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Abstract: Occlusions are almost always seen as undesirable singularities that pose difficult challenges to recognition 
processes of objects which have to be manipulated by a robot. Often, the occlusions are perceived because 
the viewpoint with which a scene is observed is not adapted. In this paper, a strategy to determine the 
location, orientation and position, more suitable so that a camera has the best viewpoint to capture a scene 
composed by several objects is presented. The estimation for the best location of the camera is based on 
minimizing the zones of occlusion by the analysis of a virtual image sequence in which is represented the 
virtual projection of the objects. These virtual projections represent the images as if they were captured by a 
camera with different viewpoints without moving it. 

1 INTRODUCTION 

In Computer vision, one of the critical problems for 
object recognition is that the recognition methods 
should be able to handle partial occlusion of objects. 
The spatial distribution of structural features of an 
object is the most important information that an 
object represents. Recognition partially occluded 
objects have been a formidable problem in 
recognition processes. In recent years, several object 
recognition methods have been proposed to 
recognize occluded objects. Some of them are based 
on statistical models (Chan, 2002)(Ying, 2000), on 
graph models (Boshra, 2000)(El-Sonbaty, 2003) or 
based on a mix (Park, 2003). Also it is important to 
emphasize others studies which are based on the 
eigenspace analysis of images taken in the same 
environment. Thus an object model is built as a 
vector in a low dimensional eigenspace, and this 
way objects are recognized by comparing the model 
with image vectors.  

The ability to recognize an object in an image is 
limited if it is impossible to see all the surface of the 
object. Not only  self-occlusion are present in 
opaque objects since we are not able to see the back 
of the object, but also other objects may occlude 

some portion of the object that we wish to recognize 
and that it would otherwise be visible. In our 
approach, we look to change the location of the 
camera which observes the objects in order to 
improve the viewpoint and reduce the occluded 
portion of them. Other works, such as (Silva, 2001) 
show in their studies the importance of the 
occlusions for motion detection and the relation 
between the observable occlusions and a camera 
motion. Also, in recent years, some works have 
shown how compute 3D-structure from camera 
motion using the matching process among image 
plane projections by employing the Shift Invariant 
Feature Transform, SIFT features (Fiala, 
2005)(Ohayon, 2006).  

This paper is organized as follows: The 
mathematical principles to understand the camera 
motion are described in Section II. Section III shows 
the relationship between the 3D-position of a camera 
and the position of an object projected in an image 
captured by it. In Section IV, a strategy to determine 
zones of occlusion between objects from 
information of an image is presented and 
experimental results are shown. Section V describes 
the process to evaluate and verify the best viewpoint 
which minimizes the zone of occlusion detected in 
the image. Finally, the validity of the method 

311
Gil P., Torres F. and Reinoso O. (2007).
ESTIMATION OF CAMERA 3D-POSITION TO MINIMIZE OCCLUSIONS.
In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, pages 311-317
DOI: 10.5220/0001646703110317
Copyright c© SciTePress



 

proposed is confirmed with a camera at the end of an 
arm robot. 

2 CAMERA MOTION AS RIGID 
BODY 

As starting point a camera moving in front of several 
objects in a scene can be considered. The camera 
and objects are modelled as rigid objects.  Therefore, 
each motion can be specified as the motion of one 
point on the object in respect to another on the 
camera, the reason being because the distance 
between any two points which belong to the same 
object does not change when this object is moved. 
Consequently, it is not necessary to specify the 
trajectory of every point on the object in respect to 
the camera. So, the inertial central moment is the 
only point we have to consider on the objects, and 
the optical center is the only point we have to 
consider on the camera. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1: Camera movement relative to world reference 
frame W. 

Thus, if are the coordinates of the 
camera in the time i=0, and , the coordinates of 
the same point on Camera in the time i>0, the 
geometric transformation which is experimented by 
camera, is given by: 

0C
C iC

 
iCTCRRT ⋅→→ 033 /:  (1) 

 
If the camera motion is represented in relation to a 
world reference frame W, and this one is considered 
fixed, without movement, then the camera motion C 
is defined by rotational and translational movements 
which are relative to W in the Euclidean Space. 
These Euclidean transformations are denoted by 

 and , respectively. So, any point which is 

relative to W can be posed relative to C with this 
equation. 
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where C  denotes an Euclidean transformation 
that represents rotation and translation movements 
of W in relation to C, and C  is the point relative to 
C. To this end, the equation 2, is converted to 
homogeneous representation, appending a ‘1’ to the 
coordinates of C , that is . Thus 
a matrix form is used to rewrite it since a linear form 
is more suitable to operate.  
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3 A GEOMETRIC MODEL OF 
IMAGE FORMATION 

In this section, the mathematical model of the image 
formation process is introduced (Hartley, 
2000)(Gruen, 2001). The pinhole camera is chosen 
as the ideal model to define computer vision 
processes, and to specify the image formation 
process, particularly. This process can be described 
as a set of transformation of coordinates between the 
camera frame and the world frame (Section 2) and 
transformations of projection of 3-D object 
coordinates relative to camera onto 2-D image 
coordinates. The transformations which determine 
the movement of a rigid body are defined in 
Euclidean space, and the transformations which 
determine the projection onto the image plane are 
defined in the Projection space. 

( )C
W

C
W

C
W tR

( )

The pinhole camera model assumes that each 
3D-point on an object is projected onto a camera 
sensor through a point called the optical center. The 
origin of the reference frame C is at this optical 
center and the coordinates of a 3D-point relative to 
C are denoted by ( )ZYXPC . In addition, the 
coordinates of the same point on the image plane 
which is projected through the camera sensor 
are

,,

( )yxpI , where the reference frame image is 
called I. The origin of the reference frame I is the 
principal point o which is the intersection point of 
the optical axis with the image plane, and the 
parameter f defines the distance of image plane from 
the optical center. 

,

With reference to the pinhole camera model, the 
transformation between the reference frames C and I 
can be represented in homogeneous coordinates and 
matrices, as follows:  
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(4) 

 
where Z is the depth of the object and f is the focal 
length.   

If the equation is decomposed in two matrices, 
Kf  y Π0, where the first matrix is called focal matrix, 
and the second matrix is often referred to as 
canonical projection matrix, the ideal model can be 
described as 

 
 CfI PKp ⋅Π⋅= 0  (5) 

 
However, in practice, the projection 

transformation between C and I, is very much 
complex. The matrix Kf depends on others 
parameters as the size of the pixels, the form of the 
pixels, etc.  Therefore, a method to make the 
geometric formation image more suitable, is needed. 
The practice model has to consider (according to 
(Ma, 2004)): 
• The size of pixels. The reason is because 

the size of the sensor is different to the size of 
the image. Therefore, the scaling factors 

must be considered. A point on image 

plane  in terms of mm is projected as 
a point on image 

),( yx ss

( yxpI , )
( )vup ,  in terms of pixels. 

• The pixels are not square and do not have 
orthogonal axis. Therefore, a factor called 
skew, sθ, can be used to define the angle 
between the image axes.  

• In addition, the origin of image plane does 
not coincide with the intersection of the 
optical axis and the image plane. There is a 
translational movement between the geometric 
center on image and the principal point. For 
this reason the principal point is computed by 
a calibration process (Zhang, 1999).  

If the ideal projection model, pinhole model 
camera, is modified with these parameters to adapt 
it to the formation image process and a CCD 
camera is used, the Equation 5 can be rewritten in 
the following way: 

 
  CCfs PKPKKp ⋅Π⋅=⋅Π⋅⋅= 00 (6) 

 
where the triangular matrix, K=Ks ·Kf , is known as 
the calibration matrix or intrinsic parameters matrix 
and its general form is:  
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A calibrated camera with a checkboard pattern 

has been used in this work. The values for K are: 
f=21mm, sx=96.6pixels/mm, sy=89.3pixels/mm, 
sθ=0, ox=331pixels y oy=240 pixels. 

4 MINIMIZING OCCLUSIONS 

The aim of the work presented in this paper is to 
minimize the zones of occlusions of an object in a 
scene in which several objects are present. This 
object has part of its surface occluded by other 
objects.  A camera moving in front of the scene is 
used to obtain a viewpoint that reduces the occlusion 
zone of the object desired. Thus, the visibility of the 
object partially occluded will be improved. This 
means that more surface of the object desired can be 
captured by camera. 

In the time 0, the initial camera position is given 
by . On the other hand  where i >0 represents 
the camera position at every moment of time. In 
addition, the camera position which offers the best 
viewpoint is represented by . This camera 
position is the position which minimizes the 
occlusion zone of the desired object, and which 
maximizes its visible surface. 

0C iC

*iC

In order to avoid modifying the intrinsic 
parameters matrix of the camera, the space of 
movements for the camera has been limited. Thus 
the movement of the camera has been planned like a 
point which is moved on a hemispheric surface. This 
way the objects in the scene are located in the center  
of the hemisphere and the camera can only be 
located in positions which maintain the same 
distance to the objects that shown by . Therefore, 
the distance between camera and objects does not 
change. This distance is determined by the ratio of 
the hemisphere, r, which limits the space search of 
the possible position for the camera. As a result, the 
camera does not need to be recalibrated because it is 
not necessary to obtain a new focal length. A study 
about the suitable movement of a camera into 
regions sphere is shown in (Wunsch, 1997). 

iC
0C

Each camera position is determined by two 
parameters: length and latitude. Each position, 

( )ZYXPC ,,  is defined by the displacements in 
length relative to the initial position, , which is 
determined by the angle 

0C
[ ]πθ 2,0∈  and by the 

displacements in latitude which is determined by the 
angle [ ]2,0 πϕ∈ . This way, it is possible to define 
any possible position which can be adopted by the 
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camera in the hemispheric search space. The greatest 
number of positions that the camera can adopt is 
defined by . This defines the 
complete space of camera position.  Displacements 
of 1 degree for length and latitude have been 
respectively taken. 

2..0/ π=∀ iC i

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Space of movements for the camera.  

The value for each iteration, determined by 
length and latitude angles, can be modified to 
increase or to reduce the search space of camera 
positions. These parameters are chosen depending 
on the velocity of computation for the analysis of 
camera positions, and the precision to compute the 
best camera position for a good viewpoint. 

To obtain the best camera position, two 
parameters have been evaluated: distances and areas.  
If the zones of occlusion detected in the image must 
be diminished, the objects in image space must be 
separated as far as possible.  

 
 is *iC )}1,(max{/ +kokodC i  in image i (8) 

 
Therefore, the first evaluated parameter is the 

distance between objects. The minimum distance 
between two objects represented in image space, ok 
and ok+1 is chosen as the minimum distance between 
the points of each object. It is described as: 

 
 )}1,(min{)1,( +=+ kpkpdkokod  (9) 

 
where ),...,( 1 knk ppkp =

p ∈=

 is the vector of points 
which  represent the object ok in space image, and 
where each point of object . 2),( Rvuki kiki

The distance is computed as the length of the 
line segment between them. Two kinds of distance 
are used: the distance between the centroid of 
objects and the distance between the points of edges, 
which represent the object boundaries. In three-
space, the distance does not change because the 
objects are not in movement. Nevertheless, in image 
space, the distance changes because the position of 

an object in relation to another depends on the 
viewpoint of the camera which is used to capture the 
image. A comparison of both distance parameters is 
shown in Figure 3. The distances computed among 
edge points decreases and converge to zero when an 
object occludes another.  Although, if the distance is 
computed from the centroids of the segmented 
region, it can be unstable because when an object 
occludes another, the first modifies the centroid of 
the second. The second parameter is the area of each 
object.  This is the visible surface of each object. For 
the study of the object areas, two cases can be 
considered.  

ϕ
θ

r

iC

0C

First case: The viewpoint of camera is not 
changed and only the location of an object is 
modified until another is occluded (the movement is 
in the same orthogonal plane relative to the camera). 
So, the visible surface of the object occluded has 
been decreased and the rest of the objects maintain 
the same area visible. This is shown in Figure 4. 

Second case: The viewpoint of the camera is 
changed and a new perspective is made in the image 
captured by it. Thus, the area of each object is 
changed (see Figure 5). But also, when several poses 
of camera compute a measure of distance, this fact 
indicates that occlusions are not present. 
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Figure 3: Distances between objects evaluated for the 
images shown in Figure 4. 
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Figure 4: Distances computed among synthetic objects in real images. a) Image sequence with movement of an object.  
b) Objects segmented from colour and edges, and distances computed from points of edges. 

Figure 5: Distances computed among real objects in images. a) An assembly of several objects. b) Distance considering 
center of gravity. c) Distance considering points of edges. d) Distance considering only optimized points of edges. 

Thus, the measure of area of each object must be 
evaluated and the best pose of camera is one in 
which the perspective in the image maximizes the 
sum of areas of each object.  

Figure 5b shows the experimental results of 
applying a colour segmentation process to obtain 
object regions and, in this way, computing areas 
(Gil, 2006). In addition, only the segmented regions 
with a number of pixels major than 5% of pixels in 
image are taken as objects except the background 
which is the region with the major number of pixels. 
For these regions, not only the centroids are 
computed but also the distances between them. For 
this experiment, the segmentation process detects 6 
regions, however only 3 regions are marked as 
objects from 3 automatic thresholds by each colour 
component.  

Figure 5c shows the edge segmentation process 
of colour regions computed in Figure 5b and the 
distance computed between points of edges belongs 

to different objects. Finally, Figure 5d shows the 
distance computed between objects when only 
optimized edges are considered. The optimized 
edges are the detected edges which have a number of 
points major than the standard deviation. The 
standard deviation determines the measure of 
variability of the number points which determine an 
edge from its mean. For this experiment, the 
detected edges have been 9 and 13 respectively, and 
the optimized edges 3 and 5 respectively. These 
edges are approached by segments.  

Table 1: Distances between objects computed from the 
two real views shown in Figure 5 using centroids and 
points of edge. 

Objects View 1 View 2 
d(1,2) 208,129 (129,448) 252,621 (145) 
d(1,3) 112,397 (6,403) 123,465 (4,123) 
d(2,3) 96,714 (14,422) 129,176 (9,055) 

a)

b)

b)a) c)  d) 
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Table 1 shows how the distances computed from 
centroids are increased if the camera makes the 
movement shown in Figure 5. Nevertheless, the 
distances computed from the points of edges can be 
increased slowly if the real distance between objects 
is closely near to zero. This fact is due to small 
instabilities when two real images with different 
perspective of a same scene are used to obtain 
segments of boundary. Then, not always the same 
points are detected in both images. 

Although, this is not a problem because the 
computed distances are always calculated from 
edges back-projected in virtual images. Therefore, 
the same points of edges appear in all the virtual 
images, and only their positions in image are 
changed. 

5 POSE CAMERA TO MINIMIZE 
OCCLUSION 

RGB-colour images with size 640x480 have been 
used in this work. The steps to explain this work are 
detailed as follows.  

In the first step, an initial image is captured from 
the initial camera pose, . The 2D-points into 
initial image are obtained from a colour and edges 
segmentation process (Gil, 2006). An example of 
this process has been shown in Figure 5. Next, the 
distances between objects and its areas are computed 
for this initial image. Afterwards, for this first 
image, Equation 3 give the transformation between 
world coordinates and camera coordinates to obtain 
3D-points relative to . Also, the projective 
matrix, Π, maps 3D-points, relative to , to image 
points according to Equation 6. Given the 
points in an image, a set of 3D-points in space that 
map these points can be determined by means of 
back-projection of 2D-points. That is: 

iC

iC
iC

( vup , )

 
 ,  i

C
Wi pTKpP i

++ ⋅Π⋅=Π= )( 0 ni ..1/ = (10) 

 
where n is number of position for the camera and the 
pseudo-inverse of Π is the matrix Π+= Π T(ΠΠ T)-1 
which verify that ΠΠ+=I.  Equation 10 can be 
rewritten as a homography matrix, so that: 
 

i
i pHP 1−=  (11) 

 
When the 3D-points are known, the second step 

consists of computing the projections of the 3D-
points which belong to objects from space of camera 
poses (see Figure 2). This means that the 3D-poins 
are mapped onto each virtual image for each camera 

pose, as shown in Figure 6. Thus, virtual 2D-points 
are computed. It is given by:  

 
i

iii
i pHHPHp 1

11
1 −

++
+ =⋅=  (12) 

 
These virtual points determine the regions and edges 
of objects in virtual images. Finally, the distances 
between objects and areas of each object are 
computed in each virtual image (Section 4). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: a) Mapping points onto virtual images according 
to camera movement. A displacement in length has been 
mapped. b) CAD-Model of assembly used in Figure 5. 

Figure 7: Back-projections onto virtual images from 
camera movements. 

Therefore, a set of iC  are evaluated as shown 
in Figure 2. And the back-projection for each iC  
is computed (see Figure 7). Concluding, the best 
pose of the camera is determined by the 
transformation which maximizes the distances and 
the areas in the space of virtual images. This 
transformation is given by the perspective matrix, 

M T
M T

PHp i
i
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+ =
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b) 
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and it determines what transformations iC
W  and 

iC are more suitable. Afterwards, a robot PA-10 
from Mitsubishi, with 7 degrees of freedom, moves  
the camera mounted at its end to more suitable 
computed pose.  

R
W t

6 CONCLUSIONS 

The presented work provides an input to an object 
recognition process. Thus, a method based on 
extraction of characteristics in image, which is  
based on the evaluation of the distances among these 
characteristics, is used to determine when an 
occlusion can appear. In addition, the method 
evaluates the camera pose of a virtual way from the 
back-projections of the characteristics detected in a 
real image. The back-projections determine how the 
characteristics are projected in virtual images 
defined by different camera poses without the 
necessity of camera is really moved. The 
experimental results have shown that the proposed 
estimation can successfully be used to determine the 
camera pose that is not too sensitive to occlusions. 
However, the approach proposed does not provide 
an optimal solution. This could be solved by 
applying visual control techniques which are 
currently under investigation.  

Our future work will extend this approach to 
incorporate visual servoing in camera pose, allowing 
for a robust positioning camera. A visual servoing 
system with a configuration ‘eye-in-hand’ can be 
used to evaluate each camera pose (Pomares, 2006). 
Thus, the errors can be decreased and the trajectory 
can be changed during the movement. In addition, 
the information provided from a model CAD of the 
objects (see Figure 6b) can be used to verify camera 
poses in which it is located. 
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