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Abstract: In this paper we examine the use of logarithmic opinion pooling techniques to combine two observations mod-
els that are normally used in multi-channel image restoration techniques. The combined observation model is
used together with simultaneous autoregression prior models for the image and blurs to define the joint distri-
bution of image, blurs and observations. Assuming that all the unknown parameters are previously estimated
we use variational techniques to approximate the posterior distribution of the real underlying image and the
unknown blurs. We will examine the use of two approximations of the posterior distribution. Experimental
results are used to validate the proposed approach.

1 INTRODUCTION

Blind image restoration (BIR) has been an active re-
search topic for many years now (for the recent lit-
erature review see (Bishop et al., 2007)). In the BIR
solutions (Molina et al., 2006) both the original im-
age and blur are considered to be unknown. Blind
multi-channel restoration (BMCR) is an extension to
the BIR problem when multiple views of the scene are
available. Both BIR and BMCR are ill-possed prob-
lems. There are numerous practical applications in
which BMCR can be used. Satellite imaging, remote
sensing, astronomical imaging, microscopy and video
processing are some of the applications where multi-
ple distorted views of the original scene are available.

In this paper we propose solutions to the BMCR
problem based on the Bayesian paradigm, which
has already been widely used for image restoration
(Molina et al., 1999), (Mateos et al., 2000), (Galat-
sanos et al., 2002), removal of blocking artifacts (Ma-
teos et al., 2000) and deconvolution with partially
known blurs (Galatsanos et al., 2002).

For our BMCR problem formulation it is assumed
that L distorted versions of the original scene are
available. Each observation is modeled by a Linear
Space Invariant (LSI) system. Therefore, the output gi
for each individual channel is given in vector-matrix

form by

gi = Hi f +ni, i = 1,2, ...,L, (1)

where f is the original image, ni represents the addi-
tive noise per channel, and Hi represents the unknown
blur matrix which is approximated by an N×N block-
circulant matrix (all vectors are of size N× 1). It
should be pointed out that for the observations that
are not spatially aligned, matrix Hi will also be used
to model any possible spatial shift. Before we proceed
further, let us rewrite Equation 1 in a more compact
form as

g = Hf +n = Fh+n, (2)

where g=
[

gT
1,gT

2, ...,gT
L

]T
, h =

[

hT
1,hT

2 , ...,hT
L

]T
,

H =
[

HT
1 ,HT

2 , ...,HT
L

]T
, and n=

[

nT
1 ,nT

2, ...,nT
L

]T
. Ma-

trix F has size LN×N and represents the block diag-
onal convolutional matrix.

In this work, our goal is to formulate the BMCR
problem by constructively combining different obser-
vations models and to use the variational approach
to approximate the joint posterior distribution of the
original image and blurs given the multi-channel ob-
servations.

This paper is organized as follows. In Section
2, we examine the Bayesian modeling of the multi-
channel restoration problem which allows us to com-
bine different observation models. In Section 3 we
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use variational techniques to approximate the joint
posterior distribution of the original image and blurs
given the multi-channel observations. In Section 4 we
present experimental results and present the conclu-
sions in Section 5.

2 BAYESIAN FRAMEWORK

On the unknown image we assume that its luminos-
ity distribution is smooth, and therefore we choose
the simultaneous autoregression (SAR) model (Rip-
ley, 1981) as the image prior,

p(f | αim) ∝ exp

{

−
1
2

αim‖Cf‖2
}

. (3)

Matrix C has size N×N and denotes the Laplacian
operator, N is number of pixels in the image support
andα−1

im is the variance of the Gaussian distribution.
For the joint blur prior, it is assumed that the

point spread function (PSF) of each individual chan-
nel independently follows the SAR model described
by Equation 3, that is

p(h | αbl) ∝ exp

{

−
1
2

L

∑
i=1

αbl,i‖Chi‖
2

}

, (4)

whereα−1
bl,i is the variance of theith channel blur and

αbl denotes set,{αbl,i} : i = 1,2, ..L.
From the observation model described in Equation

1 we obtain

p1(g | h, f,β) ∝ exp

{

−
1
2

L

∑
i=1

βi‖gi −Hif‖2

}

, (5)

whereβ−1
i is the variance of theith Gaussian noise

vector andβ denotes set,{βi} : i = 1,2, ...,L.
We now want to introduce additional constraints

on the blurring functions. Let us first assume that
there is no noise in the observation process. Then we
have

Rg = HRfH
T (6)

where R denotes the autocorrelation matrix.
Now, if Rf has full rank; for any vector u we have

Rgu = 0 =⇒ HTu = 0, (7)

since if HTu 6= 0 then, for Rf being full rank,
uTHRfHTu 6= 0 and so Rgu 6= 0.

Furthermore, if additionally H has full column
rank, N, then the rank of Rg is also N.

Consequently, the eigenvectors associated with
the N largest eigenvalues of Rg span the signal sub-
space, whereas the eigenvectors associated with the
(L − 1)N smallest eigenvalues span its orthogonal

complement, the noise subspace. The signal subspace
is also the subspace spanned by the columns of the fil-
tering matrix H.

Let us denote each of the eigenvectors spanning
the noise subspace by ui , i = 1, . . . ,(L −1)N. Based
on our previous assumptions about Rg and H we con-
clude that

HTui = 0, i = 1, . . . ,(L −1)N. (8)

Then, the above equation can also be written as

V ih = 0, i = 1, . . . ,(L −1)N. (9)

where Vi = [V1
i ,V

2
i , ...,V

L
i ] is an N×LN matrix.

Considering the whole set of ui, i = 1, . . . ,(L −
1)N vectors we finally have

Vh = 0. (10)

where V= [V1
T,V2

T, ...,V(L−1)N
T]T.

In practice we will not use the complete set of ma-
trices Vi , i = 1, ...,(L − 1)N to define V but only a
subset of it whose set of indices will be denoted by
I. See (Sroubek et al., 2007) for a very interesting
derivation of the above conditions and for its use in
the super resolution problems see (Katsaggelos et al.,
2007). See also (Gastaud et al., 2007) for the pos-
sible use of other observation models (regularization
terms) for the multi-channel blur.

To use this new condition we define an additional
observation model given by

p2(g | h,εbl) ∝ exp

{

−
1
2

εbl‖Vh‖2
}

, (11)

whereε−1
bl is the variance of this new Gaussian obser-

vation model.
Note that

‖Vh‖2 = ∑
i∈I

‖V ih‖2 = ∑
i∈I

‖
L

∑
j=1

V j
i h j‖

2 (12)

In order to combine the observation model pro-
vided by Equation 5 with the observation model just
described, we will use logarithmic opinion pooling
techniques (Genest and Zidek, 1986) to obtain the fi-
nal observation model:

p(g | h, f,β,εbl) ∝ p1(g | h, f,β)λ1p2(g | h,εbl)
λ2,
(13)

whereλ1 + λ2 = 1 andλ1,λ2 ≥ 0.
Note that we could have also combined both ob-

servation models using

p(g | h, f,β,εbl) = λ1p1(g | h, f,β)

+ λ2p2(g | h,εbl) (14)

However we will not explore this pooling of opinion
technique in this paper.
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In what follows we assume that each of the hyper-
parametersαim, αbl,i , εbl andβi are known or previ-
ously estimated and concentrate here on the estima-
tion of the image and blur. The variational approach
to be described next can incorporate the estimation
of the hyperparameters but we want to concentrate
here on the additional information provided by the
logarithmic opinion pooling used in the observation
model.

3 BAYESIAN INFERENCE

From the above definitions of the prior and observa-
tion models we have

−2logp(f,h,g) = const

+ αim‖Cf‖2+
L

∑
i=1

αbl,i‖Chi‖
2

+ λ1

L

∑
i=1

βi‖gi −Hif‖2

+ λ2εbl ∑
i∈I

‖
L

∑
j=1

V j
i h j‖

2 (15)

where we have removed the hyperparameters from the
models because they are assumed to be known.

The Bayesian paradigm dictates that the inference
on f,h should be based on the posterior distribution
p(f,h,g)/p(g). Since this posterior distribution can
not be calculated in closed form we approximate it
using

q(f,h) = q(f)q(h). (16)

The variational criterion used to find q(f,h) is
the minimization of the Kullback-Leibler divergence,
given by (Kullback and Leibler, 1951; Kullback,
1959)

CKL(q(f,h) ‖ p(f,h|g)) =
∫

f,h
q(f,h) log

(

q(f,h)

p(f,h|g)

)

dfdh

∫

f,h
q(f,h) log

(

q(f,h)

p(f,h,g)

)

dfdh+const,

(17)

which is always non negative and equal to zero only
when q(f,h) = p(f,h|g).

We can then proceed to find q(f,h) using the fol-
lowing algorithm

Algorithm 1
Given q1(h), the initial estimate of the distribution
q(h), for k= 1,2, . . . until a stopping criterion is met:

1. Find

qk(f) = argmin
q(f)

CKL(q(f)qk(h) ‖ p(f,h | g)) (18)

2. Find

qk+1(h) = argmin
q(h)

CKL(qk(f)q(h) ‖ p(f,h | g))

(19)

The convergence of the distributions qk(f) and
qk+1(h) is used as the stopping criterion of the above
iterations. In order to simplify the above criterion,
‖ E[f]qk(f)−E[f]qk−1(f) ‖

2 / ‖ E[f]qk−1(f) ‖
2< ε, whereε

is a prescribed bound, can also be used for terminat-
ing algorithm 1.

We analyze next two cases for the distributions
q(f) and q(h).

3.1 Optimal Random Distribution for
q(f) and Degenerate Distribution for
q(h)

We now proceed to explicitly calculate the distribu-
tions qk(f) and qk+1(h) in the above algorithm when
we restrict the distribution of h to be of the form

q(h) =

{

1 if h = h
0 otherwise (20)

Let us now assume that at thek-th iteration step
of the above algorithm the distribution of h is degen-
erated on hk. Then, the best estimate of thea poste-
riori conditional distribution of the real image given
the observations is given by the distribution qk(f) sat-
isfying

−2logqk(f) = const+ αim ‖ Cf ‖2

+ λ1

L

∑
i=1

βi‖gi −Hk
i f‖

2, (21)

and thus we have that

qk(f) = N
(

f | Ek(f),covk(f)
)

.

The mean of the normal distribution is the solution
of

∂ 2logqk(f)
∂f

= 0,

while the covariance is given by

−
∂2 2logqk(f)

∂f2 = [covk(f)]−1.

From these two equations we obtain

Ek(f) =
(

Mk(f)
)−1

λ1∑
i

βiHk
i
T
gi , (22)

Mk(f) = αimCTC+ λ1∑
i

βiH
k
i
T
Hk

i , (23)

USING LOGARITHMIC OPINION POOLING TECHNIQUES IN BAYESIAN BLIND MULTI-CHANNEL
RESTORATION

567



with

covk(f) =
(

Mk(f)
)−1

. (24)

Once qk(f) has been calculated hk+1 satisfies

λ1β jEk(F)
T
g j = λ2εbl ∑

i∈I
(V j

i )
T(

L

∑
l=1

V l
i h

k+1
l )

+[αbl, jC
TC+ λ1β jE

k(F)
T
Ek(F)+

λ1β jNcovk(f)]hk+1
j , j = 1, . . . ,L (25)

Rewriting Equation 25 in a more compact form we
obtain

hk+1 =
[

K(αbl ,C
TC)+

λ1K
(

β,Ek(F)TEk(F)+Ncovk(f)
)

+

λ2εblV
T
I V I

]−1
×











λ1β1Ek(F)Tg1

λ1β2Ek(F)Tg2
...

λ1βLEk(F)TgL











.(26)

Note thatV I is defined byV I= [V i1
T,V i2

T, ...,V i|I|
T]T,

where|I| denotes cardinality of set I. Matrix K(x,Y)
is defined with the help of the Kronecker product op-
erator

⊗

as K(x,Y) = Diag(x)
⊗

Y. Here, matrix
Diag(x) represents a diagonal matrix with its main di-
agonal elements in the same order as the elements of
the vector x.

3.2 Optimal Degenerate Distributions
for q(f) and q(h)

In order to obtain the best degenerate distributions for
the image and blur we simply have to use covk(f) = 0
in Equation 25 and use fk = Ek(f) where the expected
value Ek(f) has been defined in Equation 22.

4 EXPERIMENTAL RESULTS

In this section experimental results with the proposed
BMCR algorithms are shown. We will examine the
performance of our proposed algorithms using two
sets of four distorted observations of the original
scene. Each set of observed images was obtained by
blurring the original scene with Gaussian blurs with
variances 1,2,3,4 and adding Gaussian noise to each
channel so that their Blurred Signal to Noise Ratio
(BSNR) was equal to 40dB and 20dB. Observations
for the 40dB BSNR case are shown in Figure 1.

In order to compare different restorations we
have used Improved Signal to Noise Ratio (ISNR)
as our comparison metric. ISNR is defined as
10log10

(

‖gi − f‖2/‖fk− f‖2
)

.

(a) Channel 1. (b) Channel 2.

(c) Channel 3. (d) Channel 4.

Figure 1: Multi-channel observations (BSNR=40dB).

In order to obtain an upper bound for our blind
multi-channel restoration results, we performed non
blind multi-channel restoration. This restoration re-
sults from settingαbl,i = λ2 = 0 in Equation 15.
The non blind multi-channel based restoration for the
BSNR=40dB observation set is shown in Figure 2 and
the corresponding ISNR values in dB are shown in Ta-
ble 1.

Figure 2: Non blind multi-channel restoration (BSNR =
40dB).

Table 1: Non blind restoration ISNR values in dB.

Channel No. BSNR = 40dB BSNR = 20dB
1 9.27 5.08
2 9.17 5.02
3 9.35 5.11
4 9.55 5.32

In order to better understand and to quantify the
information provided by each prior and observation
model we normalized the parameters so that p1+p2+
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p3+p4 = 1, where p1 = αim, p2 = λ2εbl, p3 = ∑i αbl,i
and p4 = ∑i λ1βi .

We proceeded by setting p2 equal to zero and by
adjusting p1 and p3 to maximize the ISNR of the
restoration. Once p1 and p3 were determined, the val-
ues of p2 and p4 were varied to determine the signif-
icance of the observation models used in the restora-
tion process.

Tables 2 and 3 show that the ISNR of the restora-
tion obtained by combining the noise and subspace
observation models is greater than the one obtained
by using only the noise observation model. For
the BSNR=40dB set, the improvement on average is
0.66dB and 1.17dB depending on whether we use non
degenerate or degenerate distributions to approximate
the image posterior distribution. This table also shows
that the approximation of the global posterior distri-
bution by a combination of degenerate distribution for
the blur and non degenerate distribution for the image
outperforms the model where both are degenerate.

It is important to understand what is the value that
multiple observations of the same scene bring to the
blind restoration problem. In order to answer this
question we performed blind single channel restora-
tion on the least blurred channel. Tables 4 and 5 show
the corresponding blind single-channel restoration re-
sults. It can be observed that our blind multi-channel
based restoration with optimal random distribution
q(f) outperforms blind-single channel restoration as
well. However, this is not the case for the blind multi-
channel restoration based on the degenerate random
distribution q(f).

It can also be observed that our best blind-multi
channel based restoration for the BSNR=40dB set is
approximately 2.4dB below its upper bound from Ta-
ble 1. The blind multi-channel based restoration with
optimal random distribution q(f) for the BSNR=40dB
observation set is shown in Figure 3.

Figure 3: Blind multi-channel restoration (BSNR = 40dB)
with optimal random distribution q(f).

Table 2: Blind multi channel restoration for the
BSNR=40dB with optimal random distribution q(f).

(p1,p2,p3,p4) ISNR [dB]
(1e-4,0,0.12,0.8799) Ch. 1: 6.22

Ch. 2: 6.12
Ch. 3: 6.30
Ch. 4: 6.51

(1e-4,0.5,0.12,0.3799) Ch. 1: 6.88
Ch. 2: 6.78
Ch. 3: 6.96
Ch. 4: 7.16

Table 3: Blind multi channel restoration for the
BSNR=40dB with degenerate random distribution q(f).

(p1,p2,p3,p4) ISNR [dB]
(1e-4,0,0.12,0.8799) Ch. 1: 3.18

Ch. 2: 3.08
Ch. 3: 3.26
Ch. 4: 3.46

(1e-4,0.1,0.12,0.7799) Ch. 1: 4.35
Ch. 2: 4.25
Ch. 3: 4.43
Ch. 4: 4.63

Table 4: Blind single channel restoration for the
BSNR=40dB with optimal random distribution q(f).

(p1,p2,p3,p4) ISNR [dB]
(1e-4,0,0.12,0.8799) Ch. 1: 5.98

Table 5: Blind single channel restoration for the
BSNR=40dB with degenerate random distribution q(f).

(p1,p2,p3,p4) ISNR [dB]
(1e-4,0,0.12,0.8799) Ch. 1: 4.51

5 CONCLUSIONS

In this paper we examined the use of the logarithmic
opinion pooling to statistically combine two observa-
tion models that are regularly used in the multichan-
nel image restoration algorithms. In order to pro-
vide an estimate of the posterior distributions of the
real underlying image and the unknown blurs vari-
ational techniques were used. Variational approxi-
mations lead to two different iterative blind multi-
channel based restoration algorithms. Both of these
algorithms are incorporating some prior assumptions
(e.g. SAR models on unknown image and blurs)
about the unknowns into the restoration process. Ad-
ditionally, both algorithms are incorporating two ob-
servations models into the restoration process, which
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allows us to further constraint unknown blurs in par-
ticular. As can be seen from the experimental section
both multi-channel based restoration algorithms per-
formed better when logarithmic opinion pooling tech-
nique was used to statistically combine observation
models into the restoration process.
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