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Abstract: In this paper we try to define a collectivity, to model and to measure it. Because N. Bourbaki names ”collec-
tivizing relation” the relation defining a set, we name collectivities only the sets selected or built by the help
of the relations. The orthogonal interconnections model very well the collectivities. The behavior (structural
self-organization) around the origin is different for homogenous and non-homogenous interconnections. How
can we measure this behavior? A way is by locality and globality. The locality measures analytically by neigh-
borhoods, neighborhood reserves,Moorereserves and synthetically by diameters, degrees, average distances.
The globality is the behavior of an interconnection around a property. The globality vs. symmetry measures
by the compactity, efficiency and interconnecting filling. The locality and the globality are among primary
manifestations of the self-organization. In this way, collectivities modeled by self-organizing interconnections
can contribute to changing our fundamental view of computers by trying to bring them nearer to the nature.

1 INTRODUCTION STRUCTURE
AND ARCHITECTURE

A complexity system modelling means firstly the per-
ception of aself-organizationof the system and then
the proper modelling.To perceive a complex, said
Wittgenstein,means to perceive the relations of its
constituent parts in a determined way. On the other
hand, one of the characteristics of the nature is the
collectivity. Through the computing terrain, Professor
Moshe Sipper said in the foreword to a recent book,
during the past few years a new wind has been sweep,
slowly changing our fundamental view of computers.
We want them, of course, to be faster, better, more
efficient - and proficient - at their tasks. But, more
interestingly, we are trying to imbue them with abili-
ties hitherto found only in nature, such as evolution,
learning, development, growth, andcollectivity (Cas-
tro and Zuben, 2005). We can observe collectivities in
the not living world (universe galaxies, solar systems,
crystalline units) as in the living world (ant hills, bee
swarms, nations).

What propertiesare behind the relations who tie
the collectivities? Maybe is the gravity, the symmetry
or the survival instinct? In a word,structural self-
organization. The self-organization can be structural
and functional. Our paper refers to the structural self-
organization applied to the collectivities.

First let us define the collectivity. For this we must
answer to another question: what is aset? A set ”can
be selected by a membership or by arelation which
substantiate the membershipor by bringing in the set
field elements which fulfill the relation” (Drăğanescu,
1985). Because N. Bourbaki names ”collectivizing
relation” the relation defining a set, we name collec-
tivities only the sets selected or built by the help of
therelations. Therefore, we exclude the sets selected
by the membership, the most general. A collectivity
not means a set made, for example, of a star, a planet,
a crystal, an ant, a bee and a man.

The relation which substantiates the membership
of a collectivity is connected with its functionality:
a collectivity is made of the leastfunctional entities.
For example, an interconnecting is made of nodes and
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links which is equivalent with the graph definition (a
setX of nodes and an applicationΓ of X in X which
gives the set of connections). Theencryption collec-
tivity means a setS of signs and an application (key)
K of S in S which gives encryptions.

In this paper we try to begin to study the collec-
tivities structural and by the help of thearchitec-
ture concept, a connection concept toward the rela-
tion/function. We start with the definition of the con-
cept of structure (Nemoianu, 1967). The word struc-
ture comes from the Latin where there are the noun
structura, with the meaning of building, and the verb
struere(to build) with the past participlestructus. In
English and French the word has the same meaning:
edifice, way to build. The abstraction of the word
makes slowly: only in the XVII-XVIIIth centuries ap-
pears in the sense ofreciprocal relation of the parts
or the constitutive elements of a whole, determining
its nature, its organization. The initial meaning of
building maintains till now but abstracter sense will
be dominated more and more. During the XIXth cen-
tury, structure is generally opposite to function, like
static to dynamic.

The end of the XIXth century brings a new mean-
ing of the structure concept. It will begin to represent
not a simple configuration, a ”static” organization, but
a whole made by solidary elements, in which every-
one depends on all other ones and can not be what it
is than in and through them. Evidently, it is a step for-
ward. Theconnection between parts(the first mean-
ing) is something less necessary, less outlined, more
approximately, more vaguely and more generally than
thetotal interdependence system of each part with all
other parts(the second meaning). If the first meaning
is a sum, the second is awhole. This turning point
coincides with the penetration of the structure con-
cept in the humanities. The term has been changed
by a synonym,Gestalt, understood as form, pattern,
structure, the making of parts which are determined
by whole, system of its behaviorcan not equal with
the sum of the parts. Gestaltis not related to organi-
zation or to plan, but with an organism, a whole, an
entelechy. Theentelechyis a term introduced by the
Austrian psychologist Ehrenfels appointing the fea-
tures (of geometric figures or melodies) by which they
exceed thesumcharacteristics. A geometric figure re-
mains itself even represented in other coordinate sys-
tem, decreased, enlarged, color modified. This invari-
ance of the transposing calls alsoisomorphism.

The linguistic researchers contribute resolutely to
the understanding and to the using of the structure
concept unifying both meanings: thecoherent, co-
agulated globalityand therelations system between
local partsor, in few words, theglobality and thelo-
cality. This step in the evolution of the structure term
opens a path to the identification between structure
and essence of an object or a phenomenon. Wittgen-

stein writes inTractatusthat themanner in which the
objects depend some on the others in the state of af-
fairs constitutes the structure of the state of affairs.

Having in view the above, thestructure of a col-
lectivity can be self-organizedlocally and globally.
For example, an interconnecting structure estimates
locally by neighborhoods. Thus, thelocality is the be-
havior (structural self-organization) of a collectivity
around an origin. The origin can be temporal or spa-
cial. The locality definition refers to the first mean-
ing of the structure concept (the connection between
parts). Theglobality is the behavior (structural self-
organization) of a collectivity around a property. For
example, the interconnections can be estimated and
designed by the help of thesymmetryproperties. The
globality definition concerns to the second meaning
of the structure concept at which referred Wittgen-
stein (total interdependence system of each part with
all other parts).

On the other hand, thecollectivity architecture,
a connection concept between the structure and the
function, gives aglobal meaningto the collectivity
with the aim to better understand the connection be-
tween the structure and the function of this collectiv-
ity. Thus, we can speak of the universe architecture,
a crystallographic system architecture, a house archi-
tecture, a town architecture, a computer architecture,
an interconnecting architecture, a communication ar-
chitecture. Thearchitecture measures by the degree
of membership to global properties. The symmetry is
a global property.

Helping the interconnection as a collectivity model
we try to prove that the dichotomy locality-globality
covers mathematically one of the structural meanings
of the collectivity: the localization and the globaliza-
tion, i.e. astructural potential of a collectivity dy-
namics, a structural self-organization of a collectiv-
ity. The dynamics of an encryption collectivity can
help us to the decryption process.

2 INTERCONNECTION AS A
COLLECTIVITY MODEL

The interconnections made ofN nodes andL links
model very well the collectivities. The nodes are the
members of the collectivity which are tied by links.
If there are the encryption collectivities the nodes are
signs and the links are the set of encryption keys (a
key is included in the setL). We shall limit, with-
out losing too much of generality, to the orthogonal
interconnections (Duato et al., 1997). The algebraic
representation of an orthogonal interconnection can
be made in amixed radix number system, MRNS.
Any numberN can be represented in MRNS as a
product of whole numbers,N = mr mr−1 ... m1.
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Figure 1: A GHT withN = m2 · m1 = 5 · 4.

On the basis of this representation, to each node of
an interconnection we can associate an addressX,
0 ≤ X ≤ N − 1, made ofr digits. Afterwards,
we present some orthogonal interconnections as col-
lectivities, i.e. sets selected or built byrelations.

A generalized hypercube, GHC, is a collectivity
with N = mr mr−1 ... m1 nodes interconnected in
r dimensions. In every dimensioni, i = 1, 2, ..., r,
the mi nodes are interconnected all by all, i.e. ev-
ery nodeX = (xr xr−1 ... xi+1 xi xi−1 ... x1)
is connected with the nodes addressed byX ′ =
(xr xr−1 ... xi+1 x′

i xi−1 ... x1), where1 ≤ i ≤ r,
0 ≤ x′

i ≤ mi−1 and x′

i 6= xi. From GHC de-
rives the hypercube, HC, with N = mr, the bi-
nary hypercube, BHC, with N = 2r nodes, and the
completely connected structure, CCS, withN = m
nodes. Ageneralized hypertorus, GHT, haveN =
mr mr−1 ... m1 nodes inr dimensions, in every di-
mensioni, i = 1, 2, ..., r, themi nodes being inter-
connected in a torus, i.e. every nodeX is connected
with the nearest neighbor nodes addressed byX ′ =
(xr xr−1 ... xi+1 x′

i xi−1 ... x1), where1 ≤ i ≤ r,
x′

i = |xi ± 1|modulo mi
. From GHT derives thehy-

pertorus, HT, with N = mr, the binary hypercubes
also, and thetorus, T, with N = m. A generalized
hypergridhaveN = mr mr−1 ... m1 nodes inr di-
mensions, in every dimensioni, i = 1, 2, ..., r, themi

nodes being interconnected in achain, i.e. every node
X is connected in agrid with the nodes addressed
by X ′ = (xr xr−1 ... xi+1 x′

i xi−1 ... x1), where
1 ≤ i ≤ r; x′

i = xi ± 1|xi 6= 0 andxi 6= mi − 1;
x′

i = xi + 1|xi = 0; x′

i = xi − 1|xi = mi − 1. From
GHG derives thehypergrid, HG, with N = mr, the
chain, C, withN = m nodes and BHC again.

These arehomogenous(at links) interconnections.
As example ofnon homogenousinterconnections
we gave a variation of non-homogenous orthogo-
nal interconnections, thegeneralized hyper struc-
tures, GHS (Lupu, 2002). A GHS is an inter-
connection in which every nodeX is connected in
the dimensioni, 1 ≤ i ≤ r, to the nodes ad-
dressed by an interconnecting vector

(

∪ki

j=1X
ij

)

=
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Figure 2: A GHS withN = m2 ·m1 = 5 · 4. The intercon-
necting vector is

�
X21, X11

�
and GHS is coded(CCS, T ).

(xr xr−1 ... xi+1 x′

i xi−1 ... x1).
(

∪ki

j=1X
ij

)

spec-

ifies that a node of GHS is connected by avector of
unions of elementary interconnection structures, in-
stead of asingle elementary interconnection struc-
ture in the homogeneous interconnections. Thisin-
terconnecting vectorhasr elements, 1 ≤ i ≤ r. So,
this interconnecting vectoris defined, on one hand,
by the number of dimensions,r, and, on the other
hand, byki elementary interconnection structures,

i = 1, 2, ..., r, for which the unions
(

∪ki

j=1X
ij

)

are

specified,j = 1, 2, ..., ki. Xij are homogeneous in-
terconnections, like tori, T, grids, G, and completely
connected structures, CCS, and must not be disjoint
for a dimension.

In the figures 1 and 2 we give two examples of
simple homogenous and non-homogenous intercon-
nections. At homogenous regular interconnections,
as the GHC or HT, the origin position does not mat-
ter. The interconnections arespherical, the diameter
is the same. At irregular networks, as the general-
ized hypergrids and other non-homogenous intercon-
nections, it matters where the position of the origin is.
The ”structural” behavior around the origin is differ-
ent for homogenous and non-homogenous intercon-
nections. How can we measure this behavior? One
way is by locality and globality.

3 LOCALITY: A FIRST SENSE OF
COLLECTIVITY STRUCTURE

The collectivities having as a model the interconnec-
tions made of nodes and links can be estimated by
locality andglobality. The locality is the spatial be-
havior of interconnection around an origin. As in
physics, where the gravity characterizes attraction of
the objects, the localitydefines the interconnection:
nearer objects communicate better or nearer nodes in-
terconnect easier. As we told above, the locality defi-
nition refers to the first meaning of the structure con-
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cept, the connection between parts (links of nodes).
The locality measures analytically by neighborhoods,
neighborhood reserves,Moore reserves and syntheti-
cally by diameters, degrees, average distances (Lupu,
2004a). We consider the locality to be classified
firstly as structural (topological), and, secondly, as
functional. Therefore, the locality of an interconnec-
tion will be defined by two localities: astructural lo-
cality and afunctional locality.

The structural localities can be appreciated by
neighborhoods. The neighborhoods can be classified
assurface(radial)neighborhoodsandvolume(spher-
ical) neighborhoods. The surface neighborhood of
an interconnection is the number of nodes at a dis-
tanced, SNd(O) = Nd(O), whereO is the ori-
gin chosen arbitrarily. The volume neighborhood is
V Nd(O) =

∑d

i=1
Nd(O). By neighborhoods, the

structural locality can be evaluated analytically. An-
other measure, more synthetically, of the structural lo-
cality is the diameter: at the same number of nodes,
the smaller diameter is the bigger locality is.

A problem, as we told above, is that the neighbor-
hoods and the diameters depend on theorigin posi-
tions. At homogenous regular interconnections, as
the generalized hypercubes or hypertori, the origin
position does not matter. At irregular interconnec-
tions, as the generalized hypergrids and other non-
homogenous structures, it matters where the position
of the origin is. The topographic model presented in
(Lupu, 2004b) helped us to study the description and
the behavior of the direct interconnections, homoge-
nous and, especially, non-homogenous. The proper-
ties of interconnecting locality can be better ”read” by
the diameter contour patternsin the structural relief
of the interconnection.

We introduced a measure that helps us to reveal
the interconnection relief, thestate of agglomeration.
The structural localities are more or lessagglomer-
ated, as in reality. The depth of thevalley (minimum
diameter) informs us aboutmaximum agglomerated
locality, and the height of thepeak(maximum diame-
ter) about theminimum agglomerated locality. Thus,
structural state of agglomeration of an interconnec-
tion node is given by the interconnection diameter
computed with the origin in the corresponding node.
The contour patternsof structural states of agglom-
eration (of the diameters computed with the origin in
every node) constitute a map with thestructural relief
of the interconnection.

The structural locality is an invariable information
depending on the topology. A functional point of view
on the interconnection locality can take into consider-
ation the message routing distributions,ΦO(d), where
O is the origin andd is the distance.

As the structural locality, the functional locality
measures also by neighborhoods: afunctional sur-
face neighborhood, FSNd(O) = ΦO(d) × Nd(O),

and afunctional volume neighborhood, FV Nd(O) =
∑d

i=1
ΦO(i) × Ni(O). For the functional locality,

there is also a synthetic measure like diameter, the
functional average distance. The functional average
distance helps the next definition: thefunctional state
of agglomeration of an interconnection node is given
by the functional average distance of the intercon-
nection computed with the origin in the correspond-
ing node. Shorter the functional average distance is,
greater the state of functional agglomeration is! Us-
ing thecontour patternsof the functional states of ag-
glomeration we can draw a map depicting thefunc-
tional relief of the interconnection(see next section).

The surface and volume neighborhoods, on the
one hand, and the diameter or degree, on the other
hand, are analytical and synthetic evaluation means
of the intercommunication capability of interconnec-
tions, measuring thestructural locality. By functional
neighborhoods and, indirectly, by functional average
distance, it expresses which part of the structural lo-
cality is used by communication process implemented
on the network. In other words, the functional neigh-
borhoods and the functional average distances express
thefunctional localityof the interconnections.

Obviously, for a given interconnection,SNd ≥
FSNd andV Nd ≥ FV Nd. The difference between
the two types of neighborhoods represents what we
named theneighborhood reserve. The neighborhood
reserve is ofsurface, SNRd = SNd − FSNd, or of
volume, V NRd = V Nd − FV Nd. Using the neigh-
borhood reserve, we introduced a design/evaluation
criterion of a topology by enunciating the following
conjecture:the intercommunication structural poten-
tial of an interconnection is optimally used in a com-
munication process characterized by a routing distri-
butionΦ if the neighborhood reserve is minimal.

To evaluate the structural locality of an intercon-
nection, besides the neighborhoods and neighborhood
reserves, we proposed a simple measure: theMoore
reservebased on theMoore bound. As it is known,
the Moore bound is given as themaximum number
of nodeswhich can be present in a graph of given
degreel and diameterD: NMoore = 1 + l(((l −
1)D−1)/(l−2)). This bound is deduced from a com-
plete l-tree with diameterD and is anabsolute limit
for a diametrical volume neighborhood, V Nd(O) =
∑d

i=1
Nd(O), in any graph (interconnection)of l de-

gree andD diameter. Except for the completel-ary
trees, this bound is rarely reached.Petersengraph,
completely connected structures and rings with odd
number of nodes are interconnections that reach the
Moore bound. Therefore, it makes sense to com-
pute for an interconnection how far is this bound: the
farther away theMoore bound, the structural local-
ity properties are worse. This is implemented by the
Moore reserves.
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Thesurface Moore reserveis defined by the differ-
ence between the number of nodes in a correspond-
ing Moore tree at the distanced, with the degree in
considered interconnection, and the surface neigh-
borhood in considered interconnection:SMRd =
l(l − 1)d−1 − Nd. The Moore reserveis defined
by the difference between theMoore bound at the
distanced and the volume neighborhood:MRd =
NMoore(d) − V Nd.

4 HOMOGENEITY AND
SYMMETRY

Based on the topographic model we estimate three
bidimensional interconnections more and morenon-
homogenousandasymmetrical. Let us draw, in the
first example, the functional relief foruniform dis-
tribution of bidimensional interconnection having 20
nodes on a dimension.

The unidimensionalelementary interconnection
structure, non-homogenous,EIS1, is the same in both
dimensions being composed of a completely con-
nected structure (nodes0 ÷ 8), a grid (nodes8 ÷
11) and, again, of a completely connected structure
(nodes11÷19). EIS1 has, in this way, 20 nodes ”sym-
metrically arranged”.

In the figure 3 we give thecontour patternsfor the
uniform distribution. First, we notice the perfect sym-
metry in both dimensions thanks to the symmetry of
the EIS, the same in both dimensions. According to
this symmetry, we observe that the biggest part of the
functional relief is formed of four tablelands having
the same height, 5.5 nodes, orientated to the fourcar-
dinal points. In the middle of the interconnection, like
a cross 4 nodes wide, fourcanyonsdeepen, with the
average distance of 4.5 nodes. Right in the intercon-
nection center there is a valley, the most agglomer-
ated part of the structure, with a depth of 3.5 nodes.
The biggest slope of the average distanced̄U (O), to
the interconnection middle, is 2 nodes, and the slopes
crossing the canyons are 1 node.

The functional reliefs for the other distributions
(structural and exponential) look likewise. The
heights or the slopes are the difference.

Let us draw, in the second example, the functional
relief of a bidimensional non-homogenous structure
which has in the first dimension an elementary in-
terconnection structureEIS2 being composed of a
completely connected structure (nodes0 ÷ 8), of a
grid (nodes8 ÷ 11) and, again, of a completely con-
nected structure (nodes11 ÷ 19) and in the second
dimension, the elementary structureEIS3 being com-
posed of a torus (nodes0 ÷ 8), of a completely con-
nected structure (nodes8 ÷ 11) and, again, of a torus
(nodes11 ÷ 19). In the figure 4 we give the con-

q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q

5.5

5.5

5.0

4.5

4.5

5.0

5.5

5.5

5.5

5.5

5.0

4.5

4.5

5.0

5.5

5.5

5.5

5.5

5.0

4.5

4.5

5.0

5.5

5.5

5.5

5.5

5.0

4.5

4.5

5.0

5.5

5.5

5.0 4.5 4.5 5.0

5.0 4.5 4.5 5.0

4.0 3.5

�
�

�

@
@@

@
@

@

�
��

�

@

@

�

Figure 3: The functional relief for the bidimensional inter-
connection with the non-homogenousEIS1 for the uniform
distribution. Thecontour patternsof the functional average
distanced̄U (O) are drawn.

tour patterns of this interconnection for uniform dis-
tribution. The bidimensional interconnection is sym-
metrical too, though it has in the making of the el-
ementary interconnection structures,EIS2 andEIS3,
different homogenous sub-interconnections. The re-
lief of this interconnection ismore varied: four peaks,
rather small tablelands, 7.5 nodes height, and a larger
valley, of four nodes, separating the network in two
alongx2 dimension and in the middle ofx1 dimen-
sion, 5.5 nodes depth. Still there are two saddles 6.5
nodes height between the peaks and, in the middle of
the network, as in the previous example, the deepest
valley (the most agglomerated part), 4.5 nodes depth.

The symmetry is not the same on the two intercon-
nection axes, like in the first example. The symmetry,
in present example,differs from an axis to the other
and, therefore, isweaker.

In the last example is given a non-homogenous in-
terconnection with a marked characteristic ofasym-
metry. Let us draw the functional relief of a non-
homogenous bidimensional interconnection with 20
nodes per dimension. On the first dimension there
is an elementary interconnecting structureEIS4 be-
ing composed of a completely connected structure
(nodes0 ÷ 5), a grid (nodes5 ÷ 12) and a torus
(nodes12÷19). On the second dimension the elemen-
tary interconnecting structureEIS5 is composed of a
torus (nodes0÷10), a completely connected structure
(nodes10÷15) and, again, a torus (nodes15÷19). In
the figure 5 we give the contour patterns of this asym-
metrical on both axes interconnection. The structure
presents only partial symmetries on certain areas.

We presented three bidimensional interconnections
with the same number of nodes per dimension and
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Figure 4: The functional relief for the bidimensional non-
homogenous interconnection with the elementary structures
EIS2 andEIS3. Thecontour patternsof the functional aver-
age distancēdU (O) for the uniform distribution are drawn.

with elementary interconnection structures more and
morenon-homogenous. The functional reliefs proved
these three interconnections have a more and more
markedasymmetry, the structures having a more and
more emphasized ”structural dynamism”,structural
self-organization. Thisstructural dynamismleads to a
more and more powerfulstructural self-organization
property. Therefore, the non-homogeneity leads, on
the one hand, to theasymmetry, and, on the other
hand, to themore intense structural self-organization.

5 GLOBALITY: A WAY FROM
THE STRUCTURE TO THE
ARCHITECTURE

One of the most importantpropertiesof any physical
space structure is thesymmetry. The transformation
that keeps the structure of the space is namedauto-
morphism. Giving a space configuration, a structure,
a form, aninterconnection, we can emphasize a set
of space automorphisms, which leave unchangeable
this interconnection. Thus, the emphasizing automor-
phisms form agroup which describes precisely the
symmetry of the giving configuration.

The amorphous space has atotal symmetrycorre-
sponding to the group of all automorphisms. The
symmetry of an interconnection will be described, as
we have told, by a subgroup of all automorphisms.
The total symmetry of the space defined byn points
(nodes, permutations) will be described bySn!, while
apartial symmetryis expressed by a subgroup (of per-
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Figure 5: The functional relief of the bidimensional inter-
connection with elementary structuresEIS4 andEIS5 for
uniform distribution. Thecontour patternsof the functional
average distancēdU (O) are drawn.

mutations) included inSn!. Therefore, symmetrical
groupsSn! model the symmetry of a space defined by
n nodes and inversely. The total symmetry of a space
is represented by a total interconnection, a completely
connected structure withn! nodes.

As an example, the plane figures have as constitu-
tive symmetries only the identity, rotation, translation,
reflection and reflection-translation. It is known that a
rectangle has the following four symmetries: the iden-
tity, I; the two reflectionsS1 andS2 vs. non-parallel
sides perpendicular bisectors,AS1

andAS2
; the ro-

tation with 180◦, R. The four automorphisms can
be represented by an interconnection, the vertexes of
which are noted 1, 2, 3 and 4. With this, we equate the
symmetries of the rectangle with following permuta-
tions (generators):I = (1 2 3 4), S1 = (2 1 4 3),
S2 = (4 3 2 1) andR = (3 4 1 2). The four sym-
metries form a commutative group to the composition
operation but, equating them with permutations, we
notice that these symmetries form only asubgroupof
the symmetric group of order 4,S4!. In this way, we
can examine the symmetry properties of plane figures,
which divide the symmetric groupsSn! in different
subgroups. Let us note byGS the groups (subgroups)
of symmetries which divide the symmetric groupSn!.

We defined at the beginning of the paper
that the globality is the behavior (structural self-
organization) of a collectivity around a property.
How does it define the globality of the plane figures
vs. symmetry property? A quantitative appreciation,
a measure of theglobality vs. symmetry, which we
noteΓn, is given by the ratio of the order of group
of symmetries and the order of symmetric group:
Γn = |GS |/|Sn!|. The inverse ofΓn we denominated
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group locality, Ln, (Lupu and Niculiu, 2005).
The globalities must be compared at the same num-

ber of interconnecting nodes (sameSn!). For ex-
ample, the globalities vs. symmetry of the tetragon
and rectangle are the same for they refer to the same
symmetric group,S4!, while we can not say any-
thing about globalities of the isosceles triangle and
the square for they refer to the different symmetric
groups,S3! andS4!. The maximum globality will be
obtained whenGS = Sn! = 1. Let us give three plane
figures, an isosceles triangle, a trigon and an equi-
lateral triangle, all having 3 interconnecting nodes,
so referring toS3!. The isosceles triangle has two
symmetries,I and S, its globality being the least,
GS/S3! = 1/3. The trigon has three symmetries,I,
R1 andR2. Its globality is equal to 1/2. The equilat-
eral triangle has 6 symmetries,I, R1, R2, S1, S2 and
S3. Its globality is the biggest,1.

Instead of relying on the logic distances between
the nodes (locality), we want to evaluate/design a in-
terconnection (collectivity) based onproperties. The
globality put the properties, a constructive, synthetic
principle, anarchitectural principle, before the dis-
tances, an analytic principle, especially tied to the
locality. The logic distances ”disappear” into a
globality, which displays the properties. The local-
ity principle helped us to design/evaluate new non-
homogenous interconnection networks, as general-
ized hyper structures, and the globality principle
helped us to imagine anew interconnection paradigm
based on symmetrical morphemes and ensembles and
that we will shortly introduce in next paragraphs.

The morphological interconnection, that we pro-
pose as a new model for acollectivity, have toen-
semblein Sn! elementary entities. We shall name
these entities,morphemes, and the tying interconnec-
tion, morphological interconnection. If we use the
architectural principle of globality vs. symmetry we
shall namesymmetrical morphemes, symmetrical en-
semblesandsymmetrical interconnection.

The symmetrical morphemes, helping us to build
symmetrical ensembles, are bidimensional or tridi-
mensional forms emphasizing in a symmetric group
Sn! by theCayleygraphs (Akers and Krishnamurthy,
1989) of (sub)groups of symmetry,GS . These groups
of symmetry represent the symmetries of plane or
tridimensional figures. For example, the symmetries
of the right line segmentare the identityI = (1 2)
and the reflectionS = (2 1). GS has aCayleygraph
with a transposition. The symmetries of theisosceles
triangleare the same, the identityI = (1 2 3) and the
reflectionS = (1 3 2). TheCayleygraph associated
to the symmetries of the isosceles triangle is also with
2 nodes and a transposition, the only difference being
the defining automorphisms symmetric groups,S2!

for segment andS3! for isosceles triangle. The sym-
metries of thetrigon are identityI = (1 2 3) and two
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Figure 6: Compactity of the ensemblesKE realized by sim-
ple symmetric morphemes in architectural spaceS3!.

rotationsR1 = (2 3 1) andR2 = (3 1 2). Thecom-
plete(Lupu, 2004a)Cayleygraph of the trigon sym-
metries subgroup is a directed graph. It is an overlap
of two hamiltonian circuits (cycles as permutations)
in the opposite direction, representingminimal Cay-
ley graphs of the trigon symmetries. The symmetries
of theequilateral triangleare the identityI = (1 2 3),
the rotation with180◦ R1 = (2 3 1), the rotation with
240◦ R2 = (3 1 2) and the reflectionsS1 = (1 3 2),
S2 = (3 2 1) and S3 = (2 1 3). The symmetric
morpheme of the equilateral triangle has the globality
Γ = GS/S3! = 1. The morpheme of the right line
segment is alinear morpheme, of the triangle and the
square areplanemorphemes and the morphemes of
the pyramid and the prism arespatialmorphemes.

A first symmetric ensemble characteristic appreci-
ates itscompactity. The maximal compactity of an
ensemble will be obtained when all morphemes will
have all nodes, links, surfaces and volumes intercon-
nected. There are four basic rules of morphemes in-
terconnecting:common nodes(CN), common links
(CL), common surfaces(CS) andcommon volumes
(CV). In this way, the compactity is a measure of mor-
phemes interconnecting in an ensemble. The com-
pactity is minimal for CN interconnecting and maxi-
mal for CV interconnecting. Let us note the ensem-
bles compactity withKE and it will express different
for the three types of morphemes:KEL = Γ2 m·n

NM

,
KEP = Γ3 s·m·n

LM ·NM

and KES = Γ4 v·s·m·n
NSM ·LM ·NM

,
whereΓ is the globality;n is the number of nodes
interconnected,n = 0...NM

Γ
; m is the number of link

interconnected,m = 1...LM

Γ
(m = 1 for no link in-

terconnected);s is the number of surfaces intercon-
nected,s = 1...NSM

Γ
(s = 1 for no surface intercon-

nected);v is the number of volumes interconnected,
v = 1... 1

Γ
(v = 1 for no volume interconnected);

NM is the nodes number of the morpheme;LM is
the edges number of the morpheme;NSM is the sur-
faces number of the morpheme. In the figure 6 we
give some examples of symmetric ensembles struc-
tured in the architectural spaceS3! with linear and
plane morphemes. It also mentions the compactity
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Figure 7: A GHG build by the rule CL in architectural space
S4! from the 12 symmetrical morphemes of the tetragon.

KEL for linear ensembles andKEP for plane ensem-
bles. About the other ensembles characteristics, the
interconnecting efficiency in pure ensemblesand the
capacity of filling, we shall write in another paper.
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Figure 8:dU functional relief of the ensemble of the fig. 7.

After a short evaluation of the symmetrical ensem-
bles byoutsidemeasurements involving the globality
and the geometry of the symmetric morphemes, let us
appreciate byinside measurements which will offer
a view on the on the communicability of them. The
symmetrical ensembles are build inSn! of symmetri-
cal morphemes which have a property or more, tied
by some general rules. For example, in the figure 7
we give a generalized hypergrid assembled inS4! of
12 symmetrical morphemes of the tetragon. A gen-
eralized hypergrid, GHG, is assembled in two dimen-
sions by rule CL and for the algebraic representation
we used MRNS. In the figure 8, using the topographic
model mentioned above we obtained a functional re-
lief with an uniform routing distribution.

6 CONCLUSION

In this paper we tried to approach in other way
the problem of encryption. Instead of occupying,
for example, with the algorithms (functional self-
organization) (Lupu et al., 2005), we questioned what
hides behind the algorithms. A possible answer is
the (encryption) collectivities modeled as intercon-
nections (structuralized self-organization). Our prin-
cipal aim was to define the collectivities, then to
model and to measure them. The collectivity is apriv-
ilege of structuralized nature(living and not living).
A collectivity is at least an interconnection. Locality
and globality are among the most general structural
measures, the primitives of an interconnection which
models a collectivity. The locality supposes an origin
and the globality, a property. The locality is the struc-
tural self-organization around an origin and the glob-
ality, around a property. The architecture, a connec-
tion concept between the structure and the function of

the collectivity, measures by the degree of member-
ship to global properties, like symmetry. Helping with
these concepts, self-organization, structure, architec-
ture, function, interconnection, locality and globality,
we tried to model and to measure a collectivity.Dis-
covering the rules that govern the future interconnec-
tion environment is a major challenge(Zhuge, 2005)
and, maybe, one of the future interconnection envi-
ronments is the collectivity model.
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