
GENERIC BUSINESS MODELLING FRAMEWORK

Christopher John Hogger and Min Li
Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

Keywords: Business models, business processes, enterprise management, requirements, constraint evaluation.

Abstract: We present a position paper setting out the essentials of a new declarative framework named GBMF
intended for modelling the higher-level aspects of business. It is based upon logic programming including,
where appropriate, finite-domain constraints. Business plans, processes, entity constraints, assets and
business rules are representable in GBMF using an economical repertoire of primitive constructs and
without requiring overly-burdensome programming effort. The framework, which has been fully
implemented, has been applied so far to small-scale business exemplars. Our more general future aim,
however, will be to demonstrate the framework's generic character by providing precise semantic mappings
between it and other business modelling frameworks that rely upon specialized languages and engines.

1 INTRODUCTION

The modelling of businesses, their methods and their
processes has been pursued within many
frameworks and perspectives. Our work aims to
establish a generic framework serving as an abstract,
but implementable, representation of core features of
the more concrete and established frameworks now
existing, and so provide a common semantic basis
facilitating their comparison and inter-translation.

Our generic business modelling framework,
GBMF, is built upon the general notion of activities
operating upon entities. The latter may be variously
physical (manufacturing parts, resources), electronic
(databases, emails, websites), financial (accounts,
budgets), human or any typical business entities.
Activities performed upon them are composed from
atomic basic actions organized into action sets,
which are in turn organized into larger programmatic
hierarchies called business plans. A plan might
embody the actions entailed in a production process
from inception to delivery, with attendant impacts
upon financial and temporal aspects of the business.
Such a plan may be applied on multiple occasions,
possible concurrently. GBMF therefore treats a plan
as a template capable of spawning distinct instances
called processes, each acting upon its own vector of
business entities. The instigations and progressions
of processes are governed by business process rules,
whilst the internal relationships between their
entities are governed by the underlying procedures

that define the basic actions and, (if required) by
separately given business entity constraints. Many
entities in a process will have a transient existence,
being only intermediates for creating the eventual
deliverables of that process. When the process
terminates, these intermediates have no further
significance and are discarded. Those entities to
which this does not apply are the deliverables that
must survive, referred to as business assets. Thus the
macroscopic behaviour of an executing GBMF
instance is the transformation of an asset space, as
various processes are spawned, possibly exploiting
pre-existing assets and, usually, creating new assets.

Sections 2 , 3 and 4 introduce plans, processes
and business entity constraints, respectively. The
notion of assets is introduced in Section 5, and
business process rules in Section 6. Related work is
compared with GBMF in Section 7 whilst Section 8
states conclusions and future intentions.

2 GBMF PLANS

GBMF represents each basic action as a term of the
form Action-name(Ontvars) in which Ontvars is a
vector of ontological variables each representing an
entity. By convention, the last argument in this
vector always represents the time interval over
which the action is performed. Each basic action A
appears within an action declaration whose simplest

422
John Hogger C. and Li M. (2007).
GENERIC BUSINESS MODELLING FRAMEWORK.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 422-427
DOI: 10.5220/0002407704220427
Copyright c© SciTePress

form is action(S, I, A) where S names an action set
and I is a position index for A within S.

Figure 1: The ‘dohire’ action set.

Figure 1 shows action declarations, indexed 1-4,
expressing an entire action set named ‘dohire’. The
general syntax of an action declaration is

action(S, I, X).
or action(S, I, C, X)
or action(S, I, C, X1, X2)

in which each of X, X1, X2 is a basic action or an
action set name and C is a predicate, over one or
more ontological variables, expressing a condition or
a decision. The first form above appears throughout
in Figure 1, but at index 3 expresses that another
action set, ‘recordexpense’, is to be performed
unconditionally. The second form expresses that if C
holds then X is performed, whilst the third form
expresses that if C holds then X1 is performed but
otherwise X2 is. Neither of these conditional forms
is needed in ‘dohire’. The ‘dohire’ action set is
implemented as the activity of satisfying a customer
request (to hire a tool) by finding such a tool already
in stock and thereby entering a hiring agreement,
then looking up the administrative expense to the
business of doing all this, then recording the expense
(charging it to an account) and finally making the
hiring ‘public’ in the sense of making it available as
an asset for other processes to operate upon.

The names of action sets are chosen freely by the
user (modeller). The names (e.g. ‘hire’ above) of
basic actions are either freely user-defined or belong
to a small set of system-defined names (e.g.
‘publish’ above) having fixed meanings in the
framework.

The ability of one action set to invoke others,
conditionally or otherwise, inherently organizes a
complete GBMF model into a set of plans. A plan
comprises a root action set - characterized by being
invokable by no other - together with all those other
action sets that it may invoke directly or (through
those others) indirectly. This allows an action set to
belong to more than one plan, if required, to
economize on the use of common knowledge.

A plan P has an associated ontology ont(P)
which contains the alphanumeric arguments in the

user-defined basic actions in P. It also contains the
arguments of system-defined basic actions in P that
are known - from a separate framework dictionary -
to be ontological variables. In the ‘publish’ action,
for example, it is known that only its first and third
arguments are of this kind So, if P uses the ‘dohire’
action set then, from Figure 1, ont(P) must include at
least {request, tool, hiring, expense, t4, t5, t6}. The
names of ontological variables are chosen freely.

Each action set has an associated control
declaration which is either of the assertions
control(seq) or control(con). This specifies whether
the basic actions in the set are to be performed
sequentially or concurrently. The former case uses
the action declarations’ indices to determine the
temporal order, whilst the latter case ignores them.

3 GBMF PROCESSES

A GBMF process is an executing instance of a plan.
At any time in the animation of a model there may
exist zero or more active instances of each plan, at
various stages in their executions. The factors
governing process initiation, progression and
termination will be outlined in the next section.

A process is denoted Pi where P is a plan and i is
a unique instance identifier. Pi has its own binding
environment β(Pi) containing a pair (V, Val) for
each V∈ont(P) signifying that V is bound to the
value Val. When Pi is initiated, β(Pi) consists of null
bindings, i.e. Pi’s variables are uninstantiated.

As Pi executes, its variables become instantiated
by various ways - clock-binding, action performance
and constraint evaluation. Clock-binding instantiates
the start (s) or the end (e) in the time-interval value
(s, e) of the temporal variable in a basic action A
when A is about to be performed or has just been
performed. It instantiates s or e with the current time
as given by the clock in the model’s execution
manager. Performing A entails consulting an Action
Knowledge Base (AKB) containing, for each basic
action type, an associated procedure. If A is user-
defined then its procedure will have been supplied in
the AKB by the modeller. The primary effect of
executing the procedure is to update β(Pi). A
secondary effect, relating to asset management, will
be described presently, as will constraint evaluation.

Figure 2 shows the items described so far in a
run of a given model. On the left are static resources
including the plans - defined entirely by action
declarations and control declarations - and the AKB.
To the right is the dynamic component consisting of

action(dohire, 1, hire(request, tool, hiring, t4)).
action(dohire, 2, hireadmincost(expense, t5)).
action(dohire, 3, recordexpense).
action(dohire, 4, publish(hiring, nc, t6)).

GENERIC BUSINESS MODELLING FRAMEWORK

423

a pool of active (unterminated) processes, their
binding environments β and their activation records
α representing their states of progress.

Figure 2: Active process pool.

4 ENTITY CONSTRAINTS

Business entity constraints in GBMF are required
relations over ontological variables. A constraint
declaration takes the form constraint(C) where C is
some predicate having a supporting constraint
definition capable of evaluating it - for example:

constraint(hiring_span(t4, t6)).
hiring_span((S, _), (_, E)) if (E - S) < 6.

Referring to the example in Figure 1, this constraint
requires the total duration of the activity entailed in
the ‘dohire’ action set to be less than 6 time units. In
the operating model, this constraint applies to every
process that potentially binds (incarnations of) t4
and t6. In the tool-hire model these two variables
jointly occur in a single plan, ‘toolhire’ but, more
generally, constraints may be imposed on processes
spawned from different plans. For example, the
constraint con25 in the declaration

constraint(con25(v3/plan4, v5/plan1)).

constrains the relation between v3 in ont(plan4) and
v5 in ont(plan1) and is applied to every process pair
(πi, πj) such that πi and πj are instances of plan4 and
plan1, respectively.

In the running model, constraints are evaluated
by a separate constraint manager acting in concert
with the execution manager responsible for
spawning and advancing processes. In the current
implementation of GBMF they are tested each time
an action is performed. More generally, however,
constraints may be tested at any time. Their
definitions may if required, be FD-constraint logic

programs which effectively bind selected variables
to finite domains of feasible values. The domains
become successively narrowed by the various effects
of clock-binding and/or action-performance, and for
as long as these domains remain non-empty the
constraints remain satisfiable. Constraints of this
kind can be evaluated even prior to such events,
enabling forward planning in respect of such things
as resource allocation, budgeting and scheduling.

Currently, the satisfiability of constraints is not
enforced in GBMF - instead, the implementation just
reports constraint violation if and when it occurs.
However, constraints can facilitate collaboration
between the various agents within a business. In a
simpler model (Hogger, 2004) precursive to GBMF,
plans and constraints are fluidly associated with
agent roles and can be consistency-tested at role-
formation time. If constraints become subsequently
violated as concrete plan instances proceed, failure
analysis can identify the agents responsible, who can
then confer upon appropriate remedies such as
constraint revision. In due course we hope to add
these features to GBMF and further combine them
with collaborative treatment of the model’s business
process rules, discussed in Section 6.

5 ASSETS

By default, the termination of a process would leave
no trace of its prior existence, since its bindings are
then automatically garbage-collected. Instances of
relations between its ontological variables would
have been constructed or verified by the effects of
actions and constraints, but would not survive to the
lasting benefit of the modelled business as a whole.

In order to enable processes to manipulate
business entities of greater permanency, GBMF
allows the modeller to declare, for any basic action
type, that some of its arguments denote durative
assets. Concretely, such an asset is a value Val - in
general a compound structure conforming to a
schema declared in the AKB for a particular asset
type - tagged with a unique identifier, a type, a status
and an origin. When it comes to exist, during the
running of the model, it will do so within an asset
space that is adjoint to the process pool. The status
of the asset, at any instant, is either public, i.e. it is
available for use by any process, or is owned, i.e. it
belongs (at this moment) to a particular process. Its
origin identifies the process πo from which it
originated together with the name of the variable V
that became bound to Val by executing πo and the

plans

P1
P7

Q3

P
Q
:

AKB

β(P1) α(P1)

β(P7) α(P7)

β(Q3) α(Q3)

processes bindings

ICEIS 2007 - International Conference on Enterprise Information Systems

424

time interval of the particular action in πo that
created the asset. Equivalently, the asset can be seen
as a tagged copy of the binding (V, Val) that was
constructed in the environment β(πo). Assets may
serve many purposes relating to process inter-
dependence, including message-passing.

Figure 3 shows an asset created in a run of a
tool-hire business model, of which the action set in
Figure 1 is a small fragment. This asset, of type
‘administration:toolcatalogue’, is a list of tooltypes.
Its originating process was an instance ‘270’ of a
‘stock’ plan which, in the interval from s=303 to
e=304, performed an action that bound the variable
‘updatedinventory’ to this list. Since then, the asset
has passed to the ownership of another process,
namely instance ‘327’ of a ‘toolhire’ plan.

Figure 3: Concrete asset.

Each process π has an associated asset register,
denoted areg(π) and initially empty, which records
the assets currently owned by π. Each entry is a pair
(id, V) where id is the asset’s unique (and invariant)
identifier and V is a variable in π’s ontology.

Besides the action-defining procedures, the AKB
contains asset declarations specifying any asset-
handling entailed in each action type. For some basic
action A, such declarations may express that some of
A’s variables variously denote pre-assets, post-
assets or consumed-assets. However, not all actions
need involve handling assets.

When a process π starts to perform A, π is
expected to own an asset for each of A’s pre-asset
variables. One way this can arise is by π having
already performed system-defined actions available
for acquiring or copying public assets. However, if a
pre-asset variable V in A is not already associated
with a π-owned asset then the asset space is searched
for a public one whose type matches the schema for

V given in the AKB and whose value is compatible
with the binding of V in β(π). If one is found then a
copy of it is assigned to π’s ownership and is duly
associated with V in areg(π), otherwise A suspends
until an appropriate asset becomes available.

When a process π is about to finish performing
A, the values to which A’s post-asset variables (if
any) are bound in β(π) are used to construct new
assets belonging to π and the associations of these
assets with these variables are recorded in areg(π).

Further, when a process π finishes performing A,
the assets with which A’s consumed-asset variables
(if any) are associated in areg(π) are deleted from
the asset space and from areg(π) itself.

For example, the tool-hire model’s AKB contains
these asset declarations for the ‘hire’ action type:

pre_assets(hire(Request, Tool, _, _), [Request, Tool]).
post_assets(hire(_, _, Hiring, _), [Hiring]).
consumed_assets(hire(Request, Tool, _, _),

 [Request, Tool]).

They require that when a ‘hire’ action begins it must
have pre-assets associated with variables Request
and Tool, and when the action ends it must convert
its value for Hiring to a post-asset and moreover
consume (delete) the assets associated with Request
and Tool. The latter is just a nuance allowing one to
exercise fine control over asset lifetimes. It is not
essential because, when a process π terminates,
assets that it owns are in any case garbage-collected.

This last remark implies that if any of π’s assets
are required to survive π’s termination then π must
beforehand make them public. To do so it can
perform a system-defined basic action ‘publish’.
This is seen in Figure 1 where the asset associated
with Hiring is made public. When a complete run of
the model terminates, what survives is just the set of
public assets still remaining in the asset space. These
are the only observable deliverables of the business.

6 BUSINESS PROCESS RULES

The plans and the AKB’s asset declarations in a
model induce a directed plan-asset dependency
graph whose nodes are the model’s plan names.
Each edge directed from P to Q is labeled by the set
of those variables in ont(P) that P potentially
delivers as assets to Q. Although these dependences
are logical consequences of the model and can be
mechanically compiled from it, it serves the
modeller’s interest to assert them explicitly in a

[stepladder, ladder, carjack, mower, ..., powerdrill]

332

administration : toolcatalogue

toolhire 327

(stock 270,
 updatedinventory,
 (303, 304))

id
owner

type origin

GENERIC BUSINESS MODELLING FRAMEWORK

425

separate component of the model called the Business
Process Rulebase (BPR). This is because they
contribute to the formulation of business process
rules regulating process creation and behaviour,
though not all such rules refer to asset handling.

Figure 4 outlines a small fraction of the graph for
the tool-hire business model.

Figure 4: Plan-asset dependency graph.

Thus we see that a ‘toolhire’ process expects, at the
least, to be served by a tool asset from a ‘stock’
process and a request asset from a (customer’s)
‘toolrequest’ process, and to deliver a hiring asset or
a reservation asset to yet other processes.

In the BPR each edge of the graph is declared by
an assertion of the form

plan_asset_dep(P, Assetvars, Q).

e.g. plan_asset_dep(stock, [tool], toolhire).

Business process rules in the BPR may or may not
exploit plan-asset dependences. Examples are:

 initiate_process(Q) if Q \= setup,
 plan_asset_dep(P, Assetvars, Q),
 member(V, Assetvars),
 asset_space_has(V), origin(V, P), status(V, public),
 not_engaged(Q, V).
 initiate_process(setup) if asset_space_lacks(inventory).

These declare that a process for any plan Q, other
than one for ‘setup’, be initiated if the asset space
contains a public asset originating from a variable V
in ont(P), provided V contributes to the dependence
of Q upon P and provided no other process for Q is
already engaged to make use of that asset. On the
other hand, a process for ‘setup’ - of which only one
will ever be executed - should be initiated if no

inventory (which it is the exclusive duty of ‘setup’ to
create) has yet appeared in the asset space.

More generally, the BPR’s business process rules
can express any requirements about the behaviour of
the process pool if these are expressible as logical
conditions over existing processes, their associated
binding environments or activation records or the
contents of the asset space. They are consulted by
the model’s execution manager to drive the model
forwards and to ensure that each process is spawned
to serve a declared purpose and that its subsequent
behaviour satisfies any declared conditions.

7 RELATED WORK

Many recommendations exist as to the macroscopic
concepts that need to be considered in business
modelling. For (Fox, 1998) these concepts need to
be based fundamentally on well-defined ontologies.
For (Hamel, 2000) they include strategic resources,
cost interfaces and value networks, for (Alt, 2001)
they include mission, processes and revenues, whilst
for (Affua, 2003) they include dynamics, taxonomy
and value. There are clearly intersections and
exclusions among these concept sets, but
ascertaining this precisely is difficult since not all of
them are given sufficiently formal anchorage.

Existing business models vary from the most
abstract, e.g. very general axiomatizations, to mid-
level ones exposing more detailed commitments to
representation, logic and behaviour, down to
concrete, context-specific implementations. GBMF
lies in the middle level. The latter has been broadly
characterized by (Chen-Burger, 2002) as expressing
conditions and actions of business processes,
relationships between them and constraints on the
data they deal with. Other concept-focused
examplars here include ENTERPRISE (Uschold,
1998) and e3value (Gordijn, 2003), the latter being
compared in detail by (Gordijn, 2005) with BMO
(Business Modelling Ontology) (Osterwalder, 2005).

Instances of BMO, implemented in XML and
OWL, are enterprise-specific representations of,
chiefly, offers, customer interfaces, infrastructure
and - especially - the logic entailed in earning
revenue. Unlike GBMF models, concrete instances
of BMO do not operate under the control of an
executable enterprise-independent superstructure.

Besides those frameworks that constrain the
structure of business models, there are many others
intended for facilitating their design and
implementation. Early exemplars include the BSDM
Business System Development Method (IBM, 1992),

setup

stock

toolrequest

satreserv

toolhire

{ inventory,
 hirecharges }

{ request }

{ tool }

{ reservation }

{ hiring, ... }

ICEIS 2007 - International Conference on Enterprise Information Systems

426

the Ordit organisational modelling method (Dobson,
1994) and the business process modelling methods
IDEF0 (NIST, 1993) and PSL (Schlenoff, 1997).
The one most similar to, but more mature than,
GBMF is the Fundamental Business Process
Modelling Language FBPML (Chen-Burger, 2002 &
2004; Kuo, 2003), a sophisticated amalgamation and
extension of features drawn from PSL and IDEF3.
FBPML is declarative, using logic to describe
features of, and relations over, business processes. It
further includes tools for developing, testing and
analysing models, and also an engine for eliciting
workflow animations from them.

Though sharing similarities with GBMF’s basic
representations of actions, preconditions, entities and
of process logic and behaviour, FBPML is a special-
purpose language requiring its own custom-built
engines and tools, whereas GBMF models are
written directly in the general-purpose Prolog
language and so freely inherit all the representational
and executional power of that formalism, besides the
standardized and well-understood stable model
semantics of normal-clause logic. An additional and
significant difference is that GBMF can, as we have
indicated earlier, exploit the expressiveness and
computational power of finite-domain constraints.

8 CONCLUSIONS

We have outlined a declarative, context-independent
and implementable framework for modelling aspects
of business. Formulating this in logic programming
gives the benefits of general-purpose expressiveness
and well-understood execution regimes, so avoiding
the need for a special-purpose engine supporting a
specialized modelling language. Process plans,
constraints and asset management are expressible
transparently using a small range of basic constructs.
Our main aim is to exploit the well-understood
semantics of logic programs in a future programme
of work intended to map other frameworks such as
FBPML to GBMF and thus to establish the generic
nature of the latter and to facilitate inter-framework
comparison and translation as explored in, for
example, the work of (Chen-Burger, 2001).

REFERENCES

Afuah, A., Tucci, C.L., 2003. Internet business models
and strategies. McGraw Hill. Boston.

Alt, R., Zimmermann, H., 2001. Business models. In EM-
Electronic Markets 11(1).

Chen-Burger, Y-H., 2001. Knowledge sharing and
inconsistency checking on multiple enterprise models.
In IJCAI’01, 17th International Joint Conference on
Artificial Intelligence, Workshop on Knowledge
Management and Organizational Memories.

Chen-Burger, Y-H., Tate, A., Robertson, D., 2002.
Enterprise Modelling: A declarative approach for
FBPML. In European Conference on Artificial
Intelligence: Workshop on Knowledge Management
and Organizational Memories.

Chen-Burger, Y-H., Robertson, D., 2004. Automating
business modelling. Book Series of Advanced
Information and Knowledge Processing, Springer
Verlag. Berlin.

Dobson, J.E., Blyth, A.J.C., Chudge, J., Strens, M.R.,
1994. The ORDIT approach to organizational
requirements. In Requirements Engineering: Social
and Technical Issues. Academic Press. London.

Fox, M.S., Gruninger, M., 1998. Enterprise modeling. In
AI Magazine 19(3).

Gordijn, J., Akkermans, H., 2003. Value-based
requirements engineering: exploring innovative e-
commerce ideas. In Requirements Engineering 8(2).

Gordijn, J., Osterwalder, A., Pigneur, Y., 2005.
Comparing two business model ontologies for
designing e-business models and value constellations.
In 18th Bled e-Conference on e-Integration in Action.

Hamel, G., 2000. Leading the revolution. Harvard
Business School Press. Boston.

Hogger, C.J., Kriwaczek, F.R., 2004. Constraint-guided
enterprise portals. In ICEIS-2004, 6th International
Conference on Enterprise Information Systems.

IBM, UK, 1992. Business System Development Method:
Business Mapping Part 1: Entities, 2nd edition.

Kuo, H-L., Chen-Burger, Y-H., Robertson, D., 2003.
Knowledge management using business process
modeling and workflow techniques. In IJCAI’03, 18th
International Joint Conference on Artificial
Intelligence, Workshop on Knowledge Management
and Organizational Memories.

NIST - National Institute of Standards and Technology,
1993. Integration Definition for Function Modelling
(IDEF0). NIST. Gaithersburg.

Osterwalder, A., Pigneur, Y., Tucci, C.L., 2005. Clarifying
business models: origins, present, and future of the
concept. In Communications of the Association for
Information Systems, 16.

Schlenoff, C., Knutilla, A., Ray, S., 1997. In Proceedings
of the Process Specification Language (PSL)
Roundtable. NIST. Gaithersburg.

Uschold, M., King, M, Moralee, S., Yannis Zorgios, Y.,
1998. The enterprise ontology, In Knowledge
Engineering Review, 13.

GENERIC BUSINESS MODELLING FRAMEWORK

427

