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Abstract: This paper deals with the synthesis of a Wavelet Neural Network adaptive controller for a class of second 
order systems. Due to its fast convergence, the wavelet neural network is used to approximate the unknown 
system dynamics. The proposed approximator will be on-line adjusted according to the adaptation laws 
deduced from the stability analysis. To ensure the robustness of the closed loop system, a modified sliding 
mode control signal is used. In this work, variable sliding surface is considered to reduce the starting energy 
without deteriorating the tracking performances. Furthermore, the knowledge of the upper bounds of both 
the external disturbances and the approximation errors is not needed. The global stability of the closed loop 
system is guaranteed in the sense of Lyapunov. Finally, a simulation example is presented to illustrate the 
efficiency of the developed approach. 

1 INTRODUCTION 

In last decade, active research has been carried out 
in neural network control (Omidvar, 97) (Noriega, 98) 
(Lin, 98). The characteristics of fault tolerance, 
parallelism and learning suggest that they may be 
good candidates for implementing real-time adaptive 
control for nonlinear dynamical systems. It has been 
proven that an artificial neural network can 
approximate a wide range of nonlinear functions to 
any desired degree of accuracy under certain 
conditions (Omidvar, 97). It is generally understood 
that the selection of the neural network training 
algorithm plays an important role for most neural 
network applications. In the conventional gradient-
descent-type weight adaptation, the sensitivity of the 
controlled system is required in the online training 
process (Lin, 98). However, it is difficult to acquire 
sensitivity information for unknown or highly 
nonlinear dynamics. Moreover, the local minimum 
of the performance index remains variable (Omidvar, 
97). In practical control applications, it is desirable 
to have a systematic method for ensuring the 

stability, robustness, and performance properties of 
the overall system. Recently, several neural network 
control approaches have been proposed based on 
Lyapunov stability theory (Fabri, 96) (Farrell, 98) 
(Seshagiri, 00). One main advantage of these control 
schemes is that the adaptive laws were derived based 
on the Lyapunov synthesis method and therefore, the 
stability of the control system is guaranteed. 
However, some constraint conditions should be 
assumed in the control process, e.g., the 
approximation error, optimal parameter vectors, or 
higher order terms in a Taylor series expansion of 
the nonlinear control law are bounded. Also, the 
prior knowledge of the controlled system may be 
required, e.g., the external disturbance is bounded or 
all states of the controlled system are measurable. 
These requirements are not easy to satisfy in 
practical control applications. Recently, Wavelet 
Neural Networks (WNN) have became a very active 
subject in many scientific and engineering research 
areas (Zhang, 95) (Kostka, 00) (Lin, 03) (Ho, 05). 
The WNN have been proposed as a universal tool 
for functional approximation, which combine the 
capability of artificial neural networks in learning 
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and the capability of wavelet decomposition. The 
WNN allows resolving the conventional problem of 
poor convergence or even divergence encountered in 
other kinds of neural networks. It can also increase 
convergence speed (Delyon, 95) (Hsu, 06).  

Sliding mode control is unique in its ability to 
achieve accurate, robust, decoupled tracking for a 
class of nonlinear time-varying systems in the 
presence of disturbances and parameter variations 
(Utkin, 77) (Salamci, 01). The tracking of the 
desired trajectory is achieved through two phases: an 
approach phase, where the system is controlled to 
attain a predefined sliding surface, and a sliding 
phase along the sliding surface. However, in order to 
deal with the presence of modelling imprecision and 
disturbances, the control law has to be discontinuous 
across the sliding surface. Since the implementation 
of the associated control switching is necessarily 
imperfect, this leads to chattering which involves 
high control activity and may excite high-frequency 
dynamics and can, therefore, damage the plant 
(Slotine, 91). To resolve this problem, many 
solutions have been proposed in the literature 
(Slotine, 91)- (Lin, 02) (Berstecher, 01) (Hwang, 01) 
(Lin, 95) (Wai, 04). In (Slotine, 91), a boundary-
layer in the neighbouring of the sliding surface has 
been defined to obtain a continuous behaviour of the 
control signal across this surface. Based on the same 
idea, a fuzzy system has been used to define this 
boundary layer and to exploit the human knowledge 
(Lin, 02). To remove the discontinuity in the control 
signal, some approaches combining sliding mode 
control and classical controller using a fuzzy 
supervisor can be cited (Berstecher, 01) (Hwang, 01) 
(Lin, 95). These methods resolve the problem related 
to the chattering phenomenon. However, to design 
the switching signal assuring the approaching phase, 
the upper bounds of both the external disturbances 
and the structural uncertainties must be well known. 
To overcome these problems, the authors of 
(Hamzaoui, 04) (Wai, 04) have proposed an 
approximation of the switching signal by an adaptive 
fuzzy system to eliminate the chattering 
phenomenon without requiring any particular 
knowledge about the upper bounds of both 
approximation errors and external disturbances. 
Nevertheless, the global stability of the closed loop 
system in these approaches is guaranteed only for a 
good approximation level or for a particular choice 
of the initial values of the adjustable parameters.  

This paper proposes a wavelet Neural Network 
Adaptive Control (WNNAC) for a class of second-
order nonlinear, uncertain and perturbed systems; 
this controller combines the advantages of WNN 

identification and the robustness of sliding mode 
control. The control law is composed of two parts. 
The first one represents the WNN identifier that 
perform the online system dynamic function 
estimation. This identifier is adjusted according 
some adaptations laws deduced from the stability 
analysis. The second part of the control law 
represents the robust term which ensure the 
robustness of the closed loop system in the sense of 
sliding mode technique. This term is synthesised 
such that knowing of the upper bounds of the 
external disturbances is not required. Furthermore, 
the proposed control law uses a variable sliding 
surface to reduce the starting energy obtained by a 
classical sliding surface. The stability of the closed 
loop system is stated using the Lyapunov theory. To 
illustrate the efficiency of the proposed approach, a 
numerical simulation example is considered. 
The paper is organised as follows: Section 2 
illustrates the description of WNN networks. Section 
3 is dedicated to the formulation and the 
investigation of the control problem. In section 4, we 
present the synthesis of the proposed controller 
whose design procedure is explained in section 5. To 
show the efficiency of the proposed approach, a 
simulation example is presented in section 6.  

2 DESCRIPTION OF WAVELET 
NEURAL NETWORKS (WNNS) 

Wavelet neural networks are special case of feed-
forward neural networks. The main difference 
between the artificial neural networks (ANN) and 
WNN is that, in ANN the nonlinearities are 
approximated by superposition of sigmoid functions. 
However, in WNN, nonlinearities are approximated 
by superposition of wavelet functions (Oussar, 98). 
Similar to ANN, WNN are also shown to have 
universal approximation property (Yoo, 05) 
(Sureshbabu, 99). 

Similar to the ANN, the WNN consists of an 
input layer, a hidden layer, and an output layer. The 
WNN model structure shown in Figure 1 consists of 
'n' input neurons 1 2( , , , )nx x x…  in the input layer, 
equal to the number of input variables. The input 
neurons are connected to the next layer of neurons, 
called the hidden layer neurons which make use of 
wavelets as transformation functions. These neurons 
are termed as "wavelons". In this work, the Mexican 
hat (1) is used as a 'mother' wavelet ψ .  

2 2( ) (1 ) exp( 0.5 )x x xψ = − × −  (1) 
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Several daughters of wavelets jψ can be constructed 
by translating and dilating the mother wavelet ψ  
according to (2).  

 

( ) j j
j

j

t
z

d
σ

ψ ψ
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (2) 
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1

n

j ij i
i

v xσ
=

=∑ , ijv  is input scaling vector 

while jt , and jd  represent the translation and 
dilation factors of the wavelet. 

For i and j represent the indices of input, hidden, and 
output layers respectively, the output from the 
hidden wavelon, jH  is given by (3).  

1
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j j
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This output is connected directly to the output layer 
neurons. The output layer usually consists of a linear 
output neuron. Mathematically, the final production 
obtained from figure 1 can be represented by (4). 
 

T T
outputY C A X B= Ψ + +  (4) 

 
with [ ]1

TT
JC c c= , [ ]1 JH HΨ =  and 

[ ]1
T

nA a a=  

 

 

 

 

 

 

Figure 1: The structure of the used WNN. 

The approximator in figure 1 includes three 
independent adaptable parts; constant, linear and 
non-linear given by B , A  and C  respectively. 
Thus, the approximator (4) is able to estimate 
efficiently all possible systems static or dynamics by 
managing learning rate of each part. 

3 PROBLEM STATEMENT 

Consider the following 2nd order system: 
 

( , ) ( , )y f y y g y y u d= + +  (5) 
 

where f  and g  are two unknown continuous 
functions. u  and y  designate the input and output 
of the system respectively while d  is an external 
disturbance assumed to be unknown but bounded. 
The input-output system (5) includes a large class of 
non-linear second-order systems likes Duffing 
oscillator and mass-spring-damper system 
(Bartoloni, 97) (Roup, 01) (Chang, 05). 
In this work, we assume that the function 

( , )g y y can be written as a sum of a known nominal 
term and an uncertain as follows  

 
0( , ) ( , ) ( , )gg y y g y y y yδ= +   

 
In this case, equation (5) can be rewritten as: 

 
0( , ) ( , ) dy f y y g y y u δ= + +  (6) 

 
where d gu dδ δ= + . 

The objective of this work is to synthesize a 
robust controller, based on sliding mode, able to 
force the output of the system y to follow a bounded 
reference trajectory dy  under the constraint that all 
involved signals are bounded. 
We denote the tracking error by de y y= −  and the 
sliding surface by: 

s e eλ= +  (7) 
Since using a large value of the slop λ  gives a fast 
system response. However, a too large value can 
lead to overshoot and even instability. From the 
other side, small value of λ  results a slow system 
response. To overcome this problem, the slope can 
be adapted according to tracking error value 

( )e t (Liu, 05). In this case, equation (7) becomes 
( )s e e eλ= +  (8) 

where ( )
k

e
e

λ

λ
λ

ε
=

+
, kλ is a given positive constant 

and λε is a small positive scalar given by the 
designer.  
Differentially according time of equation (8) gives 

( ) ( ) ( ) ( )
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s t e t e t e t

y y e t e t

λ λ

λ λ

= + +

= − + +
 (9) 

is ijv  

is ia  
is jc  
is B  

Bias 

X1 

X2 

Xn 

ψj 

ψ1 

ψ2 
?  

youtput 

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

62



 

Using (6), equation (9) becomes 

0( ) ( ) ( )d ds t y f g u e t e tδ λ λ= − − − + +  (10) 
  

0( ) ( ) ( )d ds t f e t g u y e tδ λ λ= − − + − + +  (11) 
 

0( ) ( , , ) ( )d ds t F y y y g u y e tλ= − − + +  (12) 
where ( , , ) ( )d dF y y y f e tδ λ= + − .  
In the next section, the problem of ( , , )dF y y y  term 
estimation will be treated   

4 THE WNN ADAPTIVE 
CONTROLLER SYNTHEISIS 

It is worthy to say that if the system output and its 
time derivative converge to their reference signal, 
the unknown function ( , , )dF y y y  goes 
to ( , )d dF y y . To approximate ( , , )dF y y y  we can 
use a WNN in the form 

ˆ ( , ) T T
d d dF y y C A Y Bψ= + +   

with dy and dy as inputs (Chang, 05). 
Consider the pre-assigned constraint regions of C , 
A  and B  defined respectively as: 

{ }/ , 0C c cC C M MΩ = ≤ >   

{ }/ , 0A A AA A M MΩ = ≤ >  

{ }/ , 0B B BB B M MΩ = ≤ >   
According to the approximation theorem, there 
exists a finite optimal value of ( , )d dF y y  noted by:  

** * *ˆ ( , )
TT

d d dF y y C A Y Bψ= + +   

( CC∈Ω , AA∈Ω  and BB∈Ω ) such that: 
*ˆ( , ) ( , )F d d d dF y y F y yδ = −    

hence, equation (12) can be rewritten as: 
*

0
ˆ( ) ( , )

( )
d d F d

d

s t F y y g u y
e t

δ
λ δ

= − + − +

+ +
 (13) 

To guarantee the global stability of the closed loop 
system and the convergence of the tracking error to 
zero, we propose the following control law: 

 

1
0 2

ˆ( ) ( , )d d d
su t g F y y y eλ
ρ

− ⎡ ⎤
= − + + +⎢ ⎥

⎣ ⎦
 (14) 

  
Substituting (14) in (13) yields to: 

 

*

2

ˆ ˆ( ) ( , ) ( , )d d d d d

d F d

s t F y y F y y y
se y eλ λ δ δ
ρ

= − + −

− + + + + −
 (15) 

 
which can be rewritten as 

 

2

( ) T T
d

F d

s t C A y B
s

ψ

δ δ
ρ

= + +

+ + −
 (16) 

To study the stability of the closed loop system and 
to find the adaptation laws for the adjustable 
parameters, we consider the following Lyapunov 
function: 

 
2 21 1 1 1( )

2 2 2 2
T T

C A B
v t s C C A A B

γ γ γ
= + +  (17) 

 
The time derivative of ( )v t is given by: 

 
1 1 1( ) T T

C A B
v t ss C C A A BB

γ γ γ
= + +  (18) 

 
Substituting (16) in (18) gives: 

 

2( )

1 1 1

T T
d F d

T T

C A B

sv t s C A y B

C C A A BB

ψ δ δ
ρ

γ γ γ

⎛ ⎞
= + + + + −⎜ ⎟⎜ ⎟

⎝ ⎠

+ +

   

( )

( ) ( )

2

2
1( )

1 1

T
F d C

C

T
A d B

A B

sv t s s C C s

A A sy B B s

δ δ γ ψ
γρ

γ γ
γ γ

= + − + +

+ + + +

 (19) 

Choosing the following adaptation law 

CC sγ ψ= −  (20) 

A dA syγ= −  (21) 

BB sγ= −  (22) 
leads to: 

2

2( ) F d
sv t s sδ δ
ρ

= + −  (23) 

2 2

2 2

2

2

( ) 2
24 4

2
2 2

F

d

s s sv t

s s

ρδ
ρρ ρ

δ
ρ ρ

= − + −

+ −

 (24) 
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2 2

2
2 2 2 2

2

( )

2

F d

F d

s sv t

s

ρδ ρδ
ρ ρ

ρ δ ρ δ
ρ

⎛ ⎞ ⎛ ⎞
= − − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

+ + −

 (25) 

2
2 2 2

2( )
2 F d
sv t ρ δ ρ δ
ρ

≤ − + +  (26) 

Let , 0s
s
s

μ μ
⎧ ⎫⎪ ⎪Ω = ≤ >⎨ ⎬
⎪ ⎪⎩ ⎭

.  

According to the regions SΩ , CΩ , AΩ  and BΩ , 
there is a sufficient large constant maxV  such that 

max max , , , ( )
S C A Bs C A BV v t∈Ω ∈Ω ∈Ω ∈Ω≤  (Chang-05).  

Afterward, we can define 

max2e
e V
e

⎧ ⎫⎪ ⎪Ω = ≤⎨ ⎬
⎪ ⎪⎩ ⎭

  

and 
2

max
2

2
e

Ve
e k

λ

λ

ε⎧ ⎫⎪ ⎪Ω = ≤⎨ ⎬
⎪ ⎪⎩ ⎭

   

In the case where the sliding surface is outside the 
region SΩ , for choosing 

2 2

4 2
1 F dδ δ
ρ μ

+
>   

there exists a positive constant ζ  such that:  

( ) 2v t sζ≤ −  (27) 
From the definition of the constraint region, we have 
( ) max0v V≤ . From the inequality (23), we obtain 

( ) max( ) 0v t v V≤ ≤  which implies that ss∈Ω  for all 
0t ≥  and therefore ee∈Ω  and ee∈Ω  (Chang-05). 

Hence, s C A BΩ ×Ω ×Ω ×Ω  is an invariant set, we 
can conclude that all the variables are bounded. 
Since the Lyapunov function is negative outside the 
constraint set sΩ , then sliding surface is Uniformly 
Ultimately Bounded (UBB) and hence the tracking 
error is also UBB.  
By integrating the above inequality between 0 and T, 
we obtain: 

2
2 2 2

2
0 0 0

( ) (0)
2

T T T

F d
sv T v dt dt dtρ δ ρ δ
ρ

− ≤ − + +∫ ∫ ∫   

2
2 2 2

2
0 0 0

(0) ( )
2

T T T

F d
s dt v v T dt dtρ δ ρ δ
ρ

≤ − + +∫ ∫ ∫
 

(28) 

Since ( ) 0v T ≥ , we have 

2
2 2 2

2
0 0 0

2

T T T

F d
s dt dt dtρ δ ρ δ
ρ

≤ +∫ ∫ ∫   

or 

2 2 2 2

0 0 0

4 4
T T T

F ds dt dt dtρ δ ρ δ≤ +∫ ∫ ∫  (29) 

Using the Barbalat’s lemma (Wang, 94), one can see 
that the sliding surface converges asymptotically to 
zero despite the presence of external disturbances. 
Hence, the sliding surface is attractive, i.e., if the 
system attains the surface, it remains and converges 
toward the origin as demonstrated in (Utkin, 99).  
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Figure 2: Control scheme of the proposed approach. 
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Ĉ  

Â  

B̂  

dy  

dy  

CBA γγγ ,,  

 
Figure 3: Adaptive Wavelet Network illustration. 

5 DESIGN PROCEDURE 

The control scheme of the proposed approach and 
the adaptive WNN block are given respectively by 
figures 2 and 3. The control law (14) can be 
synthesised according to the following steps:  
Step 1: define the interval range for each input 
( , )d dy y  and the corresponding wavelet parameters 
(dilation and translation) such that input range is 
covered uniformly. To adapt on-line the adjustable 
parameters A , B  and C , we define the learning 
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rates Aγ , Bγ  and Cγ . To increase approximator 
nonlinearity, we choose Cγ  bigger than Aγ  and Bγ . 
Step 2: specify the parameters kλ  and λε to calculate 
the sliding surface given in (8). To deduce the 
control law (14), we choose ρ . This value represents 
a trade-off between the initial starting energy and the 
time response in transient state. 
Step 3: update the adjustable parameters of the 
WNN according to equation (20), (21) and (22). 

6 SIMULATION EXAMPLE 

In order to validate the proposed controller, the 
Wing-Rock Motion (WRM) system is considered in 
simulation. Indeed, some combat aircrafts often 
operate at subsonic speeds and high angles of attack. 
These aircrafts may become unstable due to 
oscillation, mainly a rolling motion known as WRM 
(Lan, 95) (Lin, 02). the dynamics of WRM system 
can be described in a state variable by: 

3
0 1 2 3 4 5y b b y b y b y y b y y b y
u d

= + + + + +

+ +
 (30) 

Where y is the roll angle, u is the control action and 
d is the external disturbance. The parameters related 
to ( 1,...,5)ib i = are the aerodynamic parameters 
given by: 

0 0b = , 1 -.01859521b = , 2 .015162375b = , 

3 4 5.06245153, .00954708 and .02145291.b b b= = =
According to the design procedure given in section 
5, we will define at first the AWNN. Indeed if we 
consider that cos( )dy t=  being the desired reference 
trajectory, then the interval range of the desired 
output (as well as the actual system output in case of 
perfect tracking)  will belongs always to the closed 
interval [-1, 1]. For the purpose of reliability and to 
give some relaxation to our controller, the interval 

]5.1,5.1[−  is considered as a universe of discourse 
for both of input and hidden layers in the WNN 
approximator. The number of wavelons (wavelet 
neurons) components used in the hidden layer are 
four which is enough for covering the interval [-1.5, 
1.5] adequately. For a WNN approximator, the 
number of waveleons components used in the hidden 
layer depends on the network input’s interval and 
dynamic complexity for the system to be 
approximated. Translation parameters selection is 
considered in a way that guarantees the uniform 
covering of the [-1.5, 1.5] interval simply using 
linspace Matlab© instruction. Dilation parameters 

specify the intersection amount between wavelons 
activation function (daughter function) which is 
chosen to be 0.5 such that the horizontal axes 

0.5y =  contains these intersection points. The 
adjustable parameters A , B and C  are initialized to 
zero such that random initialization case is avoided 
since it doesn’t gives neither same initials nor same 
training speed. Alternatively, these parameters might 
be chosen through some trials to achieve favourable 
transient control performance. For constants Aγ , Bγ  
and Cγ  corresponding to the learning rates, it is 
important to recognize there effects to approximate 
accurately the nonlinear system and to avoid 
masking nonlinear property in the structure shown in 
figure 1. For this, it is better choosing Cγ  much 
bigger than Aγ  and Bγ . In our example, the values 

10cγ = , 0.05Bγ = and 0.05Aγ =  have been 
considered. According to the second step in the 
design procedure, the variable sliding mode may be 
achieved through variation in surface slope ( )λ . For 
this we choose 20kλ =  and 0.5λε = .  
Several simulations have been done and figures 4 to 
6 show the results obtained for 0.5ρ =  where the 
system is subjected to external disturbance with 

0.3sin(2 )d t= . Figures 4 to 6 give the simulation 
results for two different initial positions. We remark 
that the system attains the reference trajectory 
rapidly despite that the initial condition is so far 
from the reference one. Short response time reflects 
the good convergence of WNN. Furthermore, figure 
6 shows the elimination of the chattering 
phenomenon and the absence of the abrupt 
variations appearing in classical sliding mode 
control. Comparing the obtained results with those 
in the case of linear sliding surface (λ  constant), the 
proposed approach guarantees the  same tracking 
performances with 40% initial control action 
reduction.  

7 CONCLUSION 

In this paper a robust adaptive wavelet neural 
network to control a class of nonlinear systems was 
presented. The combination of WNN and sliding 
mode control allows to develop a robust controller to 
guarantee the good tracking performances and the 
closed loop system stability. Considering a variable 
sliding surface reduces the starting energy without 
deteriorating the tracking performances. 
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Furthermore, no knowledge about of the upper 
bounds of both the external disturbances and the 
approximation errors is required to synthesis the 
control law. Simulation results have been presented 
to show the efficiency of the proposed approach.  
Current work is dedicated to the generalisation of 
this method to nth multi-input multi-output systems. 
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Figure 4: Evolution of the system output and its reference 
signal (-:yd, ..: y(t) with  y(0)=1.5; -.-: y(t) with  y(0)=0). 
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