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Abstract. We have designed and developed a general knowledge representation 
tool, an expert system shell called McESE (McMaster Expert System Environ-
ment); it derives a set of production (decision) rules of a very general form. 
Such a production set can be equivalently symbolized as a decision tree. 
McESE exhibits several parameters such as the weights, thresholds, and the 
certainty propagation functions that have to be adjusted (designed) according to 
a given problem, for instance, by a given set of training examples. We can use 
the traditional machine learning (ML) or data mining (DM) algorithms for in-
ducing the above parameters can be utilized. 
In this methodological case study, we discuss an application of genetic algo-
rithms (GAs) to adjust (generate) parameters of the given tree that can be then 
used in the rule-based expert system shell McESE.  The only requirement is that 
a set of McESE decision rules (or more precisely, the topology of a decision 
tree) be given. 

1 Introduction 

When developing a decision-making system, we (as builders, knowledge engineers) 
utilize an existing expert system shell, either developed by ourselves or by a 
specialized expert-system tool builder. 
 We have designed and implemented a software tool (expert system shell) called 
McESE (McMaster Expert System Environment) that yields (induces) a set of 
production (decision) rules of a very general form;  among all, one of its advantages is 
a large set of several routines for handling uncertainty [9], [10]. 
 Note that a production (decision) set derived by the system McESE can be 
equivalently exhibited as a decision tree. The main and only constraint of our new 
approach is that we expect in this methodological case study that the logical structure 
(topology) of a set of decision rules (a decision tree) is given. The point of this study 
consists in that even if this logical structure is provided, particularly in real-world 
tasks, the designer may be faced with the lack of knowledge of other  parameters of 
the tree. These parameters are usually adjustable values (either discrete or numerical 
ones) of production rules or other knowledge representation formalisms such as 
frames. 
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 Our McESE system exhibits these parameters: the weights and thresholds for 
terms and the selection of the certainty value propagation functions (CVPF for short) 
from a predefined set. In order to select the optimal (or at least suboptimal) 
values/formulas for these parameters we use the traditional approach of  machine 
learning (ML) and data mining (DM); we adjust the above parameters according to a 
set of training (representative) observations (examples). However, we use a different 
and relatively new approach for the inductive process based on the paradigm of 
genetic algorithms (GAs). 
 A genetic algorithm includes a long process of evolution of a large population of 
chromosomes (individuals, objects) before selecting optimal values that have a better 
chance of being globally optimal compared to the traditional methods. The funda-
mental idea is simple:  individuals (chromosomes) selected according to a certain 
evaluation criterion are allowed to crossover so as to produce one or more offsprings. 
The offsprings are slightly different from their ‘parents’. Any generic algorithm 
evidently performs according to how the term ‘slightly different’ and evaluation 
criterion are defined. 
 We present in this paper a simulation of applying GAs to generate/adjust the 
parameter values of a McESE decision tree. Section 2 briefly describes our rule-based 
expert system shell McESE with emphasis on the form of rules. Section 3 then 
surveys the structure of GAs.  Afterwards, Section 4 introduces the methodology of 
this project including a case study. 

2 Methodology: Rule-based Expert System Shell McESE 

McESE (McMaster Expert System Environment) [9], [10] is an interactive 
environment for design, creation, and execution of backward as well as forward 
chaining rule-based expert systems. The main objectives of the project are focused on 
two aspects:  (i) to provide extensions of regular languages to deal with McESE rule 
bases and inference with them, and (ii) a versatile machinery to deal with uncertainty. 
 As for the first aspect, the language extension is facilitated through a set of 
functions with the native syntax that provide the full functionality required (for 
instance, in the Common-Lisp extension these are Common-Lisp functions callable 
both in the interactive or compiled mode, in the C extension, these are C functions 
callable in any C program). 
 As for the latter one, the versatility of the treatment of uncertainty is facilitated by 
the design of McESE rules utilizing weights, threshold directives, and CVPF's 
(Certainty Value Propagation Function). The McESE rule has the following syntax: 
 
 R:  T1 & T2 & .... & Tn  =F=> T 
 
T1,...,Tn  are the left-hand side terms of the rule R and T is the right-hand side term of 
the rule R,  F symbolizes a formula for the CVPF. 
 A term has the form: 
 
 weight * predicate [op cvalue] 
 
where weight is an explicit certainty value, 
predicate is a predicate possibly with variables (it could be negated by ~ ), and 
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op cvalue  is the threshold directive:  op can either be  >, >=, <, or <=, and cvalue is 
an explicit certainty value. 
If the weight is omitted it is assumed to be 1 by default. The threshold directive can 
also be omitted. The certainty values are reals in the range  0..1 . 
 It should be emphasized that a value of a term depends on the current value of the 
predicate for the particular instantiation of its variables;  if the threshold directive is 
used, the value becomes 0 (if the current value of the predicate does not satisfy the 
directive), or 1 (if it does). The resulting value of the term is then the value of the 
predicate modified by the threshold directive and multiplied by the weight. 
 When the backward-chaining mode is used in the McESE system, each rule that 
has the predicate being evaluated as its right-hand side predicate is eligible to ‘fire’. 
The firing of a McESE rule consists of instantiating the variables of the left-hand side 
predicates by the instances of the variables of the right-hand size predicate, evaluating 
all the left-hand side terms and  assigning the new certainty value to the predicate of 
the right-hand side term (for the given instantiation of variables). The value is com-
puted by the CVPF F based on the values of the terms T1,...,Tn . In simplified terms, 
the certainty of the evaluation of the left-hand side terms determines the certainty of 
the right-hand side predicate. There are several built-in CVPF’s the user can use (min, 
max, average, weighted average), or the user can provide his/her own custom-made 
CVPF's. This approach allows, for instance, to create expert systems with fuzzy logic, 
or Bayesian logic, or many others [14]. 
 It is a widely known conflict that any rule-based expert system must deal with the 
problem of which of the eligible rules should be ‘fired’. This is dealt with by what is 
commonly referred to as conflict resolution. This problem in McESE is slightly 
different;  each rule is fired and it provides an evaluation of the right-hand predicate – 
and we face the problem which of the evaluation should be used. McESE provides the 
user with three predefined conflict resolution strategies:  min (where one of the rules 
leading to the minimal certainty value is considered fired),  max (where one of the 
rules leading to the maximal certainty value is considered fired), and  rand (a 
randomly chosen rule is considered fired). The user has the option to use his/her own 
conflict resolution strategy as well. 

3 Survey of Genetic Algorithms 

Data Mining (DM) consists of several procedures that process the real-world data. 
One of its components is the induction of concepts from databases; it consists of 
searching usually a large space of possible concept descriptions. There exist several 
paradigms how to control this search, for instance  various statistical methods, logi-
cal/symbolic algorithms, neural nets, and the like. However, such traditional 
algorithms select immediate (usually local) optimal values. 
 The genetic algorithms (GAs) exhibit a newer paradigm for search of concept 
descriptions. They comprise a long process of evolution of a large population of 
individuals (objects, chromosomes) before selecting optimal values, thus giving a 
‘chance’ to weaker, worse objects. They exhibit two important characteristics:  the 
search is usually global and parallel in nature since a GA processes not just a single 
individual but a large set (population) of individuals. 
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 Genetic algorithms utilize (emulate) biological evolution and are generally 
utilized in optimization processes. The optimization is performed by processing a 
population of individuals (chromosomes). A designer of a GA has to provide an 
evaluation function, called fitness, that evaluates any individual. The fitter individual 
is given a greater chance to participate in forming of the new generation. Given an 
initial population of individuals, a genetic algorithm proceeds by choosing individuals 
to become parents and then replacing members of the current population by the new 
individuals (offsprings) that are modified copies of their parents. This process of 
reproduction and population replacement continues until a specified stop condition is 
satisfied or the predefined amount of time is exhausted. 
 Genetic algorithms exploit several so-called genetic operators: 
 
• Selection operator chooses individuals (chromosomes) as parents depending on 

their fitness;  the fitter individuals have on average more children (offsprings) 
than the less fit ones. Selecting the fittest individuals tends to improve the popu-
lation. 

• Crossover operator creates offsprings by combining the information involved in 
the parents. 

• Mutation causes the offsprings to differ from their parents by introducing a 
localized change. 

• Optional are other routines such as high-claiming that processes (modifies) 
the objects in a narrow ‘neighbourhood’ of each new offspring. 

 
Details of the theory of genetic algorithms may be found in several books, e.g. [11], 
[13]. There are many papers and projects concerning genetic algorithms and their 
incorporation into data mining [1], [8], [4], [5], [12], [15], [16]. 
 We now briefly describe the performance of the genetic algorithm we have 
designed and implemented for general purposes, including this project. The 
foundation for our algorithms is the CN4 learning algorithm [2], a significant 
extension of the well-known algorithm CN2 [6], [7]. For our new learning algorithm 
(genetic learner) GA-CN4, we removed the original search section (so-called beam 
search) from the inductive algorithm and replaced it by a domain-independent genetic 
algorithm working with fixed-length chromosomes. The other portion of the original 
CN4 remain unchanged; its parameters have been set to their default values. 
 The learning starts with an initial population of individuals (chromosomes) and 
lets them evolve by combining them by means of genetic operators introduced above. 
More precisely, its high-level logic can be described as follows: 
 
procedure GA 
 Initialize randomly a new population 
 Until stop condition is satisfied do 
  1. Select individuals by the tournament selection operator 

2. Generate offsprings by the two-point crossover operator 
3. Perform the bit mutation 

  4. Check whether each new individual has the correct value (depending 
on the type of the task); if not the individual's fitness is set to 0 (i.e., to 
the worst value) 

enddo 
Select the fittest individual 
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If this individual is statistically significant then 
  return it 
 else  return nil 
 
 The above algorithm mentions some particular operations used in our GA. Their 
detailed description can be found e.g. in [3], [11], [13]. More specifically: 
-  the generation mode of replacing a population is used; 
-  the fitness function is derived from the Laplacian evaluation formula. 
The default parameter values in our genetic algorithm:  size of population is 30, 
probability of mutation  Pmut = 0.002 .  The genetic algorithm stops the search when 
the Laplacian criterion does not improve after 10000 generations. 
 Our GA also includes a check for statistical significance of the fittest individual. It 
has to comply with the statistical characteristics of a database which is used for 
training;  the χ2-statistics is used for this test of conformity. If no fittest individual can 
be found, or it does not comply with the χ2-statistic, then  nil  is returned in order to 
stop further search; the details can be found in [4]. 

4 A Case Study 

As we have already stated our methodological study utilizes GA-CN4 for deriving 
some parameters of the rule-based expert system McESE. Particularly, an individual 
(chromosome) is formed by a fixed-length list (array) of the following parameters of 
the McESE system: 
 
- the weight of each term of McESE rule, 
- the threshold value cvalue of each term, 
- the selection of the CVPF of each rule from a predefined set of CVPF’s 
- the conflict resolution for the entire decision tree. 
 
 Note that our GA-CN4 is able to process numerical (continuous) attributes; 
therefore, the above parameters weight and cvalue can be properly handled. As for the 
CVPF, it is considered as a discrete attribute with these singular values (as mentioned 
above):  min, max, average, and weighed average. Similarly, the conflict resolution is 
treated as a discrete attribute. 
 Since the list of the above parameters is of the fixed size, we can apply the GA-
CN4 algorithm that can process the fixed-length chromosomes (objects) only. 
 The entire process of deriving the right values of the above parameters (weights, 
cvalues, CVPF’s, conflict resolution) looks as follows: 
 
1. A dataset of typical (representative) examples for a given task is selected 

(usually by a knowledge engineer that is to solve a given task). 
2. The knowledge engineer (together with a domain expert) induces the set of 

decision rules, i.e. the topology of the decision tree, without specifying values of 
the above parameters. 

3. The genetic learner GA-CN4 induces the right values of the above parameters by 
processing the training database. 
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 To illustrate our new methodology of knowledge acquisition we introduce the 
following case study. We consider a very simple task of heating and mixing three 
liquids L1, L2, and L3 . The first two have to be controlled by their flow and 
temperature;  then they are mixed with L3 . Thus, we can derive these four rules: 
 
R1: w11 * F1 [>= c11] & w12 * T1 [>= c12] =f1=> H1 
R2: w21 * F2 [>= c21] & w22 * T2 [>= c22] =f2=> H2 
R3: w31 * H1 [>= c31] & w32 * F1 [>= c32] & 
      w33 * H2 [>= c33] & w34 * F3 [>= c34] =f3=> A1 
R4: w41 * H2 [>= c41] & w42 * F2 [>= c42] & 
      w43 * H1 [>= c43] & w44 * F3 [>= c44] =f4=> A2 
 
Here Fi is the flow of Li , Ti its temperature, Hi the resulting mix, Ai the adjusted mix, 
i =1, 2 (or 3). The corresponding decision tree is on Fig. 1. 
 We assume that the above topology of the decision tree (without the right values 
of its parameters) was derived by the knowledge engineer. The unknown parameters 
wij , cij , fi, including the conflict resolution then form a chromosome (individual) of 
length 29 attributes. The global optimal value of this chromosome is then induced by 
the genetic algorithm GA-CN4. 

5 Analysis 

This project was to design a new methodology for inducing parameters for an expect 
system under the condition that the topology (the decision tree) is known. We have 
selected domain-independent genetic algorithm that searches for a global optimizing 
parameters values. 
 Our analysis of the methodology indicates that it is quite a viable one. The 
traditional algorithms explore a small number of hypotheses at a time, whereas the 
genetic algorithm carries out a parallel search within a robust population.  The only 
disadvantage our study found concerns the time complexity. Our genetic learner is 
about 20 times slower than the traditional machine learning algorithms. This disad-
vantage can be overcome by a specialized hardware of parallel processors; however, 
this can be accomplished at a highly distinguished research units. 
 In the near future, we are going to implement the entire system discussed here and 
compare it with other inductive data mining tools. The McESE system will thus 
comprise another tool for rule-base knowledge processing (besides neural net and 
Petri nets) [10]. 
 The algorithm GA-CN4 is written in C and runs under both Unix and Windows. 
The McESE system has been implemented both in C and Lisp. 
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Fig. 1. The decision tree of our case study. 
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