
SOFTWARE ENGINEERING LESSIONS LEARNED FROM
DEVELOPING AND MAINTAINING WEBSITES

Tammy Kam Hung Chan and Zhen Hua Liu
TZ Software Engineering Consulting, P.O.Box 5133 San Mateo, California, United States of America

Keywords: Web Engineering, Software Engineering, Software Engineering Education.

Abstract: Developing, maintaining and enhancing software features and functions for production websites are
challenging software engineering activities. There are many aspects of software engineering practices and
methodologies that are different in developing software features and systems for 24x7 production website
compared with developing classical standalone software systems or client-server systems. This experience
paper describes software engineering lessons that we have learned from developing, enhancing and
maintaining software features for production websites and summarizes the key software engineering
principles and practices that are essential for delivering successful 24x7 E-commerce based production
websites.

1 INTRODUCTION

Since the birth of http and web browser, there have
been many software systems and tools to help
software engineers to build production websites. In
the early days, there were Apache and CGI. Today,
there are many application server based solutions
ranging from J2EE based commercial application
servers that are widely adopted by commercial
business to PHP, Perl based systems that are
commonly used by small businesses and non-profit
organizations. However, no matter what systems or
tools are used, the set of software engineering
principles for developing web-based systems are the
same. Web-based system is different from traditional
standalone or client/server software system. The
most notable differences are in the way the systems
are used, their life cycle, and the way they are
developed and maintained.
As a result of the differences between traditional
software systems and web-based software systems,
many of the traditional software principles and
practices for developing standalone or client-server
system software, while still applies, have subtle
differences when applying to software systems in the
web environment. The software design principles of
design for scalability, design for maintenance and
robustness, and design for reuse are essential
principles in the context of many other domains of
software development. However, their applications
to the domain of web-based system have some
unique and interesting characteristics to explore. In

this paper, we discuss how the design principles for
scalability, maintenance, and reusability are applied
to web-based systems base on our experiences of
developing, deploying and maintaining software
production web sites.

The rest of the paper is organized as follows: in
section 2, we discuss design for scalability; in
section 3, we discuss design for maintenances and
robustness; in section 4, we discuss design for
reusability. In section 5, we state what we think is
important to teach software engineering principles
for web system development. In section 6, we
conclude the paper.

2 DESIGN FOR SCALABILITY

One of the biggest challenges in building a web-
based system is the ability to make the system scale.
Scalability means the flexibility to accommodate
user growth as well as handling high loads or sudden
demand bursts. We find that designing and
developing software for web base system by
leveraging the principles of multi-tier architecture,
state minimization, and workflow orientation is
effective in building a scalable web system.

2.1 Multi-tier Architecture

To a user, a website appears to be a single system
running on a single machine that appears to be
"always-up". However, when building such a

401
Kam Hung Chan T. and Hua Liu Z. (2007).
SOFTWARE ENGINEERING LESSIONS LEARNED FROM DEVELOPING AND MAINTAINING WEBSITES.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 401-404
DOI: 10.5220/0001325904010404
Copyright c© SciTePress

system, what works is not a single machine running
a single application but a cluster of machines
running a distributed application in a multi-tiered
architecture. Typically, in a multi-tier architecture,
the software system is divided into layers or tiers,
organized into the web-tier, middle-tier and data-
tier. Each tier has a cluster of machines each running
a piece of code that specializes in one or more tasks
pertaining to that tier. Although each software
program residing on an individual tier may appear to
be simple and is hosted by a cluster of relatively
inexpensive hardware, the combined effort among
these simple programs running in a distributed
manner can fulfil complex business requests.

The power of scalability achieved through
division of task and cooperation of effort is a
different design philosophy from developing
traditional standalone system or client/server system
with fat clients and highly coupled central server
system. The computing logic in a traditional system
design is accomplished by one sophisticated
monolithic program. Though the monolithic
program is very powerful, it is hard to scale because
the logic is tightly coupled and must be one on a
system that is limited in capacity. In a multi-tier
architecture, the computing logic is separated into
multiple pieces where each piece can be hosted and
computed independently by one or more machines.
In fact, machines running a copy of the code can be
added or removed to meet load demands.

2.2 State Minimization Design

Besides having a multi-tiered architecture, our
experiences find that minimizing state tracking
enhances a web-based system’s ability to provide
scalable service as well. Traditional server software
system prefers to keep track of client states. This is
the strength of server centric system. Stateful server
systems often work very efficiently due to the
knowledge it needed to perform a task is readily
available. However, the state oriented server design
principle is only efficient at small-scale level and
does not work well under large-scale web-based
application.

Minimizing state tracking leans to a more
scalable system. When we minimize the use of
state-ful session beans in EJB system or
conversational service in Tuxedo system, we find it
much easier to scale, load balance and provide
failover capability for the system. A system that has
less state to keep track is easier to redirect user
requests from one web server to another and easier
to share and redistribute loads amongst the servers.
In a web-based system, this is important because as
the web system load increases, it means easier to add
more machines and run more instances of the

applications to distribute the load without having to
worry about replicating user states amongst the
servers. Therefore, whenever possible, avoid state
tracking.

Making applications stateless, on the other hand,
is not always possible. For example, without state,
how can we keep track of a shopping cart? The key
to scalable state tracking, when state is necessary to
your system, is to consolidate the state information
and save into a common place, such as database
server. The database server can be viewed as a
sophisticated state-ful engine that is capable of
handling system crash and data recovery. When
storing state data, we find that it is better to store
state data, which is temporary in nature, into a
different database server from that of the business
data, which are durable. This allows us to apply
different backup strategy base on the nature of the
data.

2.3 Workflow-oriented Design

Another practice that helps with scalability in a web-
based system is a workflow-oriented design. In
traditional software development, a task is
accomplished through a series of steps that are
executed in a sequential and synchronous manner.
Response is not sent to users until all the steps are
finished. However, in a web-based system, this
synchronous task accomplishment model may not be
scalable for large number of users and requests.
Instead, a workflow model based design is often
helpful in many cases. In a workflow model, user
requests are queued and processed asynchronously.
The workflow model makes task accomplished in a
pipelined manner to promote parallel execution for
each step and improves the overall system
throughput.

3 DESIGN FOR MAINTENANCE
AND ROBUSTNESS

While scalability is important to web-based systems,
robustness cannot be overlooked. The robustness of
a web-based system is dependent on the
maintainability of the system.

3.1 Robust Error Handling

In a multi-tiered web-based system where the code
is spread over a number of machines comprising of
the various tiers, it becomes more difficult to track
down problems and keeping the system running

ICSOFT 2007 - International Conference on Software and Data Technologies

402

error free. As a result, it becomes crucial that we
write robust error handling code in order to keep this
complex system maintainable.

The most basic step in writing robust error
handling code is logging. In a web-based system it
is important to log, in great details, every error or
exception that occurred. Each logged error message
should indicate when the error occur, which program
this error occurred in, any information that is
relevant to the error, such as the data values that
were involved at the time the error occurred. The
information collected in the log will allow us to
debug and improve on the system. Information in the
error logs is crucial to trace and investigate incidents
occurred in the system.

Besides using the error log to resolve issues and
bugs form customers, a systematic analysis of the
log can be a great way to find potential bugs in the
system and to find resource contentions issues that
should be corrected by reconfiguring various parts of
the system.

Another aspect of error handling is error
recovery. Distributed applications in a web-based
system tend to run into non-deterministic but often
recoverable errors. For example, when encountering
resource contention related errors, such as a failure
to obtain locks in the backend, or a failure to acquire
the needed resources, we should write code to re-try
instead of backing out right away. This will make
the application more robust and tolerant to common
errors resulted from resource contention.

3.2 Maintaining Data Integrity

Maintaining data integrity is another key for
delivering robust and easy to maintain software for
web-based applications. All the code running in a
distributed web-based system should enforce data
integrity.

Our experience shows that enforcing data
integrity at the database tier is especially important.
This is because external data can be imported to the
database system without going through the regular
web tier or mid-tier. This is typical when customers
may request the business to import large amount of
client data directly, bypassing the web front end.
This is often done by DBA via some fast data
loading programs. Another scenario is when the
DBA manually repairs data via ad-hoc SQL query.
Under both situations, invalid data will only be
caught if the database server were performing data
integrity checks. Database system has been
efficiently designed to enforce declarative
constraints and can even leverage constraint
information to optimise queries. Therefore,

enforcing data integrity check at the database layer
is a simple and efficient strategy that we should
always use.

3.3 Code generation Tool

It is common for most of the web-based application
to rely on database, in particular relational database,
as the backend data server to store and access data.
We have learned that manually writing database
access code can cause many maintenance problems.
Therefore, we find it is worth the effort to write a
tool to generate database access code automatically.
This tool can generate database access code for
different programming languages such as C/C++,
Perl, Java. This way, whenever there are database
schema changes, we can use the tool to re-generate
the database access code automatically instead of
manually editing potentially large amount of code.
The end result is that writing tool for automatic code
generation improve code maintenance and
robustness dramatically. Applying this software
engineering lessons to database access layer for
web-based applications brings in tremendous benefit
system maintenance and robustness.

4 DESIGN FOR SOFTWARE
REUSABILITY

Design for reuse can improve quality and reduce
cost. Software reuse in traditional software
development involves the reuse of functionality
provided by standard libraries, reuse of component-
based software such as Java Beans or DCOM/COM
components, and the reuse of design like design
pattern and frameworks. In this section, we will
discuss what we have learned in the area of reuse
with respect to web-based software system.

4.1 Code and Component Reuse

In both traditional and web-based software system,
code and component reuse is facilitated by the
concept of modular design. However, in a web-
based system, re-use can be applied at a much large
scope. While in traditional software system, re-use is
often at the level of reusing existing library or class
packages, in web based system, the entire backend
system can be re-used for hosting different web front
ends. The idea is to reuse the solutions of past
projects with minimal extension to meet
requirements of new projects. In fact, many website
share common components that can be developed
once and reused many times. For example, web user

SOFTWARE ENGINEERING LESSIONS LEARNED FROM DEVELOPING AND MAINTAINING WEBSITES

403

login module, http session state management
module, data caching module, product catalogue
management module, email notification module etc.
The use of multi-tier approach to developing website
promotes such reuse.

4.2 Business Problem Solution Reuse

It is important to be able to reuse solutions to solved
business problems in the past. In a typical web-based
system, the business requirements and feature
requests are complex and yet the product cycle of
delivering the features are getting shorter and
shorter. The short-sighted solution is to develop
specific solutions for one project or one business
problem at a time. However, it is much more
beneficial to design solutions with future reusability
in mind. This means the solution should be designed
as generic as possible so as to improve the chance of
reusing the solution for future business problems.

4.3 Design Reuse

Design reuse is one of the most applied strategies in
web-based system development. Of all the design
patterns out there, the one that we find most useful is
the model view controller (MVC) architecture
design. MVC is a common design principle that
separates the business logic, data content, and
presentation. We find this is very useful to web-
based system. In web-based applications, web
interface software developers often interact closely
with graphic designers who design the user interface
(UI) appearance. These developers also interfaces
with the product manager who collects feedback
from website users and customers. Our experience
shows that there are always late requirements and
last minute changes that impact the appearance and
layout of the page. By following the model view
controller base design, it allows us to cope with late
requirements on UI with no impact to the rest of the
system.

5 EDUCATION OF WEB
DEVELOPMENT

Web Programming and development are taught as
undergraduate courses in computer science and
information systems. Some courses focus on
learning actual programming languages and tools
that are widely used for website development and
some courses go one step further to learn software
engineering principles that are essential for website

development. From our experience and lessons, we
feel that teaching web software development
principles, methodologies and contrast them with
traditional software engineering is essential. This
will let students have a profound understanding of
the principles underneath the development and
deployment production website. This shall be more
valuable than merely grasping the software tools and
products that are used for website development.

6 CONCLUSIONS

Developing, deploying and maintaining web-based
system and production website is a challenging
software engineering experience. It demands multi-
disciplined software skills from various software
domains and different thinking paradigm from
developing traditional software systems. However,
the underlying software engineering principles of
designing for scalability, maintainability, and
reusability remain the same. We, software
developers, need to be aware of this and learn to
apply these principles in the domains of web-based
applications consistently.

REFERENCES

S. Hadjerrouit. Web-based Application Development: A
Software Engineering Approach, SIGCSE Bulletin.

A. Ginige. Web Engineering: Managing the Complexity of
Web Systems Development. SEKE 2002

S. Murugesan, Y Deshpande. Meeting the Challenges of
Web Application Development: The Web Engineering
Approach. ICSE 2002

Y.Desphande, A. Chandrarathna, A. Ginige. Web Site
Auditing – First Step Towards Re-engineering. SEKE
2002

S. Murugesan, A. Ginige. Web Engineering: Introduction
and Perspsectives.

S. Mondal, K. Gupta. Choosing a Middleware for Web-
Integration of a legacy Application. ACM SIGSOFT
Software Engineering Notes Vol 25 no 3

T. Lau, J. Lu, E. Hedges, E. Xing. Migrating E-Commerce
Database Applications to an Enterprise Java
Environment. CASCON 2003: 223-237

ICSOFT 2007 - International Conference on Software and Data Technologies

404

