
A REQUIREMENTS ENGINEERING PROCESS MODEL FOR
DISTRIBUTED SOFTWARE DEVELOPMENT

Lessons Learned

Leandro Teixeira Lopes and Jorge Luis Nicolas Audy
School of Computer Science, PUCRS, 6681 Ipiranga Avenue, Porto Alegre, Rio Grande do Sul, Brazil

Keywords: Distributed Software Development, Global Software Development, Global Teams, Requirements
Engineering, Requirements Analysis, Requirements Specification.

Abstract: In the growing market of global software development (GSD), requirements engineering emerges as a
critical process impacted by distribution. The need of a process to address the difficulties caused by team
dispersion in requirements engineering is recognized. The objective of this paper is to present lessons
learned from a case study conducted to evaluate a requirements engineering process model for distributed
software development. Empirical results were obtained in a multinational organization that develops
software with teams distributed in a global setting. The main contribution of this paper is providing an
insight in the use of a requirements engineering process model for GSD, as well as, new information on
current needs for changes or revision in traditional requirements engineering models.

1 INTRODUCTION

In the software development process, requirements
engineering (RE) arises as a key point to the success
of projects. Studies present that the main challenges
to software projects are related to requirements (The
Standish Group International, 1995). Problems in
requirements engineering can impact all software
project, from design to test and maintenance,
increasing cost and schedule.

The increasing globalization in business
environments has impacted the software
development market (Herbsleb and Moitra , 2001).
Aiming competitive advantages as low costs, high
productivity and quality in systems development,
several organizations decided to distribute their
development process inside or outside their
countries. India, Brazil and Ireland, as well as
several other regions offer fiscal incentives and
availability of resources in software development.

When teams are dispersed around the globe,
several new challenges are introduced to the
requirements engineering process. As an activity
communication intensive, requirements engineering
is highly influenced by team dispersion, for
example. Language and cultural differences can

introduce ambiguity, misunderstandings, which are
negative to requirements process.

The main objective of this paper is to present
results of a case study in a global software
development setting, aiming to evaluate the
effectiveness of a requirements engineering process
model for distributed software development
environments. Case study was conducted in a
multinational organization that develops software
with teams distributed globally. Results are analyzed
and consolidated in lessons learned, which can be
used for further improvements in the process model
used, as well as basis for next studies.

This paper is structured as follows. In section 2 is
presented the theoretical basis used as reference for
this research. In section 3 is presented the research
method. The process model used is presented in
detail in section 4. Section 5 details the case study
and lessons learned. Final considerations are
presented in section 6.

2 THEORETICAL BASIS

Distributed software development (DSD) presents
some characteristics that differentiate fundamentally
from co-located software development (Karolak,

117
Teixeira Lopes L. and Luis Nicolas Audy J. (2008).
A REQUIREMENTS ENGINEERING PROCESS MODEL FOR DISTRIBUTED SOFTWARE DEVELOPMENT - Lessons Learned.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 117-122
DOI: 10.5220/0001682901170122
Copyright c© SciTePress

1998). The requirement engineering (RE) process
has several activities that need high communication
and coordination, what tends to increase difficulties
when in distributed environments.

Although several studies recognize the need to
increase knowledge about requirements engineering
in distributed environments (Zowghi, 2002)(Damian
and Zowghi, 2003), after extensive research, a
limited number of papers was found in the topic.
These are some of the studies that most influenced
this research:

Damian and Zowghi (2003) present findings
from case study in two global software development
organizations. The main result was a model of
impact of distance and the affected requirements
activities due to problems of cultural diversity,
inadequate communication, knowledge management
and time differences. It has provided as important
insight into the interplay between culture and
conflict as well as the impact of distance on the
ability to reconcile different viewpoints related to
requirements and requirements process.

Lloyd, Rosson and Arthur (2002) report an
empirical study of how groupware can be used to aid
distributed software requirements engineering. It
presents an analysis of factors that affected the
quality of the Software Requirements Specification
document written at the conclusion of the
requirements process and the effectiveness of
requirements elicitation techniques which were used
in a distributed setting for requirements gathering.

Zowghi (2002) advocates the development of a
different requirements engineering process for
global software development outlining some
preliminary suggestions on what such process model
would include. Research was conducted through
field studies where it was concluded that some of the
fundamental problems associated with the activities
of requirements engineering process are exacerbated
when the software development teams are
geographically distributed. The study describes
briefly the impact of global software development
teams in the requirement engineering process and
argues that there is a need to investigate and develop
requirements engineering process to support global
software development

In this sense, (Lopes et al, 2004) present an
initial proposal of a process model to this
environment. This proposal is based on the adapting
the software requirements specification according to
the needs of the development team, with a double
validation of the requirements artifacts.

3 RESEARCH METHOD

This research is characterized as a study mostly
exploratory, since the main research method was the
case study. It is possible to justify the use of
qualitative methods since it involves the study of the
system development process in its real context, with
description and the understanding of the state of the
art in those situations where practice precedes theory
(Yin, 1994).

4 RE PROCESS MODEL FOR
DSD

The requirements engineering process model used in
this study was based on the proposal presented in
(Lopes et al, 2004). The main goal of this process is
to reduce the impact of team dispersion in
requirements engineering. In this sense it is defined
roles and form of evolution of the requirements
artifacts with focus on consensus among teams. It is
also included in the process a model of natural
language specification, with focus on reducing
ambiguity and standardizing work among teams.

4.1 Context

Process model considers the existence of physical
distance among users, clients and development team.
The main groups involved in the process model are
the requirements engineering team, the users and
clients group, and the development team.

The requirements engineering team is
responsible for requirements elicitation, analysis,
negotiation, validation and management. In the
process model the requirements engineering team
has members next to the users and clients, called
business analysts and members next to the
development team, called application analysts, as
presented in Figure 1.

 The users and clients group represents the
interested parts that requested and contracted the
software project, as well as the responsible for using
the product built. This team provides information to
the software specification.

The development team is composed by the
responsible for the development of a specific
project, using as input the requirements specified by
the requirements engineering team. The
development team usually comprehends project
managers, testers, developers and support team,
among others.

ICEIS 2008 - International Conference on Enterprise Information Systems

118

Same Physical
Location

Same Physical
Location

Development
Team

DD

Same Physical
Location

Same Physical
Location

UU

Users and
Clients

CC Global DistanceGlobal Distance RERERERE

Same Physical
Location

Same Physical
Location

Development
Team

DDDD

Same Physical
Location

Same Physical
Location

UUUU

Users and
Clients

CCCC Global DistanceGlobal Distance RERERERERERERERE

Figure 1: Scenario example - Requirements engineers
dispersion.

In the process model, interaction is centered in
the requirements engineering team, which is
responsible for the requirements artifacts.

According to the process model, the
requirements engineering team is the intermediate
between the users/clients group and the development
team. The requirements engineering team is
responsible for creating and maintaining the
requirements artifacts, being the only group able to
modify these artifacts. Users, clients and developers
can evaluate the specification artifacts during all
requirements process, asking for changes when
necessary.

All changes in the requirements artifacts must be
centralized in the requirements engineering team,
responsible for controlling these documents.
Changes can be requested by any member of the
users, clients and development team.

4.2 Process Model

The process model considers the existence of at least
one business analyst, and at least one application
analyst (see 4.1 Context). Process consists of five
steps, as presented in Figure 2 and detailed in
sequence.

Users/Clients
Group

+
Business
Analyst

Development
Team

+
Application

Analyst

2

1

3
4

5

Users/Clients
Group

+
Business
Analyst

Development
Team

+
Application

Analyst

2

1

3
4

5

Figure 2: Process model for RE in DSD environments.

Step 1. Initial Requirements Artifacts are sent to
Development Team
After creating initial set of requirements artifacts,
the business analyst send these artifacts to the
application analyst. Initial set of artifacts can
comprehend high level documents, as the

Vision/Scope document, or even an initial version of
a requirements specification document.

Step 2. Requirements Artifacts Analysis and
Evolution
Engagement of development team happens, in
general, in the beginning of project, what helps the
team to be aware of needs and rationales of the
software project. After receiving the requirements
artifacts from the business analyst, the application
analyst try to deep understand artifacts contents and
context. Development team also uses these
documents to contextualization.

During this phase requirements artifacts are
adapted to reduce potential sources of problems.
Ambiguity and lack clearness are likely when teams
have various cultures and languages. Questions arise
and are cleared among teams, with high volume of
communication in this step.

Communication among teams, more than helping
clarifying the artifacts contents, aims to obtain
consensus on the specification being written,
aligning multiple visions on requirements.

According to the level of detail of the artifacts
received from the business analysts, it may be
necessary to complement them, eliciting and
negotiating new requirements through contacts with
stakeholders.

Requirements artifacts can be rewritten or
adapted to standardize inbound documents.
Application analysts and development team can
apply phrase structures, patterns of document and
glossary, use case and requirements formats, for
example, to avoid different formats of documents to
each project. This need increases when considering
metrics application, where these differences can
introduce deviations.

Step 3. Requirements Artifacts are sent for all
Teams’ Approval
Once the requirements artifacts are finished, it must
be approved. In this step artifacts are sent back to be
verified by specification team.

Step 4. Validation and Approval of the
Requirements Artifacts
Key members of each team shall verify the
requirements artifacts to assure that after adapted
they still reflects the needs and objectives of
stakeholders. Communication during the third step
keeps teams aware of the adaptation process, what
reduces the effort to validate requirements artifacts.

A REQUIREMENTS ENGINEERING PROCESS MODEL FOR DISTRIBUTED SOFTWARE DEVELOPMENT -
Lessons Learned

119

Step 5. Requirements Artifacts Final Version is
Defined
After the formal approval of all key team members,
the final version of requirements artifacts is defined.
Then, development team uses this version as basis
for modeling, coding and testing software.

4.3 Model for Natural Language
Requirements Specification

The requirements engineering process model for
DSD includes a model for natural language
requirements specification, aiming to reduce
ambiguities and standardizing the work among
teams. The model for natural language specification
was developed with focus on requirements
elicitation and documentation, to capture needs and
goals of users and clients.

When the development team is responsible for
supplying several projects with various users and
clients, it is natural that the initial requirements
artifacts provided by the business analyst have
different standards and formats. Consequently, the
level of detail of requirements, document format,
glossary, format of use cases and requirements, for
example, can influence the development process and
metrics related. Using a model of natural language
specification, the input documents are standardized,
reducing the impact of the variety of standards and
formats of documents provided by the business
analyst.

This model can vary among organization,
according to the standards chosen. It can be
influenced by language used, background
knowledge of analysts, development process, etc.

In this study was used a requirements meta-
model and a text structure. The requirements meta-
model comprehends a set of definitions used to
classify and relate the information gathered during
elicitation. The text structure defines the main
phrase structures to be used in each class of
information, with the goal of simplifying the
understanding of the information represented.

This approach was built based on the study of the
main definitions of requirements (Armour and
Miller, 2001), (Goguen, 1996), (Siddiqi and
Shekaran, 2006), (Leite and Leonardi, 1998),
(Thayer and Dorfman, 2000) and phrase structures
in literature (Damian et al, 2002), (Rational
Software, 2003), (Kamsties, 2001). Model was
tested preliminarily using historical data of two
projects of software development.

5 CASE STUDY

Aiming to evaluate the team perception on the
process of requirements engineering in DSD and the
quality of the requirements artifacts produced, it was
conducted a case study in two projects of distributed
software development. Initially, it was developed a
case study protocol, where the objective, scope, unit
of analysis, procedures, dimensions and questions
were detailed.

The unit of analysis is composed of software
development projects that used the process of RE to
DSD environments proposed. In this sense, it was
selected an organization that conducts projects of
global software development to apply and monitor
the process proposal in real projects since the
beginning. Organization selected had three software
development units around the globe. The software
process used in the organization is based on MSF
(Microsoft Solutions Framework), and in known
methodologies, like RUP (Rational Unified Process)
and PMI (Project Management Institute). The unit
where the case study was conducted is recognized as
a SW-CMM Level 2 organization. In the
requirements process, project teams commonly used
an “over the wall” approach (Al-Rawas and
Easterbrook, 1996), where the specification was
built by the business analyst next to users and clients
and sent to be developed by a globally distant team.

Two projects were selected to apply the process
proposal, called Project 1 and Project 2 from now
on. These projects followed the process proposal
presented in Chapter 4. When team had the final
requirements artifacts, it was applied a survey.

A semi-structured survey was used as a data
collection instrument, mainly with questions in
Lickert scale of five levels. The data collection
instrument was validated by two senior researchers
and a project manager from the organization, being
refined based on their suggestions.

A pretest was conducted in the preliminary
version of the instrument with two technical leaders
of the organization selected, aiming to identify
problems, ambiguities and improve the question
statements. Final version of instrument was sent to
respondents through e-mail.

In Project 1 survey had seven respondents,
including the project manager, the application
analyst, the technical leader, developer and testers.

Project 2 had six respondents including the
project manager, the application analyst, the system
architect and developers. There was no answer fro
test team which was located in other physical site.

ICEIS 2008 - International Conference on Enterprise Information Systems

120

After receiving answers, results were analyzed
with content analysis techniques and the statistical
module of Excel. Project documents were used to
triangulate data and increase results reliability.

5.1 Case Study Results

Based on the survey results, as well as in
observations made during the projects development,
several highlights and problems were identified.

5.1.1 Highlights

The highlight points identified in the process model
are mainly related to communication, level of detail
of information gathered, trust, clearness and benefits
to subsequent phases of software development.
When requirements are easier to understand,
validation is simplified. Feedback channels are more
efficient, with a better evolution on requirements
artifacts. Besides, teams trust that requirements are
understood, improving their relationship.

The standard structure of requirements allowed a
better communication among teams, once they had
improvements in the form of expressing needs and
goals. A better communication promoted by several
interactions among teams was a consensus among
interviewed. Besides, requirements were considered
more clear and specification richer in detail.

With requirements more clear and deep in detail,
documentation and testing activities, as well as MSF
phases of planning and developing are improved.
Respondents also pointed that the requirements
specification was more verifiable using the
preliminary process.

5.1.2 Problems

When evaluating the process model used, the need
of capturing a wider range of information was
pointed, mainly by the project manager of the
Project 1. This limitation is most linked to the model
for natural language specification.

Contributions to estimation process were
expected, with requirements more clear, correct and
detailed. However, it was not pointed in the survey.
As the estimation process used in the organization is
based on historical data, it may be necessary a
higher number of projects using the process model
to adequate estimative.

When considering the characteristics of a good
SRS, as defined in IEEE Std 830-1998, consistency
and ranking of requirements had the worst
evaluation in survey. The former had a high standard
deviation, being not a consensus among respondents.

5.2 Lessons Learned

Based on consolidated results, were identified the
case study lessons learned, as presented below:

Lesson 1 - Interaction among teams to evolve the
requirements artifacts allows a better
understanding of the rationale of requirements.
Interaction among development team, users and
clients aiming to evolve requirements artifacts
increase comprehension of the rationale that guides
the software development. Without interaction,
software design and codification can start without
aligning team vision on requirements. Also, this
way, some usual problems like “over the wall”
development (Al-Rawas and Easterbrook, 1996), is
avoided once teams must ensure a complete
understanding of the requirements specification
contents instead of just throwing the specification
“over the wall” to the next team in each software
development phase.

Lesson 2 - The use of phrase structures to natural
language requirements contributes to improve
communication and understanding among teams.
When evaluating the case study results, a key point
to improve communication among teams, as well as
clearness in requirements was the phrase structures
used to specify requirements in natural language. As
there was native language difference among teams,
the use of simple phrase structures allowed a better
comprehension of written requirements.
Communication was also influenced by phrase
structures, once teams started using it when
interacting. Clearness by the use of phrase structures
also promoted an improved communication.

Lesson 3: It is necessary improvements in process
used to better understand and capture teams’
context information.
There was no clear improvement in capturing
context information with the process used. Although
team interaction to evolve requirements artifacts
could help teams to share context information, there
was no specific activity with this goal in the process
used. User and clients context information is
important to understand the location where the
software being developed will be used and how it
can affect the software specification. A possible
alternative is presented by Mahemoff (1998),
through the use of a location specific information
database.
Lesson 4: The preliminary process needs new
activities to reduce inconsistencies and improve
requirements ranking.

A REQUIREMENTS ENGINEERING PROCESS MODEL FOR DISTRIBUTED SOFTWARE DEVELOPMENT -
Lessons Learned

121

In the case study, respondents pointed that the main
characteristics of the requirements specification that
needed improvements were requirements
consistency and ranking. In this sense, it is necessary
new activities in the process used aiming to reduce
inconsistence and improve requirements ranking.

Lesson 5: Improvements in preliminary process
must be conducted to capture a wider range of
information as well as discover hidden
requirements.

Other improvement point in the process used is
the definition of forms to capture a wider variety of
information, as well as discover hidden
requirements. The use of natural language to specify
requirements was not enough to represent all
information needed. It is clearly necessary to use
other forms of representation according to the
project characteristics.

6 FINAL CONSIDERATIONS

Requirements engineering has a critical role in
software development process. RE artifacts are used
in all subsequent phases of development. Estimative,
modeling, development and test are made based on
requirements.

There are several difficulties in requirements
engineering process. Most of those difficulties are
increased when software development teams are
distributed. Some new difficulties appear.

Considering the growing adoption of distributed
software development, there are few studies about
the impact it has in requirements engineering. In
these studies, the technical aspects aren’t considered
in detail. It is clearly necessary processes, patterns
and tools to address difficulties cause by team
distribution in requirements engineering.

This study presents results from a case study in
two projects using a process model for requirements
engineering in DSD environments. It contributes
presenting an insight towards improvements for the
model used as well as new empirical information on
the theme.

REFERENCES

The Standish Group International (1995). Chaos Report.
[Online], Available: http://www.standishgroup.com/.

Herbsleb, J.; Moitra, D. Global Software Development.
IEEE Software. 2001.

Karolak, D. Global Software Development – Managing
Virtual Teams and Environments. IEEE Computer
Society. Los Alamitos, EUA. 1998. 159p.

Thayer, R.; Dorfman, M. System and Software
Requirements Engineering – Second Edition. IEEE
Computer Society Press Tutorial. 2000. 528p.

Zowghi, D. “Does Global Software Development Need a
Different Requirements Engineering Process?”
Proceedings of International Workshop on Global
Software Development (ICSE 2002). 2002.

Damian, D.; Zowghi, D. “An insight into the interplay
between culture, conflict and distance in globally
distributed requirements negotiations”. Proceedings of
the 36th Hawaii International Conference on Systems
Sciences (HICSS’03). IEEE. 2003.

Lloyd, J.; Rosson, M..; Arthur, J.. Effectiveness of
Elicitation Techniques in Distributed Requirements
Engineering. Proceedings of the IEEE Joint
International Conference on Requirements
Engineering (RE’02). IEEE. 2002. 8p.

Yin, R. K, Case study research: design and methods,
Sage, 1994.

Lopes, L.; Prikladnicki, R.; Majdenbaum, A.; Audy, J.
“Distributed Requirement Specification: Minimizing
the effect of geographic dispersion”. Proceedings of
the 6th International Conference on Enterprise
Information Systems, Porto, Portugal, 2004.

Leite, J.; Leonardi, M. “Business Rules as Organizational
Policies”. Proceedings of the Ninth International
Workshop on Software Specification and design. IEEE
Computer Society. 1998.

Armour, F.; Miller, G. Advanced Use Case Modeling.
Addison Wesley. 2001

Goguen, J.. “Formality and Informality in Requirements
Engineering”. Proceedings of the 2nd International
Conference on Requirements Engineering (ICRE '96).
IEEE. 1996.

Siddiqi, J.; Shekaran, M. Requirements Engineering: the
emerging wisdom. IEEE Software. 1996.

Damian, D. et alli. “An industrial experience in process
improvement: An early assessment at the Australian
Center for Unisys Software”. Proceedings of the 2002
International Symposium on Empirical Software
Engineering (ISESE’02). IEEE. 2002.

Rational Software. The principles behind good
requirements. Webinar. [Online] http://
www.rational.com/September 2003.

Kamsties, E. 2001. Surfacing Ambiguity in Natural
Language Requirements. PhD Thesis. Fraunhofer-
Institue für Experimentelles Software Engineering. 2001.

Al-Rawas, A.; Easterbrook, S. Communication problem in
requirements engineering: A field study. Proceedings
of the Westminster Conference on Professional
Awareness in Software Engineering, 1996, London.

Mahemoff, M. J.; Johnston, L. Software
Internationalisation: Implications for Requirements
Engineering. Proceedings of the Australian Workshop
on Requirements Engineering, 1998, Geelong,
Australia. p. 83-90.

ICEIS 2008 - International Conference on Enterprise Information Systems

122

