
USE CASE BASED REQUIREMENTS VERIFICATION
Verifying the Consistency between Use Cases and Assertions

St́ephane S. Soḿe and Divya K. Nair
School of Information Technology and Engineering (SITE), University of Ottawa, 800 King Edward, Ottawa, Canada

Keywords: Requirements Analysis, Use cases, Assertions, Verification.

Abstract: Use cases and operations are complementary requirements artefacts. A use case refers to operations and im-
poses their sequencing. Use cases templates usually include assertions such as preconditions, postconditions
and invariants. Similarly operations are specified using contracts consisting in preconditions and postcondi-
tions. In this paper, we present an approach aiming at checking the consistency of each description against
the other. We attempt to answer questions such as the following. Is the use case postcondition guaranteed by
the operations ? Are all operations possible according to their preconditions ? We provide answers to these
questions by deriving state predicates corresponding to each step in a use case, and by showing the satisfaction
of assertions according to these predicates.

1 INTRODUCTION

Requirements engineering is a critical task in the soft-
ware life cycle. Different studies have shown require-
ments as the most important source of software de-
fects (Johnson, 2006). Moreover, finding and fixing
a software defect after delivery is often 100 times
more expensive than finding and fixing it during the
requirements and design phases (Boehm and Basili,
2001). It is therefore critical to perform requirements
verification and validation early in the life cycle.

Several artefacts are usually used to fully specify
requirements (textual list of requirements, use cases,
diagrams, operation contracts, ...). One aspect of veri-
fication is to ensure the consistency of these artefacts.
In this paper we focus on use cases (Jacobson et al.,
1993) and assertions (Hoare, 1969).

Use cases (Jacobson et al., 1993) describe interac-
tions involving systems and their environments. Each
use case is the specification of a sequence of actions,
including variants, that a system can perform, inter-
acting with actors of the system (OMG, 2003). Use
cases have become one of the favorite approaches for
requirements capture.

The notion of assertion based software specifica-
tion and verification originates from C.A.R. Hoare

(Hoare, 1969). Assertions are logical statements
about the behavior of a software component. Asser-
tions includepre-conditions, post-conditions and in-
variants. The use of assertions for software specifica-
tion is exemplified by B. Meyer’sdesign by contract
approach (Meyer, 2000).

Use cases and assertions are complementary. A
use case description is usually supplemented withpre-
conditions, post-conditions andinvariants. A use case
pre-condition specifies the necessary state for the use
case application, the post-condition specifies the re-
sulting state at the end of the use case, and the in-
variant states minimal guarantees throughout the use
case. Use case operations are also elaborated using
assertions. For instance, an operation may be speci-
fied using acontract, which consists on a precondition
stating a necessary condition for the operation, and a
post-condition stating the condition resulting from the
operation. Software development approaches such as
Fusion (Coleman et al., 1994) and the Responsibility
Driven Design approach (Larman, 2004) combine use
cases and assertions.

In this paper, we present an approach for the veri-
fication of the consistency between use cases and as-
sertions. Given a requirements specification consist-
ing in use cases and operations elaborated with con-

190
S. Somé S. and K. Nair D. (2007).
USE CASE BASED REQUIREMENTS VERIFICATION - Verifying the Consistency between Use Cases and Assertions.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 190-195
DOI: 10.5220/0002371301900195
Copyright c© SciTePress



tracts, one verification concern is to determine if the
sequencing of all operations as mandated by the use
cases is possible according to their contracts. Another
concern is to determine whether use case assertions
are guaranteed by the operations. We propose a logic
based approach where use case events are considered
sequentially as part of scenarios.

The remainder of this paper is organized as fol-
low. We discuss some related work in the next sec-
tion. Background information related to our approach
is presented in section 3. This information consists
on a notation for use cases and domain operations.
In section 4, we present our verification approach.
Finally, section 5 concludes the paper and discusses
some future works.

2 RELATED WORK

The work presented in this paper concerns use cases
verification against operation contracts. A work with
a similar goal is presented in (Giese and Heldal,
2004). Giese and Heldal propose an approach aim-
ing at bridging the gap between informal and formal
requirements. The informal requirements are repre-
sented as use cases written in natural language with
pre and postconditions. The approach assumes a cor-
responding formal representation of each use case as a
statechart. The postcondition of the operations in the
statechart are specified using OCL (OMG, 2003). By
considering each path in the statechart, the combina-
tion of the operation postconditions is checked against
the informal postcondition of the use case. Our ap-
proach bares similarities with Giese and Heldal’s in
the way that we combine conditions and perform as-
sertion checking. A major difference between the two
approaches is that Giese and Heldal propose a manual
approach, while one of our primary goals is to provide
an automated approach. The necessity to develop a
statechart and provide detailed OCL specification also
makes Giese and Heldal approach applicable later in
the development life-cycle than ours. Finally beside
postconditions, we consider other assertions such as
preconditions and invariants.

Another approach related to ours is proposed by
Toyoma and Ohnishi (Toyama and Ohnishi, 2005).
This approach proposes rules for the verification of
scenario based requirements. As in our work, sce-
narios are described using a restricted form of natu-
ral language. The verification checks for errors such
as the lack of events, extra events, and the wrong
sequence of events in scenarios. Verification rules
are used to specify the correct occurrence times of
events as well as the time sequence among events.

These rules are stored in a “rule database” and re-
trieved based on preconditions and post-conditions.
The focus of our approach is different to Toyoma and
Ohnishi’s as we focus on assertions rather than events
time sequence.

3 USE CASES AND OPERATIONS

Figure 1 shows an example of use case. We consider

Title: cash withdrawal
Invariant: ATM is ON
Precondition: ATM is ON
STEPS
1. The USER inserts card in the ATM card slot
2. The ATM asks User for her pin
3. The USER enters her pin
4. The ATM displays an operation menu
5. The USER selects cash withdrawal operation
6. The ATM asks the withdrawal amount
7. The USER specifies the withdrawal amount
8. The ATM checks the amount entered
9. IF USER amount is okay THEN, the ATM

updates the USER’s account
10.The ATM dispenses the cash in the ATM

cash dispenser slot
11.The ATM ejects the USER’s Card
Postcondition: USER Account is updated AND

Cash is dispensed
ALTERNATIVES
1.a.The USER Card status is not valid
1.a.1. The ATM alerts the Security Branch
Alternative Postcondition: USER Card is
in card slot AND Security Branch is alerted

3.a.The USER identification is not valid
AND The USER numbers of attempts < 3

3.a.1.The ATM displays a wrong
identification error message

3.a.2.Goto Step 2.
3.b.The USER identification is not valid

AND The USER numbers of attempts is == 3
3.b.1.The ATM displays a wrong

identification error message
Alternative Postcondition: USER Card is

in card slot
8.a.The USER amount is not okay
8.a.1.The ATM displays an amount not okay

error message
8.a.2.Goto Step 6.

Figure 1: Cash Withdrawal Use Case.

a use case as a tuple [Title, Inv, Pre, Steps, Post] with
Title a label that uniquely identifies a use case,Inv
an invariant,Pre a use case precondition,Stepsa se-
quence of steps, andPosta postcondition. Each step
in Stepsincludes a use case operation with an optional
step condition and a set of alternatives. For instance

USE CASE BASED REQUIREMENTS VERIFICATION - Verifying the Consistency between Use Cases and Assertions

191



step9 in use case “Cash Withdrawal” includes con-
dition “USER amount is okay” and operation “ATM
updates the USER’s account”. We distinguish three
types of use case operations: use case inclusion direc-
tives,Goto statements as in step3.a.2, and instances
of domain operations. A step may include alterna-
tives. Each alternative is introduced by a condition
and consists of a set of steps. An alternative may also
include a postcondition.

A use case consists of a set ofscenarios(Jacobson
et al., 1993). Each scenario being asequence of steps
(step1 - step2 - · · · stepn) in the use case. The set of
a use case scenarios includes aprimary scenarioand
zero or moresecondary scenarios. The primary sce-
nario captures the “normal” or “most common” be-
havior. It is written as if everything goes right with-
out any error. The completion of the primary scenario
fulfills the goal of the use case. A secondary scenario
describes an alternative outcome that may result from
an error. Each secondary scenario is written by defin-
ing diverging behaviors from a specific point of a pri-
mary scenario. The set of scenarios corresponding to
use case “cash withdrawal” is listed in Table 1. The

Table 1: Set of scenarios from use case “cash withrawal”.

Scenario Sequence Type
1 1-2-3-4-5-...11 primary
2 1-1.a.1 secondary
3 1-2-3-3.a.1-2 secondary
4 1-2-3-3.b.1 secondary
5 1-2-3-..8-8.a.1-6 secondary

primary scenario is the sequence steps1 to 11. Ex-
amples of secondary scenarios are sequences1 - 1.a.1
and1 - 2 - 3 - 3.a. -2. Notice that for secondary sce-
narios ending withGoto statements, the last step listed
is the target of the statement.

The different assertions in a use case are as fol-
low. A use case precondition specifies a condition1

that must hold for the behavior defined in the use case
to be guaranteed. A use case invariant specifies a con-
dition that must hold at each step of the use case. A
use case postcondition specifies a condition that holds
at the end of a use case primary scenario. Each sec-
ondary scenario may specify an alternative postcon-
dition.

We use a restricted form of natural language as
a concrete syntax for use case description (Somé,
2006). For instance, simple conditions arepredica-
tive sentencesin the form [determinant]2 entity verb
value, where “entity” is a reference to a domain ele-

1The term “constraint” is used to refer to conditions in
the UML specification.

2Elements between “[]” are optional.

ment and “verb” a conjugated form ofto be. Simple
conditions can be negated and combined using opera-
tors “AND” and “OR” to form compound conditions.

We formally define simple conditions as predi-
cates on entities of the application domain. Each
predicate is a pair [E,V] where E is an entity and
V is a value. For the predicate to evaluate totrue,
E must have the propertyV. For instance the use
case precondition “ATM is ON” is formally the pred-
icate [ATM,ON]. It evaluates totrue if the entityATM
has the property of beingON. A compound condi-
tion corresponds to a compound predicate with sub-
predicates and logical operators.
Preconditions, postconditions and other conditions in
use cases are predicates onclassesandattributesfrom
the domain model. Figure 2 shows a domain model
for our ATM application example. Domain models

Figure 2: ATM example domain model.

are depicted as a UML class diagram (OMG, 2003).
Domain operations are elaborated using pre and

postconditions. An operation precondition specifies a
condition under which the operation may be invoked
such that its results are as expected, while an opera-
tion postcondition describes how the system state is
changed by the operation. Figure 3 shows pre and
postconditions of the operations in use case “cash
withdrawal”. Preconditions and postconditions result
from assumptions made by software specification de-
velopers. Our goal is to verify their adequacy in rela-
tion to use cases.

4 VERIFICATION APPROACH

A use case scenario dictates a certain sequencing
of operations. This sequencing is possible only if
each operation precondition is verified by the sys-
tem’s state at the moment of the operation. After each
operation, a new system state is obtained by taking
the operation postcondition into consideration. The

ICEIS 2007 - International Conference on Enterprise Information Systems

192



insert card
pre: ATM is ON AND

USER Card is not in Card slot
post:USER Card is in Card slot AND

(USER Card status is valid OR
USER Card status is not valid)

enter pin
pre: ATM Display is pin enter prompt
select cash withdrawal operation
pre: ATM Display is operation menu
specify withdrawal amount
pre: ATM Display is withdrawal amount
alert security branch
post: Security Branch is alerted
ask user pin
pre: USER Card is valid
post: ATM Display is pin enter prompt
display wrong identification error message
post: ATM Display is wrong identification
display operation menu
post: ATM Display is operation menu
ask withdrawal amount
post: ATM Display is withdrawal amount
display amount not okay error message
post: ATM Display is wrong amount
check amount entered
post: USER amount is okay OR

USER amount is not okay
dispense cash
post: Cash is dispensed
eject user’s card
pre: USER Card is in Card slot
post: USER Card is not in Card slot

Figure 3: Operations in use case “cash withdrawal”.

objectives of our verification approach are to ensure:
(1) each operation is possible, (2) use case invariants
are not violated, and (3) the use case postconditions
hold at the end of their respective scenario.
Figure 4 shows an algorithm that summarizes our ver-
ification approach. We assume the following func-
tions.

• Given a use caseuc, inv(uc) returns the predicate
corresponding to the use caseuc invariant.

• Given a step in a use case scenariostepi ,
prec(stepi ) returns a predicate corresponding to
the precondition of the domain operation invoked
in stepstepi .

• Given a step in a use case scenariostepi ,
post(stepi ) returns a predicate corresponding to
the postcondition of the domain operation invoked
in stepstepi .

• Given a step in a use case scenariostepi ,
cond(stepi ) returns a predicate corresponding to
step stepi condition. An alternative condition
is returned ifstepi is the first step of an alter-

VerifyScenarios(uc: Use Case)

FOR EACH Scenariosc= step1 - step2 - · · · stepn in uc

1. i = 0

2. statei = prec(uc)

3. i = i+1

4. FOR EACH Stepstepi in sc

4.1. IF (!CheckAgainstState(inv(uc),statei−1)
return

4.2. IF (!CheckAgainstState(prec(stepi ),
statei−1) return

4.3. IF (!CheckAgainstState(cond(stepi ),
statei−1) return

4.4. statei = DetermineState(statei−1,
post(stepi ))

4.5. i = i+1

5. IF (!CheckAgainstState(post(uc),statei−1)
return

Figure 4: Verification algorithm.

native. For instance functioncond() would re-
turn the predicateNOT([USER.Card, valid])
for step1.a.1of use case “cash withdrawal”.
The description of a use case primary scenario
generally omits step conditions implicitly as-
sumed from alternatives. For instance, step2 in
use case “cash withdrawal” has as implicit con-
dition, the negation of alternative1.a condition
(User Card is valid). This condition follows from
the fact that step2 would not be possible if alter-
native1.a is executed. In general, the condition
of a stepi in a primary scenario includes the con-
junction of the negation of all the conditions of
stepi-1 alternatives.

• Given two predicatesp1 and p2, function
CheckAgainstState(p1,p2) returnstrue if
p2 ⇒ p1. The function returnsfalse otherwise.

• Given a predicatepold and a predicatepchg, func-
tion DetermineState(pold,pchg) returns a predi-
catepnew such thatpnew is the logical conjunction
of pold and pchg. All sub-predicates inpold on
an entityE are replaced with sub-predicates from
pchg on the same entity if any. For instance, sup-
posepold = [E1, V1] AND [ E2, V2] and pchg = [E1,
V ′

1] AND [ E3, V3], DetermineState(pold,pchg)
would returnpnew = [E1, V ′

1] AND [ E2, V2] AND
[E3, V3].

For each of a use case scenariosc = step1 - step2 -
· · · stepn, we attempt to generate a sequence of states
state0 - state1 - state2 - · · · staten such that: each state
corresponds to a predicate,statei−1 is the state before
stepi , andstatei is the state afterstepi .
In step4.1 of the algorithm, the use case invariant is

USE CASE BASED REQUIREMENTS VERIFICATION - Verifying the Consistency between Use Cases and Assertions

193



Table 2: State predicates corresponding to the primary scenario of use case “cash withdrawal”.

State Predicate
state0 [ATM, ON] AND NOT([USER.Card, inCardslot])
state1 ([USER.Card.status, valid] AND [ATM, ON] AND [USER.Card, in cardslot]) OR

(NOT([USER.Card.status, valid]) AND [ATM,ON] AND [USER.Card, in cardslot])
state2 [ATM.Display, pin enterprompt] AND [USER.Card.status, valid] AND [ATM, ON] AND

[USER.Card, incardslot]
state3 [ATM.Display, pin enterprompt] AND [USER.Card.status, valid] AND [ATM, ON] AND

[USER.Card, incardslot]
state4 ([USER.Card.status, valid] AND [ATM.Display, operationmenu] AND [ATM, ON] AND

[USER.identification, valid] AND [USER.Card, incardslot]) OR
([USER.Card.status, valid] AND [ATM.Display, operation menu] AND [ATM,ON]
AND [USER.number of attempts, > 3] AND [USER.Card, in card slot])

· · · · · ·

state11 ([Cash, dispensed] AND [USER.Card.status, valid] AND [USER.identification, valid]
AND [ATM, ON] AND [USER.amount, okay] AND NOT([USER.Card, in cardslot])
AND [ATM.Display, withdrawalamount]) OR
([Cash, dispensed] AND [USER.Card.status, valid] AND [ATM, ON]
AND [USER.amount, okay] AND NOT([USER.Card, in card slot]) AND
[USER.number of attempts, > 3] AND [ATM.Display, withdrawal amount])

checked against each generated state. In step4.2, we
check the precondition of the current use case step op-
eration, and in step4.3, we check the condition of the
current use case step. The verification stops when-
ever a check results in a failure. This helps avoid an
accumulation of verification errors and favors an iter-
ative approach for verification. A new state predicate
is generated in step4.4. Upon a successful sequence
of state predicates generation, we check in step5, the
scenario postcondition against the last state of the se-
quence of states.

As an example, consider use case “cash withdrawal”
primary scenario. The first generated state cor-
responds to the use case precondition; predicate
state0 = [ATM, ON]. The verification of the use
case invariant againststate0 in step 4.1 proceeds
successfully since use case “cash withdrawal” in-
variant is exactly the same predicate asstate0. In
step4.2 of the verification algorithm we check the
precondition of operation “insert card”, the first
operation of the scenario againststate0. Accord-
ing to the definition in Figure 3, operation “insert
card” precondition is predicate[ATM, ON] AND
NOT([USER.Card, in Card slot]). The verification
fails because the implication[ATM, ON] ⇒ ([ATM,ON]
AND NOT([USER.Card, in Card slot]) can not be
established. This verification failure is indicative of
an under-specification of the use case precondition.
The error can be corrected by adding the missing
condition “USER Card is not in Card slot” to the use
case precondition. Suppose the precondition of use
case “cash withdrawal” is changed to “ATM is ON

AND USER Card is not in Card slot”. Table 2 shows
some of the states corresponding to the primary
scenario. We obtainstate1 by applying operation
“insert card” fromstate1. According to the definition
in Figure 3, operation “insert card” postcondition is
[USER.Card, in card slot] AND ([USER.Card.status,
valid] OR NOT([USER.Card.status, valid])). The
conjunction of this predicate withstate0 =
[ATM,ON] AND NOT([USER.Card, in Card slot],
results instate1 = ([USER.Card.status, valid] AND
[ATM, ON] AND [USER.Card, in card slot]) OR
(NOT([USER.Card.status, valid]) AND [ATM, ON]
AND [USER.Card, in card slot]). Before operation
“insert card”, the USER’s Card is not in the Card slot
and therefore its validity is not determined. After
the operation, the USER’s Card becomes in the Card
slot and a determination to its validity is made. The
remaining state predicates are obtained similarly. The
use case postcondition, which is defined as predicate
[USER.Account, updated] AND [Cash, dispensed] is
then checked against statestate11, which is the final
state of the scenario. The verification fails because
the predicate component[USER.Account, updated] is
not satisfied. For this inconsistency to be corrected,
at least one of the operations in the scenario needs to
include[USER.Account, updated] as a postcondition.
Operation “update user’s account” appears as the
most natural choice.

An examination of the state predicates in
Table 2 shows another inconsistency. State4
predicate is a disjunction consisting in sub-
predicates [USER.Card.status, valid] AND

ICEIS 2007 - International Conference on Enterprise Information Systems

194



[ATM.Display, operation menu] AND [ATM, ON]
AND [USER.identification, valid] AND [USER.Card,
in card slot] and [USER.Card.status, valid] AND
[ATM.Display, operation menu] AND [ATM, ON] AND
[USER.number of attempts,> 3] AND [USER.Card,in
card slot]. The second sub-predicate does not include
predicate [USER.identification, valid]. Therefore,
state4 allows operation “ATM displays an operation
menu” in a situation where the validity of the USER
identification is not established. This comes from the
fact that step4 condition (cond4) is the conjunction
of the negation of the conditions of alternatives3.a
and3.b.
Therefore,

cond4 = NOT(NOT([USER.identification, valid])
AND [USER.number of attempts,<3]) AND
NOT(NOT([USER.identification, valid]) AND
[USER.number of attempts,==3])

Which after simplification gives

cond4 = [USER.identification, valid] OR
[USER.number of attempts,>3].

The inconsistency is propagated through the sce-
nario as shown bystate11. It might be the
case that the use case embeds the assumption that
[USER.number of attempts,>3] will never hold be-
cause of the user interface. However, this assumption
could constitute a serious safety vulnerability if the
implementation solely relies on the documented re-
quirements and does not safeguard against the possi-
bly that thenumberof attemptscould become greater
than 3 (for instance by bypassing the user interface).
It is possible to correct the problem by adding condi-
tion USER identification is validas a precondition to
operation “display operation menu”. This would re-
move the second part of the disjunction fromstate4
and from all subsequent states includingstate11. The
precondition also constitutes a documented record
that helps ensures that the implementation would con-
sider the necessary checks.

5 CONCLUSIONS

We have presented an approach for checking use cases
against operation contracts. This approach is cur-
rently implemented in a prototype tool for use cases
based requirements engineering. The verification ap-
proach helps refine use cases in conjunction with a
domain model. It supplements a full validation based
on simulation. We believe this approach can be ap-
plied in any circumstance where use cases are com-
bined with contracts.

The limitations of the approach depend on the
strength of the underlying logic. In this paper, we il-
lustrated the approach with a simple predicate logic
without quantification. The approach does not pre-
clude from using a stronger form of logic. How-
ever, the stronger the logic, the more sophisticated
the proof engine needs to be. We are currently ex-
perimenting with theorem proving approaches (Duffy,
1991). Beside the need for more sophisticated proof
mechanisms, more complex logic systems involve
languages farther from natural language.

This approach could be extended beyond use
cases. For instance, as a future work, we are con-
sidering the possibility to use the same verification
approach to check design level interaction diagrams
against operations specified in OCL (OMG, 2003).

REFERENCES

Boehm, B. and Basili, V. R. (2001). Software Defect Re-
duction Top 10 List.Computer, 34(1):135–137.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist,
H., Hayes, F., and Jeremaes, P. (1994).Object-
Oriented Development the Fusion Method. Prentice
Hall.

Duffy, D. A. (1991). Principles of Automated Theorem
Proving. John Wiley & Sons.

Giese, M. and Heldal, R. (2004). From Informal to Formal
Specifications in UML. InUML 2004 - The Unified
Modelling Language: Modelling Languages and Ap-
plications, pages 197–211.

Hoare, C. A. R. (1969). An Axiomatic Basis for Computer
Programming.Communication of the ACM, 12(10).

Jacobson, I., Christerson, M., Jonsson, P., andÖvergaard,
G. (1993).Object-Oriented Software Engineering,A
Use Case Driven Approach. Addison-Wesley, ACM
Press, 2 edition.

Johnson, J. (2006).My Life is Failure. The Standish Group
International, Inc.

Larman, C. (2004).Applying UML and Patterns: An Intro-
duction to Object-Oriented Analysis and Design and
Iterative Development. Prentice Hall PTR.

Meyer, B. (2000).Object-Oriented Software Construction.
Prentice Hall, 2 edition.

OMG (2003). UML 2.0 Superstructure. Object Manage-
ment Group.

Soḿe, S. (2006). Supporting Use Cases based Require-
ments Engineering.Information and Software Tech-
nology, 48(1):43–58.

Toyama, T. and Ohnishi, A. (2005). Rule-based Verification
of Scenarios with Pre-conditions and Post-conditions.
In 13th IEEE International Conference on Require-
ments Engineering (RE 2005), pages 319–328.

USE CASE BASED REQUIREMENTS VERIFICATION - Verifying the Consistency between Use Cases and Assertions

195


