service coordinator with user input events. The
service coordinator takes care of orchestrating the other components, searching and
updating the database, which contains information about users (e.g., name, password,
preferred means of contacts and list of buddies), and login information. There is one
service coordinator and one database. The service coordinator also interacts with
context sources and action providers.

The context sources sense changes in the user context and provides the service
coordinator with context events. Particularly, Fig. 5 shows the (GPS) location service
that provides information about a user’s current location, the (MSN) presence service
that provides indications whether users registered in the Live Contacts application are
available online in the network, and the (Outlook) calendar service that provides
calendar information. There is one (GPS) location service, one (MSN) presence
service and one (Outlook) calendar service for each user agent. These services are
registered in the service trader.

The action providers are responsible for performing actions triggered by the service
coordinator. Actions represent application reactions to user input events and context
events. Particularly, Fig. 5 shows the SMS service, phone service, e-mail service and
chat service, which enable users to communicate with each other through,
respectively, sending messages, making a phone call, sending e-mails or chatting.

Fig. 6. Service design: example of refinements.

71

There is one SMS service, phone service, e-mail service and chat service for each
user agent. These services are registered in the service trader. The service trader
registers all the available context sources and action providers in order to allow the
coordinator to discover and invoke them.

Fig. 6 presents an example of refinements within the Live Contacts case study
revealing the structure mentioned above.

As depicted in Fig. 6, the user request to get the buddy list arrives to the user agent
(buddyListReq_reqUA), which forwards the request to the coordinator
(buddyListReq_reqC). The coordinator retrieves the list from the database
(findL_reqDB and findL_rspDB) and sends the list to the user agent
(buddyListRsp_rspC). Finally, the user agent sends the list to be presented to the user
(buddyListRsp_rspUA).

The user request to remove a buddy arrives to the user agent (removeReq_reqUA),
which forwards the request to the coordinator (removeReq_reqC). The coordinator
checks the buddy list of the user whether the buddy is in the contacts list
(findR_reqDB and findR_rspDB). If this is the case, the coordinator removes the
buddy from the list (remove_reqDB) and sends a positive response to the user agent
(removeAcc_rspC), which presents the result to the user (removeAcc_rspUA). If the
buddy is not in the list of the user, the coordinator sends a negative response to the
user agent (removeRej_rspC), which presents the result to the user
(removeRej_rspUA).

The user request to contact a buddy arrives to the user agent (contact_reqUA). The
user agent forwards the request to the coordinator (contact_reqC), which evaluates
the parameters of the contact request. Particularly, depending on the contact means
selected by the user, the coordinator selects one of the options depicted in Fig. 6. If
the contact means consists of SMS or work phone, the coordinator performs two
activities concurrently, namely, retrieving from the database the number to contact the
buddy (<numberType>_contact_reqDB and <numberType>_contact_rspDB) and
asking the service trader to discover the proper service to contact the buddy
(<serviceType>_contact_reqST and <serviceType>_contact_reqST). If the contact
means consists of chat service or e-mail service, the coordinator only asks the service
trader to discover the proper service to contact the buddy. For each option, the
coordinator is finally able to invoke the proper action provider (<serviceName>
_reqAP), which opens the communication with the user agent of the buddy to be
contacted.

5.2 Interaction Patterns and Mapping

We have identified interaction patterns that often recur in the refinements.
Particularly, we have created a correspondence between these interaction patterns and
the basic interactions that we have classified in Section 4.2. Table 1 shows this
correspondence for our case study.

The ultimate result of the transformation from service specification to platform-
independent service design consists of a model in which we map the interaction
patterns specified in the refinements into the behaviour of the specific components
responsible of realizing these patterns. This ultimate result is used as input to the last
level of our design process (see Fig. 1), namely the platform-specific service design,

72

in order to concretely realize components in terms of specific target technologies.
Since the refinements explicitly specify which component performs a certain action,
the mapping of interaction patterns to the behaviour model of a specific component is
straightforward. However, the interoperability between components interacting with
each other to provide certain functionality is not straightforwardly mapped into the
behavior model of individual components. Therefore, it is necessary to consistently
guarantee this interoperability in the mapping. Fig. 7 presents an example of mapping
within the Live Contacts case study.

Table 1. Interaction patterns for the Live Contacts service.

SEARCH
interaction pattern

SIMPLE
interaction pattern

UPDATE
interaction pattern

Fig. 7. Service design: example of mapping (exported from Grizzle [9]).

Consider the refinement in Fig. 6 that describes the Live Contacts functionality of
removing a buddy from the list of a user. This refinement involves three components,
which are the user agent, the service coordinator and the database where the list is

73

stored. Fig. 7 depicts the behaviour model of these components considering their
mutual interactions. Particularly, dashed lines show the mapping of interaction
patterns of Table 1 (RemoveBuddy column) into this model.

6 Related Work

We consider here some related work in the literature that deals with the design of
context-aware services and applications [3,10,11,12]. In [12], service-oriented
context-aware design is discussed, and a service-oriented structure that separates
context parameters from application data is proposed. Although this structure reflects
the need to distinguish components devoted to context management and application
core in the design of context-aware services, a design process that supports this
structure is not described. In contrast to [12], we here provide a MDA-based design
process that supports our structure.

In [13,14], a model-driven service-oriented approach for service development
closely related to our approach is presented. Although this approach relies on the
same MDA-based design process that we have described in Section 2, it focuses on a
different level of this process, namely the model transformation from platform-
independent design to platform-specific technologies. Therefore, this approach does
not consider the refinement of the service specification based on interactions
classification and corresponding interaction patterns for the platform-independent
service design.

In the context of MDA, much effort has been done on model transformations from
PIMs to PSMs in several application domains. However, traditional MDA
development practices [15,16,17] do not consider behavioural aspects of the design
and directly start the development by realizing the service design based on the
structure that implements the service. Therefore, much attention is given to PSMs and
generation of code to implement these PMSs, and less attention is given to the PIM
level and the behaviour of the service to be developed. In contrast, we focus on model
transformations at the PIM level in order to obtain models that can be implemented
with current technologies and that reflect the service structure we have defined.
Above all, these models are designed to be consistent and correct with respect to the
original behaviour of our service.

7 Conclusions and Future Work

We have defined an approach for the development of context-aware mobile services
that starts from the specification of its external behaviour and produces a platform-
independent model in terms of components that may execute the service. This
approach uses a model transformation based on refinements and interaction patterns.
Interaction patterns allow us to identify common pieces of behaviour of context-aware
mobile services that can be used to easily assemble new services instead of
developing them from scratch. Moreover, we have illustrated the application of our
approach by means of a case study, i.e., the Live Contacts service.

74

We have presented the steps to realize the model transformation from service
specification in A-MUSE DSL to a platform-independent service design in ISDL. We
have realized these steps by manually applying refinements, identifying interaction
patterns, and creating mappings. We have not discussed any transformation language
nor provided any transformation rules, and we have not considered yet the rules to
check whether certain combinations of interaction patterns are legal. These are topics
for future work. However, we have provided a starting point to define guidelines that
can be used to automatically realize our transformation. The automation of the
transformation is also subject of further study. Towards this aim, we are investigating
tool support for model transformations in the context of the A-MUSE project. We are
currently investigating how to specify and execute these transformations using medini
QVT [18], which is a tool that implements the Query/View/Model (QVT) Relations
specification defined by OMG for model-to-model transformations.

We have provided examples of refinements exported from the Grizzle tool, which
supports both A-MUSE DSL and ISDL, which are the languages we have used to
specify our models. These are simple examples that represent single instances of
behaviours. They have been introduced mainly to clarify how refinement interaction
patterns can be identified and mapped into components in our approach. Although
these refinements seem to grow as the examples become more complex, the A-MUSE
DSL and ISDL allow us to modularize single instances of behaviours in order to
reduce the complexity and facilitate the understanding of the resulting behaviour
diagrams. Scalability issues in case multiple instances of behaviour have to be
considered in further investigation.

We have used A-MUSE DSL and ISDL since these are general-purpose languages
that allow us to model behavioural aspects in terms of causality relations between
interactions without constraining the internal implementation of the services.
Particularly, A-MUSE DSL is a specialization of ISDL and both languages are based
on the COSMO framework [23], which is a framework used in the A-MUSE project
as a conceptual basis for modelling services. By using A-MUSE DSL and ISDL we
can support a broad spectrum of abstraction levels, from the highest level of
abstraction of our approach, namely the service specification level, to the lowest level
of platform-independence, namely the service design level.

References

1. Object Management Group: MDA-Guide, Version 1.0.1, omg/03-06-01 (2003)
2. Freeband A-MUSE Project; http://a-muse.freeband.nl
3. Almeida, J.P.A., Iacob, M.E., Jonkers, H., Quartel, D.: Model-Driven Development of

Context-Aware Services. In: 6th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems (DAIS 2006). Lecture Notes in Computer Science,
Vol. 4025. Springer (2006) 213-227.

4. ISDL home; http://isdl.ctit.utwente.nl
5. Quartel, D., Ferreira Pires. L., van Sinderen, M.: On Architectural Support for Behaviour

Refinement. In: Journal of Integrated Design and Process Science. Vol. 6, No.1. IOS (2002)
6. Wikipedia page; http://en.wikipedia.org/wiki/Interaction_design_pattern
7. Live Contacts home; http://livecontacts.telin.nl

75

8. Ter Hofte, G.H., Otte, R.A.A., Kruse, H.C.J., Snijders, M.: Context-Aware Communication
with Live Contacts. In: Conference Supplement of Computer Supported Cooperative Work
(CSCW2004). November 2004, Chicago, USA.

9. Grizzle home; http://isdl.ctit.utwente.nl/tools/grizzle
10. Almeida, J.P.A.: Model-Driven Design of Distributed Applications. Ph.D. thesis,

University of Twente, Enschede, The Netherlands (2006)
11. Shishkov, B.B., van Sinderen, M.: Model-Driven Design of Context-Aware Applications.

In: Proceedings of the 9th International Conference on Enterprise Information Systems
(ICEIS 2007), June 2007, Funchal, Portugal. INSTICC Press (2007), Vol. 3, 105-113.

12. Chaari, T., Laforest, F., Celentano, A.: Service-Oriented Context-Aware Application
Design. In: First International Workshop on Managing Context Information in Mobile and
Pervasive Environments (MCMP 2005), Ayia Napa, Cyprus.

13. van Sinderen, M., Almeida, J.P.A., Ferreira Pires, L., Quartel, D.: Designing Enterprise
Applications Using Model-Driven Service-Oriented Architectures. In: Enterprise Service
Computing: from Concept to Deployment. Idea Group Publishing (2006), Hershey, 132-
155.

14. Almeida, J.P.A., Ferreira Pires, L., van Sinderen, M.J.: Abstract Platform and
Transformations for Model-Driven Service-Oriented Development. In: Proceedings of the
2nd International Workshop on Model-Driven Enterprise Information Systems (MDEIS
2006), 23 May 2006, Paphos, Cyprus. INSTICC Press (2006), 49-63.

15. Jones, V., Rensink, A., Ruys, T., Brinksma, E., van Halteren, A.: A Formal MDA
Approach for Mobile Health Systems. In: Proceedings of the Second European Workshop
on Model Driven Architecture (MDA) with an emphasis on Methodologies and
Transformations (EWMDA 2004). Computing Laboratory, University of Kent, Canterbury,
Kent CT2 7NF, UK, Canterbury, 28-35.

16. Fink, T., Koch, M., Pauls, K.: An MDA Approach to Access Control Specifications Using
MOF and UML Profiles. In: The First International Workshop on Views on Designing
Complex Architectures (VODCA 2004). Electronic Notes in Theoretical Computer Science
(2006), Vol. 142, 161-179.

17. Eissen, S. M., Stein, B.: An MDA Approach to Implement Personal IR Tools. In: 18th
International Conference on Database and Expert Systems Applications (DEXA 2007).
IEEE Computer Society Press (2007), 259-263.

18. medini QVT: ikv++ technologies home; http://www.ikv.de
19. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for

Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer
Interaction (2001), 16(2-4), 97-166.

20. Chen, H., Finin, T., Joshi, A.: An Ontology for Context-Aware Pervasive Computing
Environments, Knowledge Engineering Review, Special Issue on Ontologies for
Distributed Systems, Vol. 18, No. 3. Cambridge University Press (2003) 197-207.

21. Dockhorn Costa, P., Ferreira Pires, L., van Sinderen, M.: Designing a Configurable
Services Platform for Mobile Context-Aware Applications. In: International Journal of
Pervasive Computing and Communications (JPPC), Vol.1, No. 1. Troubador Publishing
(2005)

22. McFadden, T., Henricksen, K., Indulska, J., Mascaro, P.: Applying a Disciplined Approach
to the Development of a Context-Aware Communication Application. In: 3th IEEE
International Conference on Pervasive Computing and Communications (PerCom). IEEE
Computer Society Press (2005) 300-306.

23. Quartel, D.A.C., Steen, M.W.A., Pokraev, S.V., van Sinderen, M.J.: COSMO: a Conceptual
Framework for Service Modelling and Refinement. In: Information Systems Frontiers,
Vol.9, Springer Science and Business Media (2007), 225-244.

76

