
PARALLEL QUERY PROCESSING USING WARP EDGED
BUSHY TREES IN MULTIMEDIA DATABASES

Lt. S. Santhosh Baboo
Department of Computer Science, D.G Vaishnav College, Arumbakkam, Chennai 106. India.

P. Subashini
Department of Computer Science, Avinashilingam Deemed University, Coimbatore, India.

K. S. Easwarakumar
Department of Computer Science Anna University, Chennai, India.

Keywords: Multimedia databases, Bushy trees, Warp edges, Cost model.

Abstract The paper focuses on parallelization of queries execution on a shared memory parallel database system. In
this paper, a new data structures, named Warp edged Bushy trees, is proposed for facilitating compile time
optimization. The warp edged bushy tree is a modified version of bushy trees , which provides better
response time than bushy trees, during query processing.

1 INTRODUCTION

A database is a repository of data that traditionally
contains text, numeric values, boolean values and
dates, known as ‘printable’ objects (Golshani, F. and
Dimitrova N., 1998). A multimedia database
additionally contains graphical images; video clips
and sound files, known as ‘presentable’ objects.
Users may retrieve information from a database
without having any knowledge of how or where that
data is stored. The paper focus on bushy trees in
section 2, warph edged bushy trees in section 3, cost
model in section 4, experimental results and
conclusion are in section 5 and 6.

There are a number of issues relating to
multimedia database management systems and
multimedia information servers that are caused by
the particular nature of multimedia data. These can
be summarized as:
• The development of appropriate data modeling

techniques for multimedia information,
including video, sound and graphical images,

• Indexing and searching techniques for the
retrieval of multimedia data objects,

• Developing efficient storage schemas that
support heterogeneous data objects,

• Issues relating to the delivery quality of
multimedia objects.
Modern database applications, such as data

mining and decision support pose several new
challenges to query optimization and processing
(Haiyun He and Curtis Dyreson, 2002) (Silberschatz
et al, 1996). Parallelism is one of the key
technologies to handle these challenges (M. T. Ozsu
and P. Valduriez, 1997) but increases the complexity
of query optimization (Hasan et al., 1996). The
most crucial problem to be solved within query
optimization is ordering the operators (D. Taniar and
Y. Jiang, 1998). The operators describe the
dependencies between the different algebra
operators of a query and determines at the same time
the degree of inter operator parallelism. The problem
mainly focuses on the search for an optimal ordering
with respect to cost function.

Rather than navigating blindly into the search
space (K.-L. Tan and H.Lu, 1991) (Spiliopoulou et
al., 1996) (Leonindes Fegaras, 1998), we propose to
consider a subspace of it, called Warp edged Bushy
trees. Warp edged bushy trees identify a regular in
the search space including inter-operator parallelism
and face a significantly smaller space rather than the

273
S. Santhosh Baboo L., Subashini P. and S. Easwarakumar K. (2006).
PARALLEL QUERY PROCESSING USING WARP EDGED BUSHY TREES IN MULTIMEDIA DATABASES.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 273-276
DOI: 10.5220/0002487802730276
Copyright c© SciTePress

general one. Introducing warp edges into any tree
increases its efficiency.

2 BUSHY TREES

Two major forms are actually distinguished (Zait et
al., 1996), Bushy trees and warp edged bushy trees.
In bushy trees, two or more join operators lying on
different paths of a query-processing tree can be
processed at the same time. Almost all query
optimizers working on bushy trees have yet
considered the complete spawn search space. Fig. 1
shows the bushy trees. Supposing that a hash based
join is used and all hash tables of the left input
relations are built for a right deep tree, the tuples of
the right input can be pipelined through the whole
tree (D. Schneider and D. J. DeWitt, 1990). This
pipelining can be implemented very efficiently if the
entire hash table of the left input relation fits in the
main memory.

Figure 2: Bushy Trees.

3 WARP EDGED BUSHY TREES

A warp edge is an edge that is something other than
a parent to child edge i.e. an edge from an element to
a sibling or a grand child. Warp edges can be
dynamically generated and stored during query
evaluation to improve the efficiency of future
queries.

Figure 3: Warp Edged Bushy Tree.

The warped edged bushy tree created is shown in the
fig. 3. The warp edges connect the root with each
section since the query starts at the document root
and terminate at each section. The size of the
document is small and sections can be found
quickly, but in general the document could contain
thousands of sections.

Figure 4: Warp Edged Bushy Query Trees.

A warp edge is an edge in the data model that
traverses more than one level in the query tree.
Typically warp edges are added as the result of
previous queries. The warp edges can be traversed
during the evaluation of a query.

4 A COST MODEL FOR BUSHY
PARALLELISM

Our cost model, hereafter denoted as "BO", exploits
bushy parallelism only. Joins appearing in different
subtrees of the QEP are executed independently, as

root

B C

G

ON M L KJIH

D E F

root

A

C

G

ON M L K J I H

D

B

E F

root

doc

chapter

section

notpartitle

title

notpartitle

title

doc

section

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

274

soon as their input streams are available for
processing. Thus, the cost of the QEP is the cost of
the most expensive branch.

In this execution scenario, the output of a
join must be stored in the local disk, from which it is
retrieved by its consumer. Hence, the cost of a join
consists of the time needed to retrieve its input
streams from a local or remote disk, the time for
local processing, and the time for storing the output
stream locally:

Tcost(x) = Tin(x) + Tlocal(x) + Tout(x)

The execution cost of the tree rooted at x is the total
elapsed time Ecost(x) from the beginning of query
execution until the completion of join x3. The cost
is equal to the execution time of x and the time
required by its slowest producer to complete
execution:

 0, x is a leaf
Ecost(x) = T(x)+ Ecost(y), x has one child, join y
 max(Ecost(y), Ecost(z)), both

children of x are joins y,z

Hence, the execution time of a QEP is the time
required for its root process r to complete execution,
Ecost(r).

Parameters of the experiments: We have studied
the cost distribution for 10 query sizes. For each
size, we have generated an acyclic query graph. The
database parameters are summarized in Table 1. We
consider two databases, the Small and the Large one,
containing relations with different size ranges. Out
database and query settings are close to those used in
"portofolio" database experiments, as presented in
(Lanzelotte et al., 1993).

The settings of the parallel architecture assumed
by the cost models are shown in Table 2. The small
size of processor memory was intended to
counterbalance the modest size of the database
relations, in the sense that main memory should not
be adequate to hold all relations.

Table 1: Database and Query parameters.

Table 2: Parallel Machine parameters.

The base relations input to the leaf nodes, all
intermediate results not fitting in main memory, and
the output streams for the BO model, imply I/O
accesses. The I/O cost for processing a very large
(intermediate) relation can thus easily become the
dominant factor, especially for small queries.
Therefore, QEPs processing the same relation can
have the same cost, although they may differ in the
rest of their structure. For the Small database, the
diversity is higher and a wide spectrum of values is
covered smoothly. This is due to the lower diversity
of relation sizes occurring in this database.

5 RANDOM EXPERIMENT

In this section, we describe a set of experiments on
randomly generated data. Our aim is to test the
performance of warp edged bushy trees over normal
bushy trees.
We conducted the test on randomly generated XML
documents. We categorized the test in two ways.
First we tested the Time factor of both the tress.
Second we tested the Space factor of the trees. We
randomly conducted the test on 500 queries.

Fig.1: Varying the time factor

0

2

4

6

8

10

12

14

16

18

20

100 200 300 400 500

No. of nodes

Ti
m

e(
se

co
nd

s)

Bushy trees

Warp edged bushy
trees

Figure 1: Varying the time factor.

Relation sizes: Small database: 1,000 to 10,000 tuples
 Large database: 1,000 to 1,00,000 tuples

Attribute sizes 8 - 20 bytes
Output attributes: 4
Number of joins: 10 - 100

Page sizes : 1024 bytes
Page transfer time – Network : 1.7 msec (600

 Kbytes/sec)
Page transfer time - Local disk : 8.3 msec
Page transfer time - Remote disk : 10 msec
Number of Processors : 100
Processor Memory : 800 Kbytes

PARALLEL QUERY PROCESSING USING WARP EDGED BUSHY TREES IN MULTIMEDIA DATABASES

275

Fi g. 2 : Va r y i ng t he S pa c e f a c t or

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

500000000

100 200 300 400 500

No. of Nodes

Bushy tr ees

War p edged bushy
tr ees

Figure 2: Varying the Space factor.

The first figure shows that warp edged bushy trees
take lesser time than bushy trees. It shows that the
turnaround time for query evaluation is lesser for
warp optimization. The optimization approximately
halves the time needed for query evaluation at a
modest increase in the amount of space. The second
figure shows that warping occupies more space than
normal bushy tyrees But the space occupied by such
optimized trees are at modest level only.
Overall, the experiments show that while warp
edged bushy tress needs a small amount of
additional space, it can improve query performance
for bushy trees.

6 CONCLUSIONS

The paper emphasized the warp edging optimization
on normal bushy trees in multimedia databases. Any
query can be done easily using query trees. Result
shows that multimedia databases can be represented
using bushy trees. Warp edges are dynamically
generated on the bushy query trees and stored during
query evaluation to improve the efficiency of future
queries. The technology needed to such optimization
can be implemented as a layer on top of any
evaluation engine. Experiments shows that in the
evaluation the use of warp edges results in
substantial savings of times at a modest increase in
space. So the objects stored in image documents can
be retrieved based on some query very fastly when
we use warp edging in query trees.

REFERENCES

Haiyun He and Curtis Dyreson, Warp-Edge Optimization
in Xpath, Springer-Verlag 2002.

Golshani, F. and Dimitrova N. , A Language for Content-
Based Video Retrieval, Multimedia Tools and
Applications 6, 1998, pp. 289-312.

A. Silberschatz, M. Stonebraker, and J. Ulman. Database
research: Achievements and opportunities. Into the
21st century. SIGMOD Record, 25(1):52-63, March
1996.

M. T. Ozsu and P. Valduriez. Distributed and Parallel
Database Systems, pp. 1093-1111. CRC Press, 1997.

W. Hasan, D. Florescu, and P. Valduriez. Open issues in
parallel query optimization. SIGMOD Record, 25(3):
pp. 28-33, September 1996.

D. Taniar and Y. Jiang. A high performance object-
oriented distributed parallel database architecture. In
HPCN Conference 98, pp. 498-517. Springer Verlag,
April 1998.

K.-L. Tan and H.Lu. A Note on the Strategy Space of
Multiway Join Query Optimization Problem in
Parallel Systems. SIGMOD Record, 20(4):pp. 81-82,
December 1991.

M. Spiliopoulou, M. Hatzopoulos, and Y. Contronis.
Parallel Optimization of Large Join Queries with Set
Operators and Aggregates in a Parallel Environment
Supporting Pipeline. IEEE Transactions on
Knowledge and Data Engineering, 8(3): pp.429-445,
June 1996.

Leonindes Fegaras. A new heuristic for optimizing large
queries. In International Database and Expert Systems
Applications Conference, pp. 726-735, Vienna,
Austria, August 1998. Springer Verlag LNCS 1460.

M. Zait, D. Florescu, and P. Valduriez. Benchmarking the
DBS3 Parallel Query Optimizer. IEEE parallel and
distributed technology: systems and applications, 4(2):
pp. 26-40, 1996.

D. Schneider and D. J. DeWitt. Tradeoffs in processing
complex join queries via hashing in multi-processor
database machines. In Proceedings of the International
Conference on Very Large Databases, pp. 469-490,
Melbourne, Australia, August 1990.

Rosana Lanzelotte, Patrick Valduriez, and Mohamed Zait.
On the effectiveness of optimization search strategies
for parallel execution spaces. In Int. Conf. on very
Large Databases, pp. 493-504, Dublin, Ireland, 1993.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

276

