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Abstract: This work presents a method for planning sinusoidal trajectories for an actuated joint, so that the oscillation 
frequency follows linear profiles, like trapezoidal ones, defined by the user or by a high level planner. The 
planning method adds a cubic polynomial function for the last segment of the trajectory in order to reach a 
desired final position of the joint. We apply this planning method to an underactuated bipedal mechanism 
which gait is generated by the oscillatory movement of its tail. Using linear frequency profiles allow us to 
modify the speed of the mechanism and to study the efficiency of the system at different speed values. 

1 INTRODUCTION 

Trapezoidal and linear velocity profiles are widely 
used in trajectory planning for mobile robots and 
robot manipulators. The necessary procedure for 
defining this kind of trajectories can be found in 
many robotic textbooks (Spong, 1989, Sciavicco, 
1996, Craig, 2006). In other robotic areas, as in the 
case of walking machines and nonholonomic 
locomotion systems, the robot joints execute 
oscillatory motions, and some planning methods are 
based on using sinusoidal trajectories with constant 
frequencies (Morimoto, 2006, Sfakiotakis, 2006, 
Murray, 1993). In (Berenguer, 2006) we presented 
an underactuated bipedal mechanism that is able to 
walk using only one actuator that moves a tail 
following a sinusoidal trajectory. The displacement 
velocity of these systems depends on the oscillation 
frequencies together with other parameters. The 
planning method presented here provides continuous 
sinusoidal joint trajectories that follow desired 
piecewise-linear frequency profiles and generate 
smooth variation of the systems speed. 

On the other hand, swept sinusoids (chirps) are 
usually used for identifying and modelling actuators 
and mechanisms (McClung, 2004, Leavitt, 2006). In 
this work, we estimate the optimal stride frequency 

of a biped by means of analyzing the step length at 
different frequencies, during the execution of a 
trajectory generated by the proposed planning 
method.  

This paper is organized as follows. Next section 
presents an initial example problem and shows 
perhaps a common beginner’s mistake in the way of 
solving this problem. The correct problem’s solution 
is also provided in this section. Section III sets out 
the planning problem in a general form and presents 
the proposed solution method. Section IV shows the 
application of this method to a bipedal model and 
how we can use the results for analyzing the 
efficiency of the model at different speeds. Finally, 
section V presents conclusions and future work. 

2 AN INITIAL EXAMPLE 

Suppose we want to generate a sinusoidal trajectory 
with unit amplitude for a robot joint. The joint is 
initially at its central position (0rad) with zero 
velocity, and will start to oscillate with an increasing 
frequency. The joint must reach a frequency of 
πrad/s at instant t=10s and keep this value during 20 
seconds. Finally, the joint must reduce its frequency 
to zero and achieve the central position again at 
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instant t=40s. Figure 1 shows this trapezoidal 
frequency profile and a continuous joint trajectory 
q(t) that follows it and finishes at zero position.   

As a first solution to this problem, a beginner 
might propose the expression in (1) for the joint 
trajectory q(t). This is a sine function and we can 
check that the function ω(t) follows the trapezoidal 
profile. 
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Figure 2 shows this function (1) and of course 

this is not the correct solution. We can see the reason 
for this result by analyzing the time derivative  
given by (2). 
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First, at instant t=10s, the left value of  is 

twice as much as the right value, and we can see this 
effect in the slope change of q(t) in figure 2. We find 
a similar result at time t=30s, where there is a 
discontinuity in  from π to -2π. It is also 
unexpected that  increases during the last 
trajectory segment and at t=40s, when ω(t)=0rad/s 
and we expected zero velocity,  its value is -4π rad/s.  

)t(q

)t(q
)t(q

The right solution for this example problem is 
(3), where θ(t) is the phase of the sinusoidal 
function, and its time derivative  also follows 
the trapezoidal profile in figure 1.  
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Using (3) the final value of q(t) is the desired 

zero value. In a general problem, a desired final 
value of q(t) can’t be reached if we use only linear 
functions in the profile and impose time instants and  
frequency values. We will see that we need another 
degree of freedom using, for example, a last 

quadratic function in the profile, to obtain a desired 
final value for the sinusoidal trajectory. 
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Figure 1: (a) Desired trapezoidal frequency profile and (b) 
desired trajectory for an actuated robot joint. 
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Figure 2: Graphical representation of function (1). 

2.1 Basic Definitions 

Given a sinusoidal function (sine or cosine) like (4), 
the argument θ(t) is the instantaneous phase and its 
time derivative is the instantaneous radian 
frequency. When θ(t) varies linearly with time, its 
time derivative is constant and its value is the radian 
frequency, as in the time interval [10s, 30s] in (3).  

 
( ))t(sinA)t(f θ=  (4) 

 
When the phase is quadratic, as in the first and 

last intervals in (3), the instantaneous radian 
frequency varies linearly between two values and 
f(t) is called a chirp function. So, the profile in 
figure 1 shows the instantaneous radian frequency of 
a sinusoidal function and represents the 
concatenation of chirp functions. We will consider 
here constant frequency sinusoids as a subset of 
chirp functions, with the same initial and final 
frequencies. 
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3 INTERPOLATION OF CHIRP 
FUNCTIONS 

We now present a method for planning trajectories 
without discontinuities in the joint position and 
velocity by means of the concatenation of chirp 
functions. First we obtain the solution without a 
desired final position, and in section 3.1 we add this 
constraint to the problem and solve it using a final 
cubic phase function.  

Problem statement: Given a set of N+1 time 
instants ti (for i=1 to N+1), and a set of N+1 desired 
radian frequencies ωi at each instant ti, find a set of 
N chirp functions fi(t) so that their concatenation 
represents a continuous trajectory with amplitude A, 
initial value q(t1)=q1, and which instantaneous 
frequency interpolates the frequencies ωi.   

To solve this problem, we will use the function 
family given by (5).  
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The problem centres on finding the coefficients 

of the phases θi(t), and it is basically the same 
problem of interpolating trajectories with linear 
velocity profiles.  

The set of conditions that allow us to solve this 
problem is: 
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From these expressions, the values of ai and bi 

are directly calculated, and the ci coefficients, that 
represent the initial phase in each profile’s segment, 
must be calculated iteratively: 
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The main problem of this solution is that we can 

not establish a desired final value of the joint 
position.  

3.1 Concatenation of Chirp Functions 
with a Final Cubic Phase 

Usually, a planned trajectory finishes with zero 
velocity, and in these cases it is interesting also to 
reach a desired joint position qN. This condition adds 
a new constraint for selecting the last trajectory 
function fN(t) and therefore the phase θN(t) needs 
another degree of freedom, that is, we need to use a 
cubic function instead of a quadratic one: 
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The set of conditions that θN(t) must satisfy is:  
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The first of these conditions has many solutions, 

so we will find the solution corresponding to an 
almost linear profile, that is, the final phase value 
will be the nearest to the final value that we will 
obtain from (7) for i=N. To obtain the coefficients k, 
l, m and n, we use the next procedure: 

 
1-. First, we calculate the final phase in the quadratic 
case using the coefficients aN, bN and cN obtained 
from (7), and also the integer number of revolutions 
around the unit circle: 
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 (11) 

 
2-. Next, we select an angle α∈[0, 2π), in the same 
side of the unit circle as θquad, that satisfies the first 
condition in (9).  
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If α<0, we will add 2π (α=α+2π). 
 

3-. The desired phase at tN+1 is then given by (13). 
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4-. Finally, we calculate the coefficients by means of 
(14). These expressions are obtained from (13) and 
the last three conditions in (9). 
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4 APPLICATION TO AN 
UNDERACTUATED BIPEDAL 
MECHANISM 

We now present experimental results from 
simulations where we apply this trajectory planning 
method to a bipedal walking model. This model is 
described in more detail in (Berenguer, 2007), and 
we now include a brief description. 

4.1 Bipedal Model and Gait 
Descriptions 

The walking model, shown in figure 3, consists of a 
light body, a tail connected to it and two legs. Each 
leg is formed by a parallel link mechanism and a flat 
rectangular foot. The tail, with an almost horizontal 
displacement, works as a counterbalance and 
controls the movement of the biped.  

The joint connecting the tail to the body is 
actuated by an electric motor and it is the only 
actuated degree of freedom. Connecting the body to 
each leg are the top joints. Their rotation axis is 
normal to the frontal plane, so they allow the 
mechanism to raise a foot while both feet remain 
parallel to the ground. These top joints are passive 
joints with negligible friction. Finally, each parallel 
link mechanism has four joints, and we consider that 
in one of these joints (the ankle joint) there is a 
spring with friction. Due to the characteristics of the 
parallel link mechanism, these four joints represent 
only one passive degree of freedom for each leg of 
the mechanism. In summary, the model has eleven 
joints, four passive degrees of freedom and one 
actuated degree of freedom. 

We now describe how the mechanism can walk 
when the tail moves side to side in an oscillating 
way. We start by supposing that the biped is at an 
equilibrium position with the tail in its central 

position (Fig.4.a). Both ankle springs hold the 
weight of the mechanism and it stays almost vertical. 

When the tail moves to a lateral position of the 
mechanism, its mass acts as a counterbalance and 
produces the rise of one of the feet (Fig.4.b). Then 
only one spring holds the body, so the stance leg 
falls forward and the swing leg moves forward as a 
pendulum until the foot contacts the ground (fig.4.c). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Model of the biped mechanism. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: Phases during a stride. 
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During the new double support phase, the tail 
moves to the other side and the ankle springs move 
the body backwards (fig.4.d). When the tail reaches 
the other side, the second foot rises and a new step is 
generated (fig.4.e). In this single support phase, the 
spring of the foot that is in the ground produces 
enough torque to take the body forward again. This 
second step finishes with a new contact of the swing 
leg with the ground (fig.4.f).  

Figure 4.g represents the last instant of this initial 
stride, and the starting point of a new one or the final 
configuration of a completed trajectory. We can see 
that if the tail stops, the system will stay in a steady 
configuration with no energy cost. 

4.2 Example of Trajectory Generation 

We want to design a trajectory that allows us to 
evaluate and analyze the biped behaviour at three 
different oscillation frequencies. The frequency 
profile must achieve these frequencies in a linear 
way, and keep them during some periods, so we can 
suppose a quasi-periodic gait at the end of each 
constant frequency segment. The desired oscillation 
amplitude is 1.5 rad and the radian frequencies and 
time instants are:  
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Using (7) we obtain q(t) with a linear profile shown 
in figure 5. 
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As we can see in figure 6, this solution provides 

the final joint position q(300)= -0.76rad. If the 
desired final tail position is q=0rad, it will be 
necessary to apply the procedure in section 3.1. The 
solution in this case is the same as in (16) but with 
the last phase θ7(t) given by:  
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Figure 5 shows the frequency profiles of both 
solutions. We can see a most linear segment in the 
last time interval for the second solution which 
practically overlaps the first solution’s profile. 
Figure 6 shows both trajectories nearly overlapping 
during the last time interval, with the same number 
of oscillations but different final value.  
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Figure 5: Instantaneous frequency profiles. 

 

 

 

Figure 6: Trajectory of the tail joint. 

4.3 Evaluation of the Mechanism 
Behaviour  

The bipedal mechanism walks with a forward speed 
which is proportional to the stride length and 
frequency. The stride frequency is the same as the 
tail oscillation frequency and the stride length 
depends on the tail frequency and also on other 
parameters of the model. If we fix the values of 
these other parameters, the speed and energy 
consumption of the mechanism will depend in a non 
linear way on the stride frequency. Using linear 
frequency profiles we can analyze this dependency 
and estimate a near optimal joint frequency for an 
established set of model parameters.  

Figure 7 shows the distance covered by the biped 
and the mechanical energy required by the tail joint 
during the execution of the last trajectory defined in 
section 4.2. The relative small amplitude oscillations 
are due to the forward and backward oscillation of 
the body during walking. The mechanical energy has 
been calculated by the integration of the absolute 
value of the product between the angular velocity of 
the joint and the required torque. We observe an 
important difference in the walking speed for the 
first and second oscillation frequencies, and a much 
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smaller variation for the second and third ones, 
while the power consumption varies significantly for 
these last frequencies. So, we find a loss of 
efficiency when we increment the stride frequency. 

Table 1 presents numerical data considering the 
last stride period just before a change in the 
oscillation frequency. We suppose that the gait is 
almost periodic during this last period. Figure 8 
shows these values and also an estimation of the 
same magnitudes at different frequencies. This 
estimation is obtained from the last profile’s 
segment, which covers all frequencies between 0 
and 1.5rad/s, considering each half-oscillation as an 
approximation of half-period of a sinusoid. 

As we can see, speed goes up quickly at low 
frequencies because stride length also grows. For 
frequencies greater than 1.04rad/s, stride length 
decreases with frequency and speed rises more 
slowly. We also notice that speed and power have 
similar behaviour (S-curve) before this frequency. 
After that, the power slope increases whereas speed 
slope decreases. We consider this 1.04rad/s 
frequency as a near optimal oscillation frequency for 
the actuated joint.  

Table 1: Stride length, speed and mechanical power at 
three different stride frequencies during a stride. 

Stride 
frequency 

(rad/s) 

Stride 
period 

(s) 

Stride 
length 

(m) 

Speed 
(m/s) 
x10-3

Power 
(W) 
x10-3

0.5 12.57 0.0807 6.422 1.386 
1.0 6.283 0.1992 31.704 10.707 
1.5 4.188 0.1767 42.184 18.694 

 
 
 
 
 
 
 
 

Figure 7: Crossed distance and mechanical energy during 
the trajectory execution. 
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Figure 8: Stride length, mechanism speed and required 
mechanical power at different joint frequencies. 

5 CONCLUSIONS 

In this work we propose a method for planning 
oscillatory trajectories based on the concatenation of 
chirp functions. By means of adding a final cubic 
function, the joint can also reach a desired final 
position following a nearly linear frequency profile. 
Our aim is to apply this method to a bipedal robot 
that walks moving a tail in an oscillatory way.  

This planning method allows us to study the gait 
efficiency at different stride frequencies during the 
design and adjusting phase. On the other hand, the 
implementation of this planner will allow a real 
prototype to select the forward speed as a function of 
the obstacles density, ground inclination or for 
optimization requirements. 
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