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Abstract: In this paper we investigate real-time tracking of a tennis-ball using various image differencing techniques.
First, we considered a simple background subtraction method with subsequent ball verification (BS). We then
implemented two variants of our initial background subtraction method. The first is an image differencing
technique that considers the difference in ball position between the current and previous frames along with
a background model that uses a single Gaussian distribution for each pixel. The second is uses a mixture of
Gaussians to accurately model the background image. Each of these three techniques constitutes a complete
solution to the tennis ball tracking problem. In a detailed evaluation of the techniques in different lighting
conditions we found that the mixture of Gaussians model produces the best quality tracking. Our contribution
in this paper is the observation that simple background subtraction can outperform more sophisticated tech-
niques on difficult problems, and we provide a detailed evaluation and comparison of the performance of our
techniques, including a breakdown of the sources of error.

1 INTRODUCTION

While ball tracking systems have been successful in
soccer (football) and baseball, ball tracking in ten-
nis matches is less well explored. Applications in-
cluding computer-assisted refereeing and computer-
assisted coaching could benefit from real-time track-
ing of the tennis ball. However, ball tracking in a
tennis match poses particular challenges owing to the
ball’s small size, high speed, and large variation in tra-
jectories. Soccer balls are relatively large and move
relatively slowly, while baseballs are slightly larger
and (in a baseball pitch) have a much more highly
constrained trajectory.

Neither object-based techniques nor non-object-
based techniques are suitable for this application.
Such techniques have limited processing speed and
sometimes lack the ability to track objects which
move significant distances between frames. In this
paper, we present an investigation of image process-
ing algorithms aimed at tennis ball tracking. We use
background subtraction as the first step in the tracking
process; background subtraction generates a number

of regions representing changes in the image, all of
which are possible ball locations, or ball candidates.
We determine which ball candidates to report as ten-
nis balls based on size and shape analysis of the can-
didate regions. First, we present a basic algorithm
which uses an extremely simple, static background
model; the results from this were encouraging, so we
created two variant methods with different augmenta-
tions to the background model. The variants outper-
formed both the initial method and two existing al-
ternative methods, even in a context where the back-
ground varied considerably and background subtrac-
tion might be thought unsuitable.

Tennis ball tracking systems were reported by
Sudhir et al. (Sudhir et al., 1998) and by Pingali et
al. (Pingali et al., 2000); neither group of authors
made a systematic analysis of their systems’ perfor-
mance in a real-world environment. Also, they did
not address ball occlusion or player-ball interaction.
Our paper describes the results of our real-world de-
ployment and gives detailed data on error rates and
sources of error.

We present a framework for tennis ball tracking
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intended to satisfy two main requirements: speed and
robustness. First, the system needs to execute quickly,
in real time or close to it. Second, the system needs to
be robust to changes in the environment, to deal with
other moving objects, to track a fast-moving and er-
ratically moving object, to deal with occlusion, and to
track an object whose screen-space size varies signif-
icantly during a single test, owing to changes in dis-
tance to the camera (the ball ranged in apparent size
from 5 pixels to 60 pixels during our tests). As we
will see, we met some of these criteria, but not all;
nonetheless, the techniques we developed have con-
siderably better performance than existing techniques
that we compared against.

The paper is organized as follows. Section 2
discusses previous work, including existing methods
which we incorporate into our algorithm. Section 3
describes our algorithms. Section 4 describes our ex-
periments, analysis of the data, and evaluation of the
technique. Finally, we close in Section 5 with con-
cluding remarks and suggestions for future work.

2 PREVIOUS WORK

A number of object detection and tracking techniques
have been developed in the last two decades for track-
ing humans (Rano et al., 2004) and cars (Stauffer
and Grimson, 1999). More recently, researchers have
examined computer vision techniques for tracking
sporting events (Han et al., 2002; Assfalg et al., 2002;
Sudhir et al., 1998). Here we review the related liter-
ature on computer vision based object detection and
tracking techniques.

Viola et al. (Viola and Jones, 2001) introduced
classifier cascades for object recognition. They
trained a set of weak classifiers on a set of very sim-
ple features, one classifier per feature; the classifiers
are used in sequence to detect the presence of the tar-
get object, and since the weak classifiers are able to
reject most non-target objects quickly, the majority
of the computational effort is spent on difficult cases.
Lienhart and Maydt (Lienhart and Maydt, 2002) ex-
tended this work by proposing a richer set of features
(Haar-like features, including edge, line, and center-
surround features) and showing a lower false positive
rate than was achieved by the simple feature set of
Viola et al (Viola and Jones, 2001).

Stauffer and Grimson (Stauffer and Grimson,
1999) proposed a background model in which each
pixel is a mixture of Gaussian distributions; pixels
which fit into some existing distribution are consid-
ered background, while pixels which lie outside all
distributions are considered foreground. The method

allows the distributions to adapt to new samples, so
that only parts of the image which change faster than
a set learning rate are still considered foreground, and
portions which change more slowly are incorporated
into the background.

Ren et al. (Ren et al., 2004) devised K-ZONE,
a system for tracking baseball pitches. They used
a mixture of Gaussians for background discrimina-
tion; their method uses trajectory information to re-
ject some ball candidates. They report good results
for their context, but the trajectory of the baseballs
is considerably constrained compared to the variation
we can expect in a tennis match.

D’Orazi et al. (D’Orazio et al., 2002) propose
a system for tracking soccer balls using a modified
Hough transform. They use the parametric represen-
tation of a circle to transform the image and deter-
mine points which are on the soccer ball. They show
that the circular Hough transform is effective in de-
tecting the soccer ball. However, their algorithm re-
quires considerable processing to be viable as a real-
time ball tracking technique.

In (Sudhir et al., 1998) the authors perform an au-
tomatic analysis of tennis video to facilitate content-
based retrieval. They generate an image model for
the tennis court-lines based on the knowledge of the
dimensions and connectivity of a tennis court and typ-
ical geometry used when capturing a tennis video.
They use this model to track the tennis players over
a sequence of images.

In (Pingali et al., 2000) the authors use multiple
cameras to track the 3D trajectory of the ball using
stereo matching algorithms. A multi-thread approach
is taken to track the ball using motion, intensity and
shape. However, they do not give enough details of
their implementation to compare their approach with
ours.

Throughout this paper we use various image pro-
cessing techniques, including median filtering and
shape feature extraction (Shapiro and Stockman,
2001). The median filter is used to reduce noise in
the image while shape features, including aspect ra-
tio, compactness, and roughness, are used to check if
a region’s properties resemble a ball or not.

3 ALGORITHMS AND INITIAL
RESULTS

Complex algorithms, such as boosted classifiers based
on Haar-like features, and circular Hough transforms
have been brought to bear on the problem of tennis
ball tracking. Many problems arise when they are ap-
plied to the tennis tracking system.
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• The computation costs are too high. The pro-
cessing speed for these referred techniques can-
not guarantee high processing speed especially
when high-resolution, high frame-rate cameras
are used.

• The size of the tennis ball is quite small and the
feature space in such a small region is limited, so
can often be insufficient to describe the target ob-
ject.

We believe a good strategy for the current prob-
lem would be to start with a simple algorithm and
enhance it by combining the benefits of the tech-
niques described above. A simple algorithm based
on background modeling has several benefits, includ-
ing high processing speed and low dependence on
training dataset. We were interested in seeing how
well a naive algorithm based on background model-
ing would perform.

3.1 Initial Approach

Our initial, naive algorithm works as follows. We
compute a simple background model by averaging
frames from a short video sequence of the vacant ten-
nis court. Then, the algorithm determines ball candi-
dates by finding regions whose intensity in the cur-
rent frame is larger than in the background frame.
Next, ball candidates in the vicinity of the player are
discarded. Shape and dynamics characteristics for
remaining candidates are computed, and those with
shape too far from the ball or which did not move like
the ball in previous frames are also discarded. Any re-
maining candidates are reported as being tennis balls.

We addressed the problem of ball-player interac-
tion by explicitly identifying the largest foreground
blob with the player. A player almost never appears
as a single foreground blob because of the dynam-
ics of the tennis game. Just before making a tennis
shot players often move their forearms, upper bod-
ies and feet, but rarely displace their hips. Thus a
player often appears as 2 or 3 adjacent blobs (upper-
body, legs, and forearm). We explicitly search for
blobs that are comparable in size and in the vicinity
of each other to identify them with the player (see
Figure 1). We then extend our search to identify the
player’s racquet if it is visible. The main features used
to connect the different blobs are blob size and adja-
cency. Once the player, the racquet, and the ball can-
didates in the vicinity of the player are discarded, the
remaining candidates are checked based on size (5 to
60 pixels) shape (compactness and roughness close to
0.9) and dynamics characteristics (candidates whose
distances to the predicted location exceeds a prede-
fined threshold are removed) to discard false detec-

tions. Any remaining candidates are reported as be-
ing tennis balls. Note that this method allows us to
correctly report when multiple actual tennis balls are
present in the scene, as was sometimes the case (for
example, a ball from an earlier rally had not been re-
trieved and was lying on the court while the players
continued with a new ball).

Figure 1: Algorithmic player removal. First, the largest re-
gion plus nearby large regions are detected (top). Second,
the player region is expanded to include the racquet (bot-
tom).

We compared our method against two existing
methods: the technique of boosted classifiers (BC),
trained with Haar-like features; and the Hough trans-
form (HT) used to detect the tennis ball’s circular
shape.

The performance of our system is measured by
three figures: the true positive rate; the false posi-
tive rate; and the processing rate. True positive rate
is defined as the ratio of the number of correctly rec-
ognized features to the number of appearances of the
feature. The false positive rate is the ratio of the
number of incorrect recognitions to the number of in-
stances where no feature was present. We measure
processing rate by frame rate, that is, the number of
images that can be processed in a second. A success-
ful system has a true positive rate as high as possible,
a false positive rate as low as possible, and a process-
ing rate as high as possible.

We recorded raw data consisting of thirty brief
videos of tennis games, each about 1 minute in length,
in an indoor setting. We captured images using a
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monochrome camera at a resolution of 782×582 pix-
els at 25 fps. A sample frame is shown in Figure 2.

Figure 2: A sample frame from video taken on an indoor
tennis court.

For each frame of each video, we manually
marked the position of the tennis ball. This gave us
a ground truth against which we could compare the
output of the three algorithms. Then, we ran each
video through each of the BS, BC, and HT algorithms.
We computed true positive and false positive rates for
each algorithm on the entire corpus of data; a sum-
mary of the results appears in Table 1.

Table 1: Summary of comparison between naive back-
ground subtraction and existing methods.

BS BC HT
True positives 87.4% 30.1% 11.8%
False positives 1.35% 62.2% 73.4%
Processing rate 21.4 6.2 8.2

The data show that even with our naive approach
we were able to do better than standard algorithms
at the task of tracking the tennis ball. Our naive al-
gorithm has a higher recognition rate, a lower error
rate, and a faster frame rate than either of the com-
parison techniques. Also, it avoids a time-consuming
training period; it took upwards of a week to train the
boosted classifiers for the tennis context. The Hough
transform, while not requiring much setup, performed
extremely badly. The assumption that the tennis ball
has a circular shape is not satisfied in frames of the
video, owing to two main reasons. First, illumina-
tion can cause the tennis ball to have an apparently
crescent shape rather than a round shape. Second,
blurring because of rapid motion can cause the ball
to appear elongated in the direction of motion. Other
factors (such as noise, and deformation of the ball on
impact) can also play a role.

We were pleased with our results in the indoor
case, but wondered whether the good results were
primarily due to the largely static background in the
indoor environment. It might be that our naive ap-
proach would perform dramatically worse in cases of

more dynamic backgrounds, while the performance
of BC and HT would not suffer as much. Real tennis
matches have somewhat dynamic backgrounds, since
the crowd, the weather, and sometimes the advertise-
ments change during the match.

To determine whether this was the case, we
recorded another thirty videos in an outdoor environ-
ment. The weather on the day we did the recording
was extremely active, with trees in the background
swaying vigorously and clouds moving rapidly. The
cloud movement caused issues for two reasons: first,
the clouds were sometimes visible as moving objects
in the scene; second, the clouds sometimes moved in
front of the sun or out from in front of it, causing rapid
changes in illumination. This highly dynamic back-
ground provides a good test case for automatic tennis
ball tracking, since real tennis match videos are un-
likely to have worse conditions. A sample frame from
the outdoor setting is shown in Figure 3.

Figure 3: A frame from the outdoor tennis court. Notice the
trees and clouds visible in the background.

Once the videos were recorded, we again per-
formed manual ball detection to arrive at a ground
truth and used each of the BS, BC, and HT algorithms
to perform ball detection. The results are summarized
in Table 2.

Table 2: Summary of comparison between naive back-
ground subtraction and existing methods in outdoor envi-
ronment.

BS BC HT
True positives 23.5% 27.2% 3.7%
False positives 56.4% 52.6% 77.5%
Processing rate 20.0 6.3 8.1

Not unexpectedly, the simple background subtrac-
tion algorithm did not cope well with the dynamic
background; its true positive rate dropped signifi-
cantly, and its false positive rate rose enormously. The
method of boosted classifiers saw a slight reduction in
true positive rate but now performs better than simple
background subtraction. The Hough transform again
performed poorly.
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3.2 Improved Background Model

Having confirmed that background subtraction is a
good technique when we can reliably determine the
background, we decided to improve our background
model. The naive approach uses a static background
model obtained by averaging images of an empty ten-
nis court. We decided to use a Gaussian model for
each image pixel, inspired by the work of Stauffer and
Grimson.

We devised two variants of the naive method – im-
age differencing (ID) and mixture of Gaussians model
(MG). We discuss both below.

3.2.1 Image Differencing

Image differencing (ID) is a technique inspired by the
tennis ball tracking system of Pingali et al., who use
the difference between the current and previous frame
to determine ball candidates. The reasoning here is
that the tennis ball is usually fast-moving, and will
occupy an entirely different set of pixels in consec-
utive frames, while slower-moving objects will have
significant overlap. However, Pingali et al.’s method
uses a complex mechanism for estimating ball inten-
sity levels, in order to cope with lighting, shadow, and
distance variations. We wanted to see whether we
could obtain good results combining image differenc-
ing with background subtraction.

In our ID technique, we model each background
pixel with a single Gaussian. That is, we compute
a meanµ and standard deviationσ for each pixel, us-
ing an initial set of background images; outliers (more
than two standard deviations from the mean) will be
considered foreground pixels.

The difference between the foreground of the pre-
vious frame and the foreground of the current frame
is used to obtain one set of ball candidates, say A. The
set of foreground pixels gives another set, say B. We
obtain a final set of candidates C by taking the logical
AND of A and B. The candidates in C are subjected to
characteristics tests (compactness, aspect ratio, size)
and those that pass are reported as being tennis balls.
We report results of testing our ID technique in Sec-
tion 3.2.3.

For pixels not considered part of the ball, pa-
rameters of the Gaussian distribution are updated as
follows:

µt = (1−ρ)µt−1 +ρXt (1)

σ2 = (1−ρ)σ2
t−1 +ρ(Xt −µt)2, (2)

whereρ is the learning rate for the parameters, andXt
is the measured value for that pixel. This allows the
technique to adapt to changes in the background.

3.2.2 Mixture of Gaussian Models

In the mixture of Gaussians technique (MG), each
background pixel is modeled by a mixture of Gaus-
sians; pixels that cannot be explained by any of the
distributions are considered foreground objects (ball
candidates). Each Gaussian is characterized by a
weightw, a meanµ, and a standard deviationσ.

When creating the background model each pixel
is verified against the corresponding gaussian distri-
butions until a match is found or all distributions are
checked. A match is found when the pixel value is
within 2.5 standard deviation of the distribution.

If no match is found, a new Gaussian distribution
is added or the least probable distribution is updated
with the new pixel value as the mean, a high std., and
a low weight. If a match is found, the weights of the
existing distribution at timet are updated as follows:

wk,t = (1−α)∗wk,t−1 +α∗Mk,t (3)

whereα is the learning rate for the weights, andMk,t
is 1 for the distribution that matches and 0 otherwise.
Following this reassignment the weights are normal-
ized. The learning rate determines how fast the model
responds to changes in the environment; a higher
learning rate means changes to the environment will
be adapted to the existing background model more
quickly, while a low learning rate means that the ini-
tial background model will be slow to change.

The MG technique also updates the values for its
parameters, using the process described in equations 1
and 2. Once the parameters have been updated, the
Gaussians are ordered by the value ofw/σ. The dis-
tribution with the higher weightw and smallerσ is
the more probable representation of the current back-
ground in that pixel location.

3.2.3 Comparison of Techniques

Both variants use the player-removal system we de-
signed for the naive algorithm.

We tested both the ID and MG approaches with
the videos we had already obtained. We will make
a comparison directly with the naive BS algorithm.
Table 3 shows a summary of the results for the indoor
case, and Table 4 summarizes the outdoor case.

Table 3: Summary of indoor results for our three methods.

BS ID MG
True positives 87.4% 89.6% 90.7%
False positives 1.35% 1.07% 1.02%
Processing rate 21.4 19.0 14.7

We see only a slight improvement in quality of re-
sults in the indoor case; this is not surprising, since
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Table 4: Summary of outdoor results for our three methods.

BS ID MG
True positives 23.5% 35.6% 39.5%
False positives 56.4% 49.8% 26.5%
Processing rate 20.0 19.5 13.8

the nature of the indoor scene was such that the as-
sumption of static background held up well. Nonethe-
less, some improvement is observed: both ID and MG
have higher true positive rates than BS, and both have
a lower false positive rate. Both algorithms are doing
more sophisticated processing, and they have frame
rates lower than did BS, though still higher than the
BC and HT methods.

In the outdoor case, we see a larger difference.
The true positive rate rose considerably, nearly dou-
bling in the case of MG over BS. The false positive
rate dropped modestly for ID over BS, but dropped
off more dramatically for MG, falling to less than
half what the naive background subtraction had had.
Again, the frame rates are lower, representing the ef-
fect of the additional processing performed on each
frame.

4 EVALUATION

The main factor affecting the success of background
subtraction methods is the accuracy of the back-
ground model. Automated systems can make two
types of errors: false negative (the object is present,
but said to be missing) and false positive (the object is
absent, but a spurious detection happens). If we can
reduce the occurrences of false positives, we can be
more aggressive in what we consider acceptable, and
so reduce false negatives; alternatively, with a low rate
of false positives, we can perform interpolation on the
positives we obtain and have high confidence that we
are not including spurious data points. We therefore
investigated the sources of false positives.

We manually examined the three videos which ex-
hibited the highest rates of false positive and tried to
characterize the types of errors that were made. Pos-
sible sources of error included (i) confusion with sim-
ilar objects; (ii) noise; and (iii) illumination changes,
especially shadows. Table 5 shows the results. The
overwhelming majority of errors arise from noise.

Because noise is the main factor causing false
positives, we are interested in seeing how many of
the ball candidates after background subtraction are
due to noise. We randomly selected two videos and
performed background subtraction using each of our
three methods; then, we looked at each frame after the

Table 5: Summary of sources of false positives.

Problem Occurrence
Similar objects 12%

Noise 83%
Shadows 4%

Other < 1%

background subtraction and manually counted how
many regions were generated by noise. The results
of this endeavor are reported in Table 6.

Table 6: Summary of number of noise regions.

Method Noise regions per frame
BS 16.3
ID 15.8
MG 15.4

The number of noise regions is highest for BS, and
lowest for MG: on average, MG had almost one can-
didate per frame less than BS. This has implications
both for speed (fewer candidates means less process-
ing, as fewer shape features need to be computed) and
for accuracy (since there is no chance of a false pos-
itive if a candidate is not presented). However, the
number of noise regions is still high. These results
suggest that there is still room for improvement in the
background subtraction phase.

We now report one final evaluation. We are able to
achieve tennis ball tracking rates of around 90% with
fast and relatively simple algorithms. The question re-
mains: is 90% a good tracking rate, or can we reason-
ably expect to do better? To obtain data on which to
frame a response, we manually marked the positions
of the tennis ball on frames from 30 minutes of video
of a Wimbledon tennis match, about 32400 frames in
all. Our algorithms were not able to be applied to this
video, both because there is no background footage
available, and (more importantly) because we have as-
sumed a static camera. The Wimbledon video is com-
posed from multiple cameras that are controlled by
expert cameramen. The editor carefully selects video
sequences that provide high visibility for the ball to
create the ideal viewing conditions for the viewer. We
thus believe these videos give us best-case scenarios
for ball visibility. Despite the careful crafting of the
video, from the frames we looked at, the human eye
could determine the tennis ball’s location about 92%
of the time. The remaining 8% of the time, the ten-
nis ball is difficult to locate. A sample frame from
the Wimbledon video appears in Figure 4; an exam-
ple of a frame in which the ball was present with poor
visibility is shown in Figure 5.

Of course, humans watching a tennis match can
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Figure 4: Sample frames from the Wimbledon video. In
these frames, the ball is clearly visible.

achieve recognition rates higher than 90%.This is be-
cause they use additional cues to track the tennis ball.
They use trajectory information to predict the path of
the ball; this is likely the most important source of
information not used by our methods. Also, human
viewers can obtain secondary cues about the position
of the ball based on the reactions of the professional
tennis players, who are able to track the ball extremely
well. It is unlikely that such information will be used
by computer vision systems in the near future. Cues
of this type often enabled us to locate the ball in the
frames we labeled “poor visibility”, such as the first
image in Figure 5, but it is not feasible even for the
human eye to locate the ball with high confidence
from the single frame alone, despite all the context in-
formation and object recognition ability that humans
bring to the problem. We should comment also that
color information enhances the ball visibility in the
second image in Figure 5, but color information was
not available to our algorithms, owing to our use of a
high-speed monochrome camera.

Based on this experiment, we believe that our al-
gorithms are performing quite creditably. We were
able to achieve a recognition rate of 90% in the in-
door case, and while the human eye remains demon-
strably superior, we have gotten closer than previous
methods.

Figure 5: Examples of frames in which the ball is not clearly
visible. The red squares indicate the ball’s location.

5 CONCLUSIONS AND FUTURE
WORK

Our methods were able to achieve a true positive rate
of about 90%, with a false positive rate of only about
1%, in the indoor environment. This compares with
a true positive rate around 30% and a false positive
rate around 60% to 70% for the technique of boosted
classifiers and the Hough transform-based technique.

The outdoor case saw considerably more varia-
tion. Our techniques had between 20% and 40% true
positive and 25% to 60% false positive. Boosted clas-
sifiers was able to achieve about 30% true positive and
50% false positive, while the Hough transform had
only about a 4% true positive rate and more than 75%
false positive rate. We attribute the poor performance
of all techniques to the rapidly changing background
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caused by active weather.
One area for future work is to investigate deploy-

ment of the tracking system in conjunction with a
system that depends on knowing the location of the
tennis ball. Applications like robotic tennis-partner
and player training can benefit from real-time track-
ing of the tennis ball. Our algorithm can be easily
deployed for real-time tennis applications by using 4
to 6 cameras watching different parts of the court. In-
stead of running 4 (or 6 depending on the number of
cameras) instances of the ball tracking algorithm we
would have 2 cameras monitoring the ground at any
given instance and when the ball leaves the field-of-
view of one camera the next camera takes over the
tracking. To further improve the processing speed,
we can include various predictive tracking strategies
like Kalman filtering.

We chose parameter settings (such as the aspect
ratio and expected size of the ball) manually for each
video. In the future, we would like to explore auto-
matic parameter settings, perhaps from a few sample
frames with the ball’s position marked manually. In
addition, we presently use static parameter settings
for an entire video; this worked well for the short
videos we tested with, but in future, we may want to
allow dynamic parameters so that very long video se-
quences will work.

We have not used much trajectory information in
discriminating among ball candidates, although tra-
jectory is critical to how humans perform ball track-
ing. Future systems will need to incorporate trajec-
tory information into their scene analysis.

Finally, both our image differencing technique
and our mixture of Gaussians technique gave some
improvement over simple background subtraction.
We can consider combining MG and ID in future.
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