
Model for Grid Service Instance Migration

Dhaval Shah and Sanjay Chaudhary

Dhirubhai Ambani Institute of Information and
Communication Technology, Gandhinagar, 382009, India

Abstract. Grid computing, emerging as a new paradigm for next-generation
computing, enables the sharing, selection, and aggregation of distributed re-
sources for solving large-scale problems in science, engineering, and com-
merce. The resources in the Grid are heterogeneous and geographically distrib-
uted. The resources in the Grid are dynamic in nature. Resource owners are at
discretion to submit/donate the resources in to the Grid environment. The term
Web services describes a standardized way of integrating Web-based applica-
tions using the XML, SOAP, WSDL and UDDI open standards over an Internet
protocol backbone [8]. Grid Services is an extension of Web Services in a Grid
environment having statefulness as a key feature. State of any Grid Services is
exposed with the help of Service Data Elements. Grid Services may fail during
its life cycle due to failure of a resource or a withdrawal of a resource by the re-
source owner. Thus, there is a need to provide a reliable solution in the form of
Grid Service instance migration to protect the work of the users, which was car-
ried out. This paper proposes a model that supports Grid Services instance mi-
gration. Migration of an instance can take place based on the failure of re-
source, increase in load at the resource, change in the policy of the domain in
which resource resides, user specified migration, or migration due to with-
drawal of a resource by the resource owner. It enables the users to specify the
migration if the user does not trust the domain in which instance is running.
The model includes an incremental checkpointing mechanism to facilitate mi-
gration.

1 Need for Grid Service Instance Migration

An important requirement for computational Grids is the provision of non-trivial
qualities of service to be provided to the applications. Since the Grid resources belong
to different administrative domains and are geographically distributed, their availabil-
ity may be very dynamic. Additionally, reliability of such resources is also very diffi-
cult to guarantee [1][2]. The above-mentioned problems are magnified if the applica-
tions are long running as well as distributed. Since resource availability may change
over the execution period of long running applications, an application should be able
to store its state onto stable storage, and migrate to more suitable resources if need
arises. We have identified few issues that are likely to arise in Grid environment.
• Grid is a collection of Virtual Organizations.[1] Each and every VO has its own

policy. Resource owner, i.e. service provider has got complete control over the re-

Shah D. and Chaudhary S. (2007).
Model for Grid Service Instance Migration.
In Proceedings of the 1st International Joint Workshop on Wireless Ubiquitous Computing, pages 96-105
DOI: 10.5220/0002405700960105
Copyright c© SciTePress

sources. If there is a change in policy of the domain where resource resides and if
that policy is not acceptable to the requestor, then requestor should be able to se-
lect another resource in another domain where migration can take place.

• There is a need to provide a mechanism that can enable retrieval of computations
carried out.

• Resources may get some task having higher priority than the task submitted by the
client. So, there is a need to facilitate a rescheduling/migration of a task.

• Migration based on economical factors.
• Avoid loss of work in case of withdrawal of a resource by migration.
All the above-mentioned scenarios require having Grid Service instance migration to
provide better service to the requestor. This paper discusses the model for Grid ser-
vice instance migration, incremental checkpoint approach, RAID approach, model for
parallel job support and algorithms for total and partial migration.

2 Scenario to Make a Request for a Grid Service

Requestor searches the registry to find a service providing particular functionality.
Registry returns the list of all the factories capable of creating an instance of a Grid
Service. Requestors have to specify the requirements in the standard form such as
RSL. We propose to use XML file that is very similar to RSL [3][4].

2.1 XML like File Resembling RSL

Each node would have registered with the domain registry by supplying characteris-
tics file. Client contacts the central registry and obtains the handle of the factory
where it submits the job. The client provides information about the name of the ser-
vice, required resource specifications, and its policy. The requestor searches the cen-
tral registry for a specified functionality. A sample file for specifying details about
requirements is shown in Listing 1. Requestor specifies the required properties such
as processing power required, hard disk space required etc., time period for which
resource/service is required, resource type required, service required etc.
<Required_properties>
<ProcessingSpeed>1.8</ProcessingSpeed>
<Deadline> 1200</Deadline>
<HardDiskSpace>40</HardDiskSpace>
</Required_properties>

Listing 1. Sample XML like file for specifying the requirements.

2.2 Registry

Registry does the matchmaking after parsing the XML file submitted by requestor
and then it returns URI(s) of all the factories providing specified functionality [4]. We
propose to modify the registry to provide some more features to users such as, though

97

not limited to, such as reliability, economic details i.e. payment required to be made
to
a particular service, location details for a factory, bandwidth required to access the
service etc., to help requestors in the selection of the appropriate factory from the list
of many factories.
We propose that registry should have a matchmaking module that will do the match-
ing process based on some criteria. The requestor can specify search criteria.
Reliability for a factory can be determined from the past experience with that factory.
Once a requestor obtains URI(s) of factories, along with some of the criteria informa-
tion to enable user to take some decision regarding the selection of a factory, re-
questor
can select an appropriate factory. The one most important criterion for the selection of
an appropriate factory can be economic policies adopted by factories. Users would
like to select a factory providing the economical solution without compromising the
reliability or quality of service.

2.3 Selection of a Location for Creation of an Instance

Requestor sends a createService request after selecting an appropriate factory. We
prefer the use of following approach for the location of instance creation as in dy-
namic environment such as Grid acceptable policies to the user could not be obtained
in advance and availability of resources could not be predicted.

Factory returns the addresses of the hosting environment capable of creating an in-
stance to the requestor and also information regarding the policy relationship to the
requestor. Having received information, requestor can select a location where he
would like to create an instance.

2.4 Need for Negotiator Module

To justify the selection of the second approach, we propose to have a module, named
negotiator, which will be working in conjunction with the factory module. It is a
module that stores policy documents of different domains. It will do the matchmaking
to decide the compatibility between two domains. Upon receiving a request for the
creation of an instance, negotiator module does the matchmaking and returns the
addresses of only those domains whose policy is acceptable to the requestor. Policies
of all the domains are available with the negotiator module.

Policy File for the Domain. The policy file that is to be submitted to the negotiator
module by each domain will be an XML file. Listing 2 discusses the sample XML
like policy file (actual file may require some more parameters) specifying the
requirements, preferences etc.

<policyfile>
<security>
All the messages have to be encrypted

98

</security>
<AllowedUser>
All the users from da-iict domain should be allowed.
</AllowedUser>
</policyfile>

Listing 2. A sample policy file for the domain.

A negotiator module converts all the policy files into a standard normal file, so that
merging of two policy files or intersection (matchmaking) can be done effectively. If
there is a change in a policy of the domain then that domain sends a modified policy
file to the negotiator and negotiator does the matchmaking with the changed policy
file. It checks for the violation of agreement and informs the requestor regarding it.
The negotiator module works in conjunction with the factory to find out a list of all
active instances, do matchmaking, and inform users regarding policy violation if any.

3 Schemes for Grid Service Instance Migration

There are two schemes for Grid Service instance migration.
1. User initiated migration
2. System initiated migration.

User initiated migration is intended to give requestors more control over their
data/task. Requestor or system decides to migrate an instance depending on the need.

3.1 Methods for Finding the Location for Migration

After taking a decision regarding the migration, there is a need to find out an appro-
priate location for migrating an instance. The policy of the domain where migration
can take place has to match the policy of the requestor domain.
There are two approaches in which the location for the migrated instance can be
found out.
� Requestor submits the list of factories where migration can take place at the time

of sending createService request. When factory decides to migrate an instance;
factorycan find out the locations where migration can take place from the list sup-
plied by the user.

� In this approach, factory multicasts a request to all the nearby factories. Factories
will receive a request and will send back a reply if they are capable of serving the
request or willing to serve the factory’s request. Here, nearby factories meaning
that a request will traverse to specified number of hops and not more than that.
This constraint is needed to reduce the network traffic. All the nearby factories are
as summed to be reachable by a particular factory and multicast messages by a
particular factory would be received by the listeners existing at factories.

99

3.2 Checkpointing Mechanism

In a failure prone scenario, an ability to checkpoint applications and restart them from
a particular checkpoint upon failure of Grid resources is desirable. Additionally,
checkpointing can also be used for dynamic resource scheduling, e.g. if a high prior-
ity task needs to preempt a long running lower priority one, the lower priority task
can be checkpointed and restarted later when the higher priority application has fin-
ished executing [5]. In our model we have proposed to use a special case of a distrib-
uted checkpointing mechanism. We have avoided the use of centralized checkpoint-
ing mechanism as it may lead to single point of failure. A service provider providing
a service; is responsible for checkpointing the job so that in the case of a migration or
failure, task can be rescheduled at some other location. There is another approach for
deciding about the timing intervals for uploading a checkpoint image. Notification
approach specified by OGSI can be used here. The format for the checkpoint should
be standardized. A checkpoint file may contain name of a service, location of a ser-
vice, node identifier for the service, SDE values and jump levels.

Comparison between RAID and Incremental Checkpoint Approach. There are
two approaches for uploading checkpoint images to the server. Table 1 shows the
comparison between both the approaches: RAID checkpoint approach and Incre-
mental Checkpoint Approach.

Table 1. Comparison between RAID and Incremental checkpoint approach.

Sr.
No

RAID checkpoint approach Incremental checkpoint approach

1 Application provider knows about
checkpoint server address and
uploads an image to that server
only. That server will take back
ups.

Application knows addresses of all
the checkpoint servers. It will upload
first checkpoint to 1st server, 2nd to
second server and so on.

2 The checkpoint server should take
regular backups. It is not always
preferable to modify server func-
tionality to take backup.

This approach does not require modi-
fying server but applications have to
be modified to achieve incremental
checkpoint facility.

3. The latest copy of the checkpoint is
always retrieved in case of a fail-
ure.

The work carried out between two
checkpoints is lost. If 2nd server fails
than retrieval must be made from 1st
server.

4. It requires a much more storage
space, to store the previous check-
point images for some time.

This approach saves storage space, if
there is a need to store previous
checkpoint images for some time.

100

3.3 Pseudo Code for the Instance Migration Scenario

Listing 3 mentions the pseudo code for the instance migration scenario to show that
all the domains must supply a policy file to the negotiator module. If a node fails then
checkpoint can be used to restart the task. The migration can be carried out if nodes
are heavily loaded or policy of the domain is not acceptable to the requestor.

Listing 3. Pseudo code for instance migration scenario.

4 Model for Instance Migration for Parallel Independent Tasks

An application may be divided into multiple subtasks to reduce the execution time
[6]. It is assumed that application has inherent parallelism and it is possible to divide
the task into multiple independent and parallel subtasks. In that case, there is a need
for synchronization between different subtasks of the main task. A coordinator mod-
ule can be used which does the job of dividing a task into number of sub jobs inde-
pendent of each other and it is responsible for synchronizing the different sub tasks.

When the application is submitted, the first process that starts is the coordinator.
Requestor can supply a file quite similar to deployment descriptor to inform coordina-
tor details regarding how to divide task into subtasks. According to the file details, it
divides the task into number of subtasks. It then spawns them on the nodes and in-
structs them to start execution.

During the task runtime, migration mechanism is inactive, i.e. coordinator need not
stay alive throughout the execution of subtasks, since subtasks themselves do not
need any of the functionality provided by the coordinator. Migration is inactive mean-
ing that coordinator is passivated by storing all the information to a stable storage.
Migration is activated when a subtask is about to be killed or failure has happened.
Coordinator takes the checkpoint on receiving a signal or it may be a periodic check-
pointing employed by the application. After the actual migration, the migrated tasks
first execute post-checkpoint instructions before resuming the real user code. When
all the checkpointed and migrated tasks are ready to run, coordinator allows them to
continue their execution. On the event of a failure of a resource running the subtask, a
need arises to find out the resource having the similar capability.

101

4.1 Application Level Migration by a Global Coordinator

It may happen that the resources may not be available in the same domain to replace
failed/overloaded nodes or resources. In this scenario, there are two approaches:
1. Migrate only partial part to some other domain. This case has the disadvantage of

making application migration aware. A negotiator module can be consulted to find
out the domain where migration of a partial job can be done. There has to be syn-
chronization between the migrated partial task and the coordinator who is the ac-
tual controller for the job.

2. In this approach, migration of the whole application can be done on the resources
in the other domain. This approach is required if user does not want to indulge in
the complexities of managing parts of the job in more than one domain. This type
of migration is called a total migration.
In order to migrate the whole application, there is a need for a global coordinator

that can facilitate migration of whole application in some other domain. Global coor-
dinator will be responsible for taking decision regarding the kind of migration, i.e.
partial migration or total migration. The other requirement is that the checkpoint
server should be able to checkpoint itself in case of a total migration to facilitate the
rescheduling of a whole application at some other location. [7]

4.2 Proposed Algorithm for Instance Migration for Parallel Independent
Tasks

The algorithms for instance migration for parallel tasks are discussed here.

4.2.1 Checkpointing Algorithm for Partial Migration
1. A requestor initiates the checkpointing process by calling Init_checkpoint on the

factory/coordinator, if coordinator is the receiving part.
2. The Coordinator obtains the taskId of the subtask to be checkpointed.
3. The Coordinator sends a take_checkpoint request to the appropriate taskId.
4. On receipt of the take_checkpoint request. Task stores the checkpoint and it sends

checkpoint taken message to the coordinator.
5. Checkpoint server stores the checkpoint on the stable storage.
6. Checkpoint method for partial migration is over and control is returned back.

4.2.2 Checkpointing Algorithm for Total Migration
1. A requestor initiates the checkpointing process by calling Initi_checkpoint on the

factory/coordinator, if coordinator is the receiving part.
2. The coordinator retrieves the taskIds for all subtasks part of the application.
3. For every subtask that is part of the application, the coordinator sends a

take_checkpoint request to the appropriate taskId.
4. On receipt of the take_checkpoint request. Task stores the checkpoint and sends

chceckpoint taken message to the coordinator.
5. On receiving messages from every subtask that is part of an application, the coor-

dinator can infer that all individual checkpoints have been taken.

102

6. Checkpoint server stores the checkpoint on the stable storage and checkpoints
itself for that task.

7. It should be ensured that this step either completes successfully in its entirety, or
not at all. This is required to avoid a situation where set of checkpoints becomes a
combination of old ones and newer ones.

8. Checkpoint method is now complete and control is returned to the user.

4.2.3 Migration Algorithm for Total Migration
1. A requestor initiated migration of an application by invoking the mi-

grate_application method on coordinator.
2. Coordinator can work in conjunction with the negotiator module and information

service to find out the location for the migration.
3. Requestor sends an approval to migrate an application to a specified location.
4. The coordinator is now ready to migrate the individual tasks. However, before

migration, the said task has to be checkpointed.
5. On receipt of the take_checkpoint request, it takes the checkpoint and sends check-

point taken message to the coordinator.
6. On receiving messages from every subtask, coordinator can infer that all individual

checkpoints have been taken.
7. After storing the task checkpoint, the coordinator destroys the executing instance

on the current resource and re-instantiates it on the target Grid resource using de-
ployment descriptor. It finds the appropriate domain to reschedule the task.

8. Task can be resumed on the target resource.
9. Now, migration method is complete and control is returned to the user.

4.2.4 Migration Algorithm for Partial Migration
1. A requestor initiates migration of an application by invoking the mi-

grate_application method on the coordinator.
2. Coordinator can work in conjunction with the negotiator module and information-

service to find out the location for the migration.
3. Requestor sends an approval to migrate an application to a specified location.
4. The coordinator is now ready to migrate the individual task. However, before mi-

gration, the said task has to be checkpointed.
5. On receipt of the take_checkpoint request, it takes the checkpoint and sends check-

point taken message to the coordinator.
6. After storing the task checkpoints, the coordinator destroys the current executing

instance and re-instantiates it on the target Grid resource.
7. Task can be resumed on the target resource.
8. Now, migration method is complete and control is returned to the user.

5 Related Work

Many distributed systems exists that support check pointing and migration mecha-
nism in a distributed environment (e.g. Condor [5] and Migol [10]). Condor system

103

provides a feature for check pointing the job that has been submitted. By default, a
checkpoint is written to a file on the local disk of the machine where the job was
submitted. A Condor pool can be configured with a checkpoint server that could be
used as a repository for checkpoints. Condor also supports periodic checkpoint fea-
ture to prevent the loss of computation carried out in the event of shutdown or crash.
Though condor system provides check pointing as well as periodic check pointing
feature, incremental checkpoint feature would be useful reducing the space required
for jobs. Condor supports migration of jobs to different condor pool, but the policy
based pool finding is a limitation of a condor system. Migol is also a fault tolerant
service framework for MPI applications but it does not discuss incremental check-
point as well as policy based migration in Grid.

6 Conclusions

Resources in Grid are dynamic as well as probability of a failure increases with the
addition of more number of resources. There is a need to enable requestor to retrieve
the work carried out at some resource in case of a failure of a resource. Service may
be deployed on a resource in some domain. There is a need to give more control over
the data to the user in case of a change in the policy of a domain in which resource
resides. Overloaded resources will generate the need to migrate some of the tasks.
We suggest that checkpoint/restart approach is preferable in an environment where
probability of failure is more so that the work carried out on the resources can be
retrieved later on. To provide more control to the requestor over the data/task we
propose to have a negotiator module. The negotiator module is responsible for match-
ing the policies of the domains. In a scenario where changed domain policy is not
acceptable to the requestor, negotiator can find out the domains whose policy is ac-
ceptable to the requestor. We suggest the use of incremental checkpoint/restart ap-
proach instead of RAID approach to save storage space in the cases where previous
checkpoint images are to be stored.

7 Future Direction

• The Globus toolkit is an open source toolkit. The Globus toolkit can be modified
to incorporate the model proposed. Negotiator, checkpoint server and queue mod-
ules can be incorporated in to the existing Globus toolkit.

• A model for Grid Service instance migration for tasks having parallel but depend-
ent jobs can be one of the most challenging tasks required to be done in the future.

• The negotiator module proposed in a model can be automated. Negotiator module
should maintain the relationship between different domains instead of finding the
relationship at the time of request for service.

104

References

1. Foster I, Kesselman C, Tuecke S., “The anatomy of the Grid: Enabling scalable
virtual organizations,”. International Journal of Supercomputer Applications 2001
2. Foster I, Kesselman C, Nick J, Tuecke S., “The physiology of the Grid: An open Grid

services architecture for distributed systems integration”,
TTThttp://www.globus.org/research/papers.html#OGSA

3. S. Tuecke, I. Foster, et al.,“Open Grid Services Infrastructure (OGSI) Version 1.0.”2003;
Open Grid Services Infrastructure: Draft http://www.ggf.org/ogsi-wg

4. Tim Banks et al., “Open Grid Service Infrastructure Primer,” GWD-I (draft-ggf-ogsi-
gridserviceprimer-3), OGSI, http://www.ggf.org/ogsi-wg

5. Condor Team, “Checkpointing in Condor”, Condor Manual, Computer Sciences Depart-
ment, University of Wisconsin-Madison, Madison, WI
http://www.cs.wisc.edu/condor/manual/v6.6/4_2Condor_s_Checkpoint.html

6. Milojicic D., Douglis F., et al., “Process Migration,” ACM Computing Surveys, Vol. 32,
No. 3, September 2000, pp. 241-299.

7. József Kovács, Péter Kacsuk, “A migration framework for executing parallel programs in
the Grid”, MTA SZTAKI, Parallel and Distributed Systems Laboratory, Budapest, Hun-
gary

8. http://www.webopedia.com/TERM/W/Web_services.html
9. Migol: A fault-tolerant service framework for MPI applications in Grid, http://www.cs.uni-

potsdam.de/bs/research/grid/index.html
10. C. Lia, X. Yang, N. Xiao, “A Novel Checkpoint Mechanism Based on Job Progress De-

scription for Computational Grid” , Lecture Notes in Computer Science : Parallel and Dis-
tributed Processing and Applications, 2004. Volume 3358/2004, pp. 594-603

11. S. Rodríquez, A. Pérez, R. Méndez, “A new checkpoint mechanism for real time operating”
ACM SIGOPS Operating Systems Review, Volume 31 , Issue 4 (October 1997), Pages:
55 - 62

12. L.M. Silva, J.G. Silva, S. Chapple, L. Clarke, "Portable checkpointing and recovery,"
hpdc, p. 188, Fourth IEEE International Symposium on High Performance Distributed
Computing (HPDC-4 '95), 1995

13. Check pointing in CATALINA, http://www.ece.arizona.edu/~hpdc/projects/
CATALINA/research.html

14. Y. Zhang, H. Franke et. Al. “The impact of migration on parallel job scheduling for dis-
tributed systems” http://www.ece.rutgers.edu/~yyzhang/research/papers/europar00.pdf

15. K.M. Al-Tawil, M. Bozyigit, S. K. Naseer, "A Process Migration Subsystem for a Work-
station-Based Distributed Systems," hpdc, p. 511, Fifh IEEE International Symposium on
High Performance Distributed Computing (HPDC-5 '96), 1996

105

