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Abstract. In this paper, a bio-inspired stigmergy-based coordination approach 
is proposed for a distributed multi-robot system. This approach is inspired from 
the behavior of social insect swarming, where social insect colonies are able to 
build sophisticated structures and regulate the activities of millions of individu-
als by endowing each individual with simple rules based on local perception. A 
virtual pheromone mechanism is proposed as the message passing coordination 
scheme among the robots. The proposed algorithm has been implemented on 
embodied robot simulator Player/Stage, and the simulation results show the 
feasibility, robustness, and scalability of the methods under different dynamic 
environments with real-world constraints. 

1 Introduction 

The main challenges for swarm robots are to create intelligent agents that adapt their 
behaviors based on interaction with the environment and other robots, to become 
more proficient in their tasks over time, and to adapt to new situations as they occur. 
Typical problem domains for the study of swarm-based robotic systems include for-
aging [1], box-pushing [2], aggregation and segregation [3], formation forming [4], 
cooperative mapping [5], soccer tournaments [6], site preparation [7], sorting [8], and 
collective construction [9]. All of these systems consist of multiple robots or embod-
ied simulated agents acting autonomously based on their own individual decisions. 
However, not all of these control architectures are scalable to a large number of ro-
bots. For instance, most approaches rely on extensive global communication for co-
operation of swarm robots, which may yield stressing communication bottlenecks. 
Furthermore, the global communication requires high-power onboard transceivers in 
a large scale environment. However, most swarm robots are only equipped very lim-
ited sensing and communication capability.  

An alternative paradigm to tackle the scalability issue for swarm robots while 
maintaining robustness and individual simplicity is through Swarm Intelligence (SI), 
which is an innovative computational and behavioral metaphor for solving distributed 
problems by taking its inspiration from the behavior of social insects swarming, 
flocking, herding, and shoaling phenomena in vertebrates, where social insect colo-
nies are able to build sophisticated structures and regulate the activities of millions of 
individuals by endowing each individual with simple rules based on local perception.  

The abilities of such natural systems appear to transcend the abilities of the con-
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stituent individual agents. In most biological cases studies so far, robust and coordi-
nated group behavior has been found to be mediated by nothing more than a small set 
of simple local interactions between individuals, and between individuals and the 
environment.  

Reynold [10] built a computer simulation to model the motion of a flock of birds, 
called boids. He believes the motion of the boids, as a whole, is the result of the ac-
tions of each individual member that follow some simple rules. Ward et al. [11] 
evolved e-boids, groups of artificial fish capable of displaying schooling behavior. 
Spector et al. [12] used a genetic programming to evolve group behaviors for flying 
agents in a simulated environment. The above mentioned works suggest that artificial 
evolution can be successfully applied to synthesize effective collective behaviors. 
And the swarm-bot [13] developed a new robotic system consisting of a swarm of s-
bots, mobile robots with the ability to connect to and to disconnect from each other 
depends on different environments and applications, which is based on behaviors of 
ant systems. Another swarm intelligence based algorithm, Particle Swarm Optimiza-
tion (PSO), was proposed by Kennedy and Eberhart [14]. The PSO is a biologically-
inspired algorithm motivated by a social analogy, such as flocking, herding, and 
schooling behavior in animal populations. 

Payton et al. [15] proposed pheromone robotics, which was modeled after the 
chemical insects, such as ants, use to communicate. Instead of spreading a chemical 
landmark in the environment, they used a virtual pheromone to spread information 
and create gradients in the information space. By using these virtual pheromones, the 
robots can send and receive directional communications to each other.  

In this paper, we propose a bio-inspired coordination paradigm to achieve an op-
timal group behavior for multi-agent systems. Each agent adjusts its movement be-
havior based on a target utility function, which is defined as the fitness value of mov-
ing to different areas using the onboard sensing inputs and shared information 
through local communication. Similar to [15], inspired by the pheromone drip trail of 
biological ants, a unique virtual agent-to-agent and agent-to-environment interaction 
mechanism, i.e. virtual pheromones, was proposed as the message passing coordina-
tion scheme for the swarm robots. Instead of using infrared signals for transceivers in 
[15], which requires line of sight to transmit and receive, we use wireless ad hoc 
network to transmit information and the virtual pheromone structure is designed to be 
more robust and efficient.   

This new meta-heuristic draws on the strengths of two popular SI-based algo-
rithms: Ant Colony Optimization (ACO)’s autocatalytic mechanism and Particle 
Swarm Optimization (PSO)’s cognitive capabilities through interplay. Basically, two 
coordination processes among the agents are established in the proposed architecture. 
One is a modified stigmergy-based ACO algorithm using the distributed virtual 
pheromones to guide the agents’ movements, where each agent has its own virtual 
pheromone matrix, which can be created, enhanced, evaporated over time, and propa-
gated to its neighboring agents. The other one is interaction-based algorithm, which 
aims to achieve an optimal global behavior through the interactions among the agents 
using the PSO-based algorithm.  

In our previous work [16], this hybrid algorithm was implemented in a proof-of-
concept simulator, where each agent has been simplified to one dot without any sen-
sors installed. The target detection was based on the distance between the agent and 
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the target. Once the distance is within the detection range, it is assumed that the target 
is detected. To apply this algorithm to the real-world robotic systems, more realistic 
issues need to be solved. In this paper, we will modify the utility function of the pre-
vious proposed hybrid ACO/PSO algorithm to adapt to a more realistic robotic simu-
lation environment. Player/Stage is utilized as our embodied robot simulator. Each 
robot in Player/Stage is installed with a camera system, a laser range finder, sonar 
sensor, and wireless communication sensor. The strength of this ACO/PSO coordina-
tion architecture lies in the fact that it is truly distributed, self-organized, self-
adaptive, and inherently scalable since global control or communication is not re-
quired. Each agent makes decisions only based on its local view, and is designed to 
be simple and sometimes interchangeable, and may be dynamically added or removed 
without explicit reorganization, making the collective system highly flexible and fault 
tolerant.  

The paper is organized as follows: Section II describes the problem statement. 
Section III presents the proposed stigmergy-based architecture for distributed swarm 
robots. Section IV presents the simulation environment and simulation results. To 
conclude the paper, section V outlines the research conclusion and the future work.  

2 Problem Statement 

The objective of this study is to design a bio-inspired coordination algorithm for 
distributed multi-robot systems. To evaluate this coordination algorithm, a multi-
target searching task in an unknown dynamic environment is implemented in 
Player/Stage simulator. The targets can be defined as some predefined tasks need to 
be processed by the agents in real-world applications, for example, collective con-
struction, resource/garbage detection and collection, people search and rescue, etc.. 
The goal is to find and process all of the targets as soon as possible. Assume that the 
agents are simple, and homogeneous, and can be dynamically added or removed 
without explicit reorganization. Each agent can only communicate with its neighbors. 
Two agents are defined as neighbors if the distance between them is less than a pre-
specified communication range. The agent can only detect the targets within its local 
sensing range.  

3 A Stigmergy-Based Coordination Approach 

3.1 Virtual Pheromone as Inter-Agent Communication Mechanism 

The ACO algorithm, proposed by Dorigo et al. [13], is essentially a system that simu-
lates the natural behavior of ants, including mechanisms of cooperation and adapta-
tion. The involved agents are steered toward local and global optimization through a 
mechanism of feedback of simulated pheromones and pheromone intensity process-
ing. It is based on the following ideas. First, each path followed by an ant is associ-
ated with a candidate solution for a given problem. Second, when an ant follows a 
path, the amount of pheromone deposit on that path is proportional to the quality of 
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the corresponding candidate solution for the target problem. Third, when an ant has to 
choose between two or more paths, the path(s) with a larger amount of pheromone are 
more attractive to the ant. After some iterations, eventually, the ants will converge to 
a short path, which is expected to be the optimum or a near-optimum solution for the 
target problem.  

In the classical ACO algorithm, the autocatalytic mechanism, i.e. pheromone 
dropped by agents, is designed as an environmental marker external to agents, which 
is an indirect agent-to-agent interaction design in nature. In the real world applica-
tions using swarm agents, a special pheromone and pheromone detectors need to be 
designed, and sometimes such physical pheromone is unreliable and easily to be 
modified under some hazardous environments, such as urban search and rescue. A 
redefinition of this auto catalyst is necessary.  

A Virtual Pheromone mechanism is proposed here as a message passing coordina-
tion scheme between the agents and the environment and amongst the agents. An 
agent will build a virtual pheromone data structure whenever it detects a target, and 
then broadcast this target information to its neighbors through a visual pheromone 
package. Let )}({)( tptp k

ijak =  represents a set of pheromones received by agent k at 

time t, where (i, j) denotes the 2D global coordinate of the detected target. Each pij
k 

has a cache of associated attributes updated per computational iteration. The data 
structure for the virtual pheromone is defined as follows: 

Pheromone structure 
{  Target position; 
   Number of target detected;  
   The ID of source robot who detects the targets;  
   The robot IDs that pheromone has been propagated before 

passed to this robot;  
   Agent intensity;  
   Pheromone interaction intensity;  
   Time stamp;} 

3.2 Target Utility  

Basically, each target is associated with different pheromone. Each agent makes its 
own movement decision based on the parameters of a list of pheromone matrix. Here, 
let’s define target utility and target visibility to explain the decision making procedure 
of each agent.  

First, let )}({)( tt k
ijk μμ =  represents a set of target utilities at time t, where μij

k(t) 

denotes the target utility of agent k , which is defined as follows:  
 

Rtktkt k
ij

k
ij

k
ij /))()(()( 21 τωμ −=                                       (1) 

where )(tk
ijω and )(tk

ijτ represent target weight and agent intensity, respectively. 
Let the target weight measures potential target resources available for agent k at time 
t. The agent intensity is an indication of the number of agents who will potentially 
process the corresponding target at location (i,j). When we say “potentially”, we 
mean all of the agents who have received the same pheromone information may end 
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up moving to the same target. However, they may also go to other targets with 
stronger pheromone intensity based on their local decisions.  

We can use target intensity to emulate the pheromone enhancement and elimina-
tion procedure in natural world, which can be updated by the following equation: 

 
)(**)1())((*)1( teTtt k

ij
k

ij
k
ij

k
ij τρτρτ −−+=+                  (2)         

 where 0<ρ<1 is the enhancement factor of pheromone intensity. k
ijT  is the phero-

mone interaction intensity received from the neighboring agents for a target at (i,j), 
which is defined as                      

                         if source pheromone 
otherwise 

 
ij

α, 
Τ  = 

β ,  
⎧
⎨
⎩

                                            (3)  

where 0 ≤ β < α ≤ 1. If an agent discovers a target by itself instead of receiving 
the information from its neighbors, it is defined as the source agent. The source agent 
then propagates the source pheromone, to its neighbors. A propagation agent is a 
non-source agent, and simply propagates pheromones it received to its neighbors. 
Basically, k

ijT  is used for pheromone enhancement. e represents the elimination fac-
tor. In the ants system, the pheromone will be eliminated over time if it is not being 
enhanced by the ants, and the elimination procedure usually is slower than the en-
hancement. When the pheromone trail is totally eliminated, it means that no resource 
is available through this pheromone trail. To slow down the elimination relative to 
enhancement, we set 1<e .                     

R denotes local target redundancy, which is defined as the number of the local 
neighbors who have sent the pheromones referring to the same target at (i, j) to agent 
k. 21  and kk  are constant factors which are used to adjust the weights of target weight 
and agent intensity parameters.  

Generally speaking, the higher the target utility is, the more attractive the corre-
sponding target is to the agent. More specifically, when the target weight is greater 
than the agent intensity, it means that there are more tasks need to be processed (or 
there are more resources left) in this target. Therefore, the benefit of moving to this 
target would be higher in terms of the global optimization. If the agent intensity is 
greater than the target weight, it means that there will be more potential agents (glob-
ally) moving to this target, which may lead to the less available tasks (or resources) 
left in the future. Therefore, the benefit of moving to this target would be less in 
terms of the global optimization. With the local redundancy, we are trying to prevent 
the scenarios that all of the agents within a local neighbor move to the same target 
instead of exploring new targets elsewhere. 

3.3 Target Visibility  

Initially, the agents are randomly distributed in the searching environment, where 
multiple targets with different sizes and some static obstacles are randomly dispersed 
within the environment. At each iteration, if each agent adjusts its behavior based 
only on the target utility, it may lead the agent to be very greedy in terms of the 
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agents’ behaviors, since the agents would rather move to the target with higher utility 
than explore new areas. This greedy behavior of the agents may easily lead to local 
optima.   

To prevent the local optima scenarios in utility-based approach mainly based on 
ACO, we have to take into consideration of target visibility. Let )}({)( tt k

ijk ηη =  
represents a set of visibilities at time t, where )(tk

ijη  denotes the target visibility for 
agent k in terms of target at location (i, j), which is defined by the following equation:  

                        )(/)( tdrt k
ij

kk
ij =η                                                    (4) 

where kr  represents the local detection range of agent k, and the )(td k
ij represents the 

distance between the agent k and the target at location (i, j). If 1>k
ijη , we set 1=k

ijη . 
When the target visibility is higher, it means the distance between the target and the 
agent is smaller, it would be more benefit to move to this target due to its less cost 
compared to moving to the far-away target under the same environmental condition. 

3.4 Agent Behavior Control  

Now the question is how to integrate the target utility and target visibility into an 
efficient fitness function to guide the movement behaviors of each agent. To tackle 
this issue, we turned our attention to another collective intelligence - Particle Swarm 
Optimization (PSO). The PSO algorithm is population-based: a set of potential solu-
tions evolves to approach a convenient solution (or set of solutions) for a problem. 
The social metaphor that led to this algorithm can be summarized as follows: the 
individuals that are part of a society hold an opinion that is part of a "belief space" 
(the search space) shared by every possible individual. Individuals may modify this 
"opinion state" based on three factors: (1) The knowledge of the environment (ex-
plorative factor); (2) The individual's previous history of states (cognitive factor); (3) 
The previous history of states of the individual's neighborhood (social factor).  

A direct PSO adoption to swarm agents would be difficult, because swarm agents 
may be blinded over in reference to global concerns without any feedback. However, 
the PSO algorithm is a decision processor for annealing premature convergence of 
particles in swarm situations. Thus, a new optimization technique specifically tailored 
to the application of swarm agents is proposed in this paper. This new meta-heuristics 
draws on the strengths of both systems: ACO’s autocatalytic mechanism through 
environment and PSO’s cognitive capabilities through interplay among agents. In this 
hybrid method, the agents make their movement decisions not only based on the tar-
get utility defined in (3), but also on their movement inertia and their own past ex-
periences, which would provide more opportunities to explore new areas.  

Basically, the PSO algorithm can be represented as in (5), which is derived from 
the classical PSO algorithm [14] with minor redefinitions of formula variables as 
follows: 

         vij = explorative + cognitive + social                               (5)   
where vij  is the velocity of a agent. To determine which behavior is adopted by 

agent k of the swarm, the velocity, vij
k(t) has to be decided first. If the received 

pheromone intensity is high, the agent would increase the weight of social factor, and 
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decrease the weight of cognitive factor. On the other hand, if the local visibility is of 
significant to the agent, then the velocity of the agent would prefer the cognitive fac-
tor to the social factor. Furthermore, at any given time, the velocity of the agent 
would leave some spaces for the exploration of new areas no matter what. Therefore, 
the basic idea is to propel towards a probabilistic median, where explorative factor, 
cognitive factor (local agent respective views), and social factor (global swarm wide 
views) are considered simultaneously and try to merge these three factors into consis-
tent behaviors for each agent. The exploration factor can be easily emulated by ran-
dom movement.  

The challenge part is how to define local best (cognitive factor) and global best 
(social factor). One straight forward method is to select the highest target visibility 
from a list of available targets as the local best. If only one target is on the list, then 
this target would be the local best. The easy way to select global best is to select the 
highest target utility from a list of available targets. If only one target is on the list, 
then this target would be the global best.     

Instead of defining a fitness function, for a robot system, the robot velocity vector 
including both magnitude and direction would be a better representation to control the 
movement behavior. Based on the above discussion and PSO algorithm, each agent 
would control its movement behaviors by following this equation: 

))((*) (*

))((*) (*)(*) (*)1(

txprand

txprandtvrandtv
k
ijsss

k
ijccc

k
ijee

k
ij

−+

−+=+

ψ

ψψ
          (6) 

where, sce andψψψ ,, represent the propensity constraint factors for explosive, cogni-
tive, and social behaviors, respectively, 0 ≤ randΘ() < 1 where Θ = e, c, or s, and 

)(txk
ij  represents the position of agent k at time t. ))(max( tp k

ijs μ=  represents the 

global best from the neighbors, and ))(max( tp k
ijc η=  represents the local cognitive 

best. The position of each agent k at time t+1 can be updated by 
                       )1()()1( ++=+ tvtxtx k

ij
k
ij

k
ij .                              (7)   

4 Simulation Results 

To evaluate the performance of the proposed stigmergy-based algorithm in a distrib-
uted swarm agent system, we implement this algorithm on a Player/Stage robot simu-
lator. As shown in Fig. 1, the environment is an open space with 20 homogeneous 
mobile robots. Each robot is equipped with a camera system to detect and track tar-
gets, a laser range finder to measure the distance between the target and itself, a sonar 
sensor to avoid obstacles (i.e. both static obstacles and mobile obstacles, such as other 
agents), and a wireless communication card to communicate with other agents.  

As shown in Fig.1, the searching environment is a rectangle area, where several 
targets with different colors and sizes are randomly distributed in the environment, 
and grey dots represent the robots. The arc shape in front of each robot represents the 
field of view of the vision system on each robot. The communication range is set up 
as the same range of the vision but using a circle instead of an arc. Whenever the 
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robots are within other agent’s communication range, they would exchange the in-
formation between them.   

Initially, the agents are randomly searching for targets, as shown in Fig. 1(a) at t 
=1. Once a robot detects a target, it would propagate the pheromone of this target to 
its neighbors, as shown in Fig. 1(b), where a small rectangle indicates that the vision 
system on the associated robot has detected the targets. After receiving a pheromone 
message, robots make their own decisions where to move on next time step based on 
the proposed algorithm, as shown in Fig. 1(c) and Fig. 1(d). Sometimes, a robot may 
get trapped in a corner or boundary line trying to avoid obstacles. It may take long 
time before it can get out, as shown in Fig. 1(e). The simulation stops when all of the 
targets being found and processed, as shown in Fig. 1(f).   
 

    
                (a) t = 1                 (b) t = 17     (c) t = 20 

    
                   (d)  t = 50                       (e) t = 85                               (f) t = 98 

Fig.1. 20 robots searching for randomly distributed targets in an open space on a player/stage 
simulator at t = 1, 17. 20, 50, 65, and 82 time steps. 

Generally, global path planning is very time consuming, especially for swarm ro-
bots where each agent may have to replan its global path very frequently due to the 
constant agent-to-agent collision. Dynamic mobile agent avoidance is another chal-
lenging task, which is not our focus in this paper. Therefore, to speed up the search-
ing procedure in simulation, a simple path planning method is conducted. Once an 
agent makes its decision according to the proposed algorithms, it will set the selected 
target as its destination point, and move toward the target. Since there may have static 
obstacles and mobile obstacles (i.e. other agents) on its way to the destination, an 
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obstacle avoidance algorithm is necessary. Here, an adaptive vector algorithm is ap-
plied for obstacle avoidance.            

To evaluate the performance of the proposed method, utility-based method is also 
implemented, where each agent makes its own movement decision only based on the 
target utility defined in (1). Three cases of different target distributions are conducted, 
where in each case 10 targets are distributed in the environment with fixed positions. 
Then, we start running the simulations with the swarm size of 20 using both methods, 
each method runs 35 times to obtain the mean and variance values in time steps. One 
time step represents the time that all of the agents need to make their movement deci-
sions once sequentially. Some statistics results of comparison of these two methods 
are shown in Table 1.  

Table 1. Simulation comparison of two methods. 

 Mean/Variance 
(case 1) 

Mean/variance 
(case 2) 

Mean/Variance 
(case 3) 

Utility-based  174/30 121/21 183/16 
Hybrid 102/17 94/10 98/12 

It is observed from Table 1 that the hybrid method outperforms utility-based 
method. The reason behind this observation is because the agents using utility-based 
method are extremely greedy and would always try to achieve the best utility. There-
fore, they would rather move to detected targets with highest utilities than exploring 
areas for new targets. On the other hand, the hybrid method not only considers the 
target utility, but also consider the exploration (i.e. inertia factor), and its own past 
experiences. This exploration tendency would lead the agents using the hybrid 
method to be more dispersed for different targets, which may result in efficient 
searching results. When the agent receives the pheromone information of multiple 
targets, it would make decision whether to pick the target or explore to a new area, or 
if multiple targets are available, which one to pick so that the global optimization 
performance can be achieved. Furthermore, the hybrid method is more stable and 
consistent than the utility-based method from the variance values in Table 1. It is also 
observed that the proposed method is very robust to different target distributions in 
the environment.  

5 Conclusion and Future Work 

A bio-inspired stigmergy-based algorithm is proposed for a distributed multi-agent 
system. By using natural metaphors, inherent parallelism, stochastic nature, adaptiv-
ity, and positive feedback, the proposed method is truly distributed, self-organized, 
self-adaptive, and inherently scalable since there is no global control or communica-
tion, and be able to address the complex problems under dynamic environments.   

However, there are still some unsolved issues remained. For example, the com-
munication overhead among agents is extensive, which will consume too much power 
of limited on-board battery, especially for a large scale swarm agent system. Further-
more, it is difficult to predict the swarm performance according to a particular metric 

22



or analyze further possible optimization margins and intrinsic limitations of these 
approaches from an engineering point of view.  Our future work will tackle these 
issues and mainly focus on developing a dynamic swarm model to allow the swarm 
agents to achieve the target global goal and expected performance.  
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