
FUTURE COLLABORATIVE SYSTEMS BETWEEN PEER-TO-PEER
AND MASSIVE MULTIPLAYER ONLINE GAMES

Markus Heberling, Robert Hinn, Thomas Bopp
Department of Computer Science, University of Paderborn, Fuerstenallee 11, 33102 Paderborn, Germany

Thorsten Hampel
Department of Knowledge and Business Engineering, University of Vienna, Rathausstr. 19/9, A-1010 Vienna, Austria

Keywords: P2P, DHT, CSCW, software architecture.

Abstract: Most current CSCW architectures rely on a central server and offer only limited scalability. With the emer-
gence of distributed hash tables as a comprehensive peer-to-peer infrastructure a wealth of new applications
can be developed. In this paper we propose a new DHT-based CSCW architecture, inspired by modern mas-
sive multiplayer online games architectures, using existing systems and technologies. The resulting CSCW
overlay network offers both robustness against network failures and scalability to support large numbers of
users simultaneously.

1 INTRODUCTION

Today’s collaborative systems are mainly based on
client-server based architectures. People interact
over various synchronous clients (chat, shared white-
boards, voice chat etc.) or asynchronous, typically
web-based, clients with a central server. Naturally re-
sulting out of the architecture model’s limitations, its
scalability is limited to a certain degree. This comes
especially into the focus if larger number of users in-
teract with a high density of user interaction. As an-
other matter of fact single-server CSCW-architectures
are also suffering the bottleneck of single server archi-
tecture regarding the question of security and stability.
A single server coordinating, organizing and being the
persistence layer for a number of clients forming a
collaborative system is the critical component in any
client-server-based CSCW-system.

Having these limitations in mind a close solu-
tion may be to apply multi-server or peer-to-peer
approaches to collaborative systems. Multi-server
CSCW-architectures are a difficult to implement ar-
chitectural model, as collaborative systems are highly
interactive systems, where users move from one
server to another, share documents over the borders
of a single server and build (link) structures of media-
content from one server to another. All these technical
behaviours should be hidden from the user, e.g. user

transparency in a server-spanning way of interaction
is an important issue. This high degree of user inter-
action makes replicated architectures, such as a dis-
tributed database approach, which is typical for large
web-based systems, the wrong solution.

On the other hand modern peer-to-peer-
architectures can be identified as an interesting
alternative. They do not need a dedicated central
server, nor are they limited to typical problems of
scalability. Today’s successful P2P-architectures
(e.g. having Napster or the Groove toolkit in mind)
at first can be described as hybrid client-server and
P2P-architectures (even Napster needs central servers
for sharing index-files for coordinating the peer-to-
peer connections). Therefore, so called superpeers
(Mizrak et al., 2003) serve different functions such as
providing persistency of some parts of the distributed
system or are able to guarantee for some security
issues when setting up a trustable CSCW-system.

Existing peer-to-peer architectures, such as dis-
tributed hash tables (Rhea et al., 2005; Rowstron and
Druschel, 2001b) can provide the basis for highly
interactive collaborative systems.What we get is a
highly scalable distributed persistence layer, where
objects are distributed over the clients and objects
may be distributed with a certain replication fac-
tor (unavailable peers, e.g. peers falling out of the
network, do not endanger the integrity of the net-

340
Heberling M., Hinn R., Bopp T. and Hampel T. (2007).
FUTURE COLLABORATIVE SYSTEMS BETWEEN PEER-TO-PEER AND MASSIVE MULTIPLAYER ONLINE GAMES.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 340-346
DOI: 10.5220/0002384403400346
Copyright c© SciTePress



work/collaborative systems.) What is missing are spe-
cial features of such architectures resulting out of the
collaborative scenarios of use (e.g. interactions of
users/clients are spanning several peers in a collab-
orative system). Therefore we are mainly not only
talking about a problem of setting up distributed per-
sistency layers in a peer-to-peer architecture, but also
dealing with server-spanning event management. Si-
multaneously, all other problems of collaborative ar-
chitectures, such as user and group management have
to be solved.

This paper presents a first step towards a next gen-
eration of peer-to-peer-based collaborative systems.
Our main contribution is setting up a first infrastruc-
ture out of existing distributed hash tables compo-
nents, which serves as a first good basis for peer-to-
peer based collaborative systems.1

We propose our architecture and prototype as
an open source solution based on Past and Pastry,
which we shaped along the needs of collaborative
systems. Secondly we present a first demonstrator,
which shows the architecture’s scalability through a
massive multiplayer online game “snake” application.
Our architecture therefore has close relations to mas-
sive multiplayer online games (MMOGs) (a relation
which is in the tradition of our first classical CSCW-
architectures based on multi user dungeons – MUDS).
MMOGs share many of the requirements of collabo-
rative systems and are in some degree even stronger
in their demand for security, e.g. the so called “cheat-
ing” – attacks of some peers/players against the in-
tegrity of the network/game.

2 DHT PEER-TO-PEER
NETWORK

Our approach for a peer-to-peer CSCW architecture is
based upon existing technologies of distributed hash
tables (DHT) for storage and communication, replac-
ing traditional database and communication layers.
Distributed hash tables store data on the distributed
nodes of a peer-to-peer network, providing greater
scalability and, given the use of redundant storage,
better robustness through the lack of a single point of
failure. We will present a peer-to-peer network based
on the Pastry overlay network with the extensions Past
for persistent storage within the network, and Scribe
for message passing and event distribution on the net-
work. In section 4 we will then use this network as a
basis for a peer-to-peer architecture suited for CSCW

1The authors have long lasting expericences in the de-
sign of collaborative systems. (Bopp et al., 2006)

systems.
Pastry (Rowstron and Druschel, 2001a) is a ring-

based peer-to-peer overlay network. It provides ef-
ficient algorithms for localizing objects within the
distributed hash table and for routing packets with
the network. It is completely decentralized and self-
organizing, inserting and removing nodes into the net-
work automatically, thus allowing for easy scalability.
Objects in Pastry are stored and referenced by a 128-
bit id in a circular logical address range. Objects are
stored on nodes with an id closest to the object’s id,
so that the hash function of Pastry can localize them
within a small number of hops. Nodes provide their
own routing tables to their logical neighbors and are
thus able to route network packets to the correct des-
tination. These routing tables are updated whenever
neighboring nodes leave the network, so that the net-
work reorganizes itself automatically. This means that
the routing algorithms in Pastry are able to cope with
node failures or a dynamic participation of nodes.

Past (Rowstron and Druschel, 2001b) is an exten-
sion of Pastry for persistent storage of objects within
the overlay network as a DHT. While Pastry manages
the nodes of the overlay network, Past offers func-
tions to insert, lookup and retrieve objects on the peer
nodes. To achieve a high availability and robustness
against failures in a dynamic peer-to-peer network,
objects are replicated and the replicas are stored on
adjacent nodes. Since adjacent ids in the logical ad-
dress range usually do not represent peers that are ad-
jacent in the underlying physical network, this leads
to a wide distribution of replicas over physically re-
mote nodes. This reduces the risk of objects not be-
ing available when several neighboring nodes leave
the network.

Scribe (Rowstron et al., 2001) is a decentralized
multicast infrastructure based on Pastry. It provides
the functionality of a publisher/subscriber model for
messages and events. This extends Pastry with a very
flexible and efficient event distribution system. The
multicast-trees in Scribe reorganize themselves when
nodes leave or join the network. With the same repli-
cation mechanisms as in Past, this leads to the same
stability and flexibility.

3 REQUIREMENTS FOR A
PEER-TO-PEER CSCW
ARCHITECTURE

We will describe a set of requirements that a peer-to-
peer based CSCW architecture must fulfill to provide
a usable basis for distributed collaborative systems.

FUTURE COLLABORATIVE SYSTEMS BETWEEN PEER-TO-PEER AND MASSIVE MULTIPLAYER ONLINE
GAMES

341



A distributed CSCW architecture is expected to offer
the same stability and much of the same functional-
ity that traditional client-server architectures provide.
However, they should also provide much of the same
basic functionality of established client-server CSCW
architectures, therefore we will present a basic set of
such requirements.

Since virtual knowledge spaces have proven to be
a solid and flexible concept for collaborative systems
architectures (Bopp et al., 2006), we will also propose
them as a basis for a peer-to-peer based architecture.
A sophisticated user and permissions management is
a necessity for collaborative systems as is a mecha-
nism for dispatching and receiving events or notifica-
tions within the system. We will describe these cen-
tral requirements in greater detail in the following sec-
tions.

3.1 Virtual Knowledge Spaces

Virtual knowledge spaces (“rooms”) are persistent
containers for documents, users and other objects, but
also act as nodes for synchronous as well as asyn-
chronous communication and collaboration. They
form the basis for continuous, location- and time-
spanning cooperation. Since rooms can be interlinked
with exits and can contain other rooms they can be
used to create structures or hierarchies, thus providing
a solid base for individual and collaborative structur-
ing of knowledge.

The representation of rooms can open up their
functionality in different ways, e.g. a chat program
could access a room as a communication channel,
a file browser could access the room like a virtual
folder in the filesystem, while at the same time a web
browser could list the users and documents contained
in the room. All these custom views work on the same
data, but can provide functionality and representation
tailored to their use. If virtual knowledge spaces are
implemented in a software that also provides standard
protocols like HTTP, WebDAV, FTP, IRC or XMPP,
then this would enable users to use their preferred
client software also for their collaborative work.

The functionality of custom views can also be tai-
lored to specific roles or tasks. A room could pro-
vide a view for students where they can submit assign-
ments and are able to view and change their own as-
signment up to a certain deadline. A different view for
tutors could then list all submitted assignments and
provide means to comment on them and rate them,
which in turn would be accessible only by the stu-
dents that submitted that assignment.

3.2 User and Permissions Management

Functionality like this obviously requires a sophis-
ticated permissions management. Users should be
assignable to groups that can be used to organize
them but also to simplify access rights by consider-
ing groups as roles (e.g. guest, student, tutor, ad-
ministrator, etc.). Groups should also be able to con-
tain sub-groups, so that flexible or hierarchical user
management becomes possible. Access Control Lists
stored on objects and rooms can provide a good basis
for permissions management, although the common
“read”, “write” and “execute” permissions known
from filesystems are not differentiated enough for
CSCW systems. A finer granularity of permissions is
needed, e.g. “change content”, “delete”, “move” and
“insert” instead of just “write”. One aspect that truly
unfolds the possibilities of virtual knowledge spaces
is the inheritance of permissions from other objects,
e.g. the environment that an object is contained in.
This makes taking a document and putting it into a
different room possible without having to change the
permissions afterwards to allow the users with access
rights to the target room to also access the document
that has been placed there. This allows a very in-
tuitive and at the same time very sophisticated and
flexible permissions management on the basis of vir-
tual knowledge spaces. An additional permission flag
that opens up new usage scenarios is the right to del-
egate permissions to other users. This “sanction” per-
mission provides a mechanism for self-administration
where users who have the “sanction” permission on
an object can delegate the other permissions they have
on the object to other users.

3.3 Event System

To support awareness mechanisms in synchronous
clients, the architecture must also support the cre-
ation, subscription and distribution of events between
different components and, in the case of a distributed
architecture, between different peers. More generally
speaking, events can form the basic means of interac-
tion between components of the software, providing a
flexible infrastructure that additional components can
easily interface with.

4 PEER-TO-PEER
ARCHITECTURE FOR CSCW

Based on the overlay network described in section 2
and realized as a distributed multiplayer game archi-
tecture (see section 5) and the CSCW concepts of sec-

ICEIS 2007 - International Conference on Enterprise Information Systems

342



tion 3, we will now describe a peer-to-peer architec-
ture for CSCW systems.

4.1 Basic Network Layers

For an easier to maintain architecture, the proposed
CSCW system doesn’t implement the peer-to-peer
network functionality itself. Instead the application
is divided into abstraction layers, as shown in fig-
ure 1: the peer-to-peer overlay network is layered on
top the physical network, a persistence layer provides
access to the network resources and event routing in
a more generic way and presents this functionality to
the CSCW system itself. This keeps the overlay net-
work code out of the main application and would even
allow exchanging the DHT implementation later on.

Overlay-Netzwerk

CSCW

overlay network

physical network

Overlay-Netzwerk

virtual knowledge 
spaces

routing: Pastry

multicast: Scribe

persistence layer

persistence 
management

collaborative system

event management

persistency: Past

Figure 1: Basic layers of a distributed CSCW architecture.

Our architecture uses Pastry, Past and Scribe for
the overlay network layer and implements a persis-
tence layer for persistent object storage and event
routing on top of it. Higher level functionality, like
access rights management, are then based upon this
object model and are located in the collaborative sys-
tems layer.

4.2 Distributed Virtual Knowledge
Spaces

Virtual knowledge spaces inherently subdivide the
persistence space into smaller segments, rooms. Fig-
ure 2 shows how virtual knowledge spaces are real-
ized as sub-networks within the Pastry network. We
map these rooms to Scribe multicast groups to achieve
a smaller overlay network within the whole Pastry

network. Communication within a knowledge space
is therefore done by multicasts inside the group. This
allows us to route events based on objects within a
room only to those nodes that are registered to receive
events for those objects, concentrating the main band-
width demand of intense, synchronized user interac-
tion to the network connections between those peers
that take part in that interaction. This means that users
collaborating within a shared whiteboard and using
voice or video chat will not flood the network con-
nections between other peers within the same collab-
orative system.

Figure 2: Virtual knowledge spaces in a Pastry overlay net-
work.

Figure 3 shows how an action like “give a copy
of a document to another user” is performed in a dis-
tributed collaborative system. A copy of the docu-
ment is created and referenced by the target user’s in-
ventory. The document is not necessarily placed on
the same peer node as the user or the original docu-
ment, but it can be referenced through the routing of
object ids in Pastry. Since the document inherits the
access rights of its environment by default, the target
user can then access it or place it in another room, e.g.
her personal workspace or a group workspace.

To synchronize the communication within a
group, we introduce controller peers that act as a
server-like entity. The state of all objects inside the
knowledge space is managed by this controller peer.
If a peer wants to change the state of an object, it re-
quests this change by sending a message to the con-
troller peer, which processes this request. The con-
troller peer then multicasts the changes to the other
members of the group. For higher security and stabil-
ity we introduce backup controllers, that monitor the
actions of the controller and can take over in case of
failure or misbehavior of the controller peer.

The region controller and the backup controllers
need (and should) not be peers that are involved in

FUTURE COLLABORATIVE SYSTEMS BETWEEN PEER-TO-PEER AND MASSIVE MULTIPLAYER ONLINE
GAMES

343



Figure 3: Actions across knowledge spaces: region-
spanning event distribution.

that room themselves. This reduces the chance of
manipulated peers to deliberately access or modify
data. Since the region controller is supervised by the
backup controllers, all these peers would need to be
compromised in order to be able to “cheat” objects
they control. These controller peers can be regarded
as a first interface where enhanced security mecha-
nisms can be integrated in the future.

4.3 Connecting to the Overlay Network

To join a peer-to-peer network some kind of boot-
strapping is needed. This means the user needs an
address to connect to, from which all necessary net-
work information is delivered to the new node, so that
it can be integrated into the network. Depending on
the usage scenario different methods are available. In
a local environment an architecture like Bonjour / Ze-
roconf can be used to discover nodes that offer a boot-
strap service for the overlay network. In closed sys-
tems, where new users have to be invited to join the
network, the bootstrapping info can be attached to the
invitation message.

In a pure peer-to-peer setting, a user account is
created by producing a public/private encryption key
pair, storing the public key in the overlay network un-
der the name or login name of the new user. To au-
thenticate, a user would later send a message signed
with her private key into the overlay network. This
message can be verified with the public key to authen-
ticate the user.

In all other scenarios some rendezvous server has
to be established. This server would have a static net-
work address, that is known by new nodes and could
also offer authentication or accounting services if re-

quired, accessing central LDAP or Kerberos servers
for example. Such central servers could also offer
services that are traditionally provided under static
addresses, like HTTP for the publishing of websites,
FTP or WebDAV for file transfer, IRC or XMPP for
chat, etc. It would also be possible to run such a
central peer node inside a webservice container like
Apache Tomcat, so that it can provide functionality
of the distributed collaborative system to traditional
webservice clients through the SOAP protocol.

The main drawback of using central “superpeer”
nodes is that they will suffer high bandwidth require-
ments and be single points of failure. On the other
hand, a number of superpeers can also be used as
replication nodes for important data, thus guarantee-
ing the availability of certain data even in the unlikely
case that all other peers with replicas of that data are
disconnected from the network.

4.4 Searching

While looking up objects by their id is handled by
Pastry, searching for resources in peer-to-peer net-
works is a non-trivial task that is mostly done by ei-
ther introducing superpeer nodes that index resources
or by plain broadcasting of search queries into the
overlay network. Both approaches have shortcomings
though. With superpeer nodes you have single points
of failure. If such a node fails, large parts of the net-
work become unsearchable. On the other hand broad-
casting wastes bandwidth and processing power on all
nodes (Charwathe et al., 2003).

We propose a different solution for this problem,
by creating Scribe groups for each search word. If
a node has a resource, that should be available by
searching, it joins the Scribe group for all relevant
search words. If another node wants to access all re-
sources related to a given topic, it publishes a mes-
sage to the Scribe group of that topic. The query is
then multicasted to all members of that group. Since
all group members have documents that are relevant
to that topic, they send a message back to the origi-
nal sender with the requested information. This sim-
ple algorithm obviously works only for single search
words, but can be easily extended to support complex
querys including AND and OR constructs.

To improve search results further we use tagging
functions similar to popular web applications like
Flickr2, which allow users to tag resources. These
tags can then be searched by the system.

2Flickr is an online photo community where users up-
load photos and tag them with keywords: http://flickr.com

ICEIS 2007 - International Conference on Enterprise Information Systems

344



5 DEMONSTRATOR – A
PEER-TO-PEER MASSIVE
MULTIPLAYER ONLINE GAME

To demonstrate our approach we implemented a mas-
sive multiplayer online game (MMOG) version of the
classic snake game (figure 4). The game world is
divided in regions and each region is assigned to a
controller peer. The snake controlled by a player is
always in one of these regions. The player can en-
ter neighboring regions by crossing the screen bor-
der. If he/she does so, his/her snake is assigned to
the new region and is deleted from the old region.
Currently it is not possible for a snake to gradually
change to a region piece by piece. To speed up the
region change, the player node not only subscribes
to the Scribe group of the current region it is in, but
also to all neighboring regions. Upon region change,
the new region is already joined and the new neigh-
bors can be joined in the background, while the game
is continuing. This behavior is not needed in CSCW
systems, since there is usually no need for fast region
changes. We currently send the game state of each
region every 100 milliseconds, which is an update
rate not needed for most CSCW applications. Syn-
chronous clients like shared whiteboards might bene-
fit from high update rates to provide smooth, real-time
cooperation. The architecture is described in detail in
(Hampel et al., 2006).

We’ve successfully run 128 instances (8 comput-
ers, each running 16 instances) of the snake game to
measure stability and bandwidth usage (figure 5). The
figure shows the average bandwidth used by a peer in
the network in kbytes per second with a fixed number
of 9 regions. We have found that the average band-
width usage does not depend on the number of peers,
but rather on the number of active regions. This is
shown in figure 6, where we measured increasing re-
gion numbers with a fixed peer number of 8. The av-
erage bandwidth usage is quite high in our test set-
tings because of our high update rate and the fact that
each player not only joins the region his snake is in,
but also all neighboring regions. This would not be
the case in a CSCW-system since a peer only has to
join the region the user is currently in.

6 RELATED WORK

SimMud (Knutsson et al., 2004) is a proof-of-concept
massive multiplayer online game architecture. It is
also based on Pastry as a distributed hash table over-
lay network and the Past and Scribe extensions. Sim-

Figure 4: Screenshot of MMOG-Snake with 16 instances.

0

10

20

30

40

2 4 6 8 10 12 14 16

KByte/s

Number of Nodes

Figure 5: Average bandwidth usage with 9 regions and in-
creasing peers.

Mud has shown that such a system scales well with
large numbers of users even in synchronous settings.

OceanStore (Kubiatowicz et al., 2000) is a con-
cept for a distributed filesystem, which focuses on the
availability of data. This is accomplished by distribut-
ing the data on the nodes of an overlay network based
on Pastry. All data is secured with cryptographic al-
gorithms and stored redundantly to guarantee high
availability.

OpenDHT (Rhea et al., 2005) is a service imple-
mentation of a distributed hash table. It provides a
simple interface to retrieve and store data. This could
qualify it as a persistence layer for CSCW systems.

Groove3 is a hybrid architecture, where a central
server provides an entry point into the distributed net-
work of peers and also stores changes for peers who
are offline. The main focus of Groove is support for
decentralized, synchronous collaboration.

3www.groove.net

FUTURE COLLABORATIVE SYSTEMS BETWEEN PEER-TO-PEER AND MASSIVE MULTIPLAYER ONLINE
GAMES

345



0

20

40

60

80

9 12 15 18

KByte/s

Number of regions

Figure 6: Average bandwidth usage with 8 peers and in-
creasing regions.

7 CONCLUSION AND OUTLOOK

A peer-to-peer architecture for CSCW systems is fea-
sible. Our demonstrator application shows that net-
work bandwidth only increases logarithmically with
the number of connected peers. This simulation was
a synchronous, highly interactive setting which can be
regarded as a ”‘worst case”’ scenario for synchronous
collaborative work, e.g. with a shared whiteboard.
Most actual uses will have much less frequent event
messages, resulting in even less bandwidth require-
ments. A peer-to-peer-based architecture is therefore
highly scalable even for synchronous collaboration
between large numbers of users. Since storage space
and processing power are supplied by all peers, these
resources even grow with increasing numbers of con-
nected peers, while replication strategies ensure avail-
ability of data even in case many peers disconnect.

Our architecture is based upon virtual knowledge
spaces on a peer-to-peer persistence layer. This per-
mits distributed collaborative systems complying with
the basic requirements for collaborative architectures,
such as persistent object storage and an event distri-
bution mechanism.

There are, however, aspects that still need to be
investigated in greater detail. Security is one of the
main concerns. A peer-to-peer CSCW framework
must guarantee that data is only accessible by those
that are entitled to it through the system’s permission
management. Since the functionality of the system is
not confined within a single server, there must be re-
liable mechanisms that prevent a compromised peer
to bypass access management of the software. A first
approach is the use of region and backup controllers,
but more sophisticated security measures should be
researched.

REFERENCES

Bopp, T., Hinn, R., and Hampel, T. (2006). A service-
oriented infrastructure for collaborative learning in
virtual knowledge spaces. In Kumar, D. and Turner,
J., editors, Education for the 21st Century – Impact of
ICT and Digital Resources, volume 210, pages 35–44.
International Federation for Information Processing,
Boston: Springer.

Charwathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., and
Shenker, S. (2003). Making gnutella-like p2p systems
scalable. In Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications (SIGCOMM),
pages 407–418. ACM Press.

Hampel, T., Bopp, T., and Hinn, R. (2006). A peer-to-peer
architecture for massive multiplayer online games. In
Proceedings of 5th ACM SIGCOMM workshop on
Network and system support for games NetGames ’06.

Knutsson, B., Lu, H., Xu, W., and Hopkins, B. (2004). Peer-
to-peer support for massively multiplayer games. In
Proceedings of the Conference on Computer Commu-
nications (INFOCOM).

Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer,
W., Wells, C., and Zhao, B. (2000). Oceanstore: An
architecture for global-scale persistent storage. In Pro-
ceedings of the 9th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 190–201. ACM.

Mizrak, A., Cheng, Y., Kumar, V., and Savage, S. (2003).
Structured superpeers: Leveraging heterogeneity to
provide constant-time lookup. In Proceedings of
the 3rd IEEE Workshop on Internet Applications
(WIAPP), pages 104–111, San Jose, CA, USA.

Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Rat-
nasamy, S., Shenker, S., Stoica, I., and Yu, H. (2005).
Opendht: a public dht service and its uses. In Pro-
ceedings of the ACM Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM), pages 73–84,
New York, NY, USA. ACM Press.

Rowstron, A. and Druschel, P. (2001a). Pastry: Scalable,
decentralized object location, and routing for large-
scale peer-to-peer systems. Lecture Notes in Com-
puter Science, 2218:329–350.

Rowstron, A., Kermarrec, A.-M., Castro, M., and Druschel,
P. (2001). Scribe: The design of a large-scale event
notification infrastructure. In Proceedings of the Con-
ference on Networked Group Communication, pages
30–43.

Rowstron, A. I. T. and Druschel, P. (2001b). Storage man-
agement and caching in past, a large-scale, persistent
peer-to-peer storage utility. In Proceedings of the Sym-
posium on Operating Systems Principles, pages 188–
201.

ICEIS 2007 - International Conference on Enterprise Information Systems

346


