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Abstract: This paper presents a new strategy for robust tracking in robot manipulators. The aim of the strategy is to 
reject parametric uncertainties due to model or load disturbances. The basic controller acting on the 
manipulator is a robust controller designed by Lyapunov’s direct method. Acting on this controller there is 
an adaptive system responsible for the adaptation of the basic parameter of the robust feedforward term. The 
performance of the strategy is tested in a Puma-560 manipulator. A comparison with existing techniques is 
done to verify the efficiency of the presented controller. 

1 INTRODUCTION 

There are circumstances in which the performance 
of conventional controller of robot manipulator 
decreases. For instance when the dynamics of the 
robot are not precisely known or disturbances are 
affecting the system, the controller could perform 
poorly. In many of the control schemes the dynamic 
model is explicitly used to compute the control 
action. These techniques are based on a perfect 
knowledge of the robot model and its dynamic 
parameters. A perfect cancellation of the nonlinear 
dynamics is achieved if those two premises are 
satisfied, and linear controllers can then be used with 
satisfactory performance.  
 
 There are other techniques that do not use this 
exact feedback linearization approach but a local 
linearisation around the desired trajectory (Torres et 
al, 2002) or the property of linear parameterizability 
of n-link rigid robots to obtain a linear model of the 
system (Spong, 1992). 
 
 In this paper the imperfect cancellation of the 
nonlinear dynamics due to uncertainties is afforded. 
Lot of works related with adaptive control schemes 
(Ortega and Spong, 1989; Slotine and Li, 1987), 
robust control schemes (Slotine, 1985; Spong and 

Widyasagar, 1987; Dawson et al, 1992) and even 
hybrid control schemes (Su and Stepanenko, 1997) 
have been proposed to deal with these uncertainties. 
Most of robust controllers are based on the 
Lyapunov’s direct method (LDM). These schemes 
add a robust term to the control input that tries to 
compensate the discrepancies between the estimated 
model and the real model of the system. This robust 
action presents a good performance in several 
circumstances, but it has to be revised at least in two 
cases. First, when the robot works with different 
payload masses, and second, when the controller is 
used with a robot manipulator having different 
dynamic parameters than the estimated model. Due 
to this, the robust action has to vary adequately. The 
present work tries to add an adaptive scheme in 
order to tune automatically the robust design 
parameter involved in this action.  

2 CONTROLLER DESIGN 

The control problem considered is the tracking 
problem of robot manipulators with uncertainties in 
the model. The controller has three parts (Spong, 
1992; Sciavicco and Siciliano, 1996): a feedback 
linearisation inner loop, a stabilizing PD control law 
and a robust action.  
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The dynamics of this system are represented by: 
 

( )( ) ( ) ( )( ) ( )( )tctthttDtu θθθθθ ++= ,)()(        (1) 
 
being ( )( )tD θ  the inertia matrix, ( ) ( )( )tth θθ ,  the 
Coriolis and centrifugal force vector, ( )( )tc θ  the 
gravitational force vector and u(t) the applied torque 
to each link 
 

The linearization is achieved considering the 
following input to the nonlinear model: 
 

( ) ( ) ( )kkkkkk chyD θθθθτ ++= ,        (2) 
 
where yk is the new input to the linear resultant 
model. The sub-index k indicates the instant of time, 
while θk and kθ refers to the measured position and 
velocity at the instant k. This leads to the following 
linear and decoupled second-order model: 
 

kky θ=                                 (3) 
 

The following equation ensures an asymptotically 
stable second-order system (the time dependence is 
avoided in the notation for simplicity): 
 

kkDkpk rKKy +−−= θθ                                     (4) 
 
where the components rik of the vector rk are the 
reference for each joint. This can be seen taking into 
account equations (3) and (4), which leads to the 
second-order system: 
 

kpkDkk KKr θθθ ++=                                        (5) 
  
which is asymptotically stable if Kp and KD are 
positive definite matrices. Moreover, choosing a 
diagonal form for them, the system results 
decoupled. Once any desired trajectory θd(t) is 
given, the tracking problem for this trajectory is 
solved by choosing: 
 

dkpdkDdkk KKr ,,, θθθ ++=                          (6) 
 
This is easy to view substituting (6) into (5), which 
leads to: 
 

0~~~
,,, =++ dkpdkDdk KK θθθ                    (7) 

 
where kdkk θθθ −= ,

~  (and similarly for its time 
derivatives). This equation gives the expression for 
the dynamics of the position errors. Finally, 

following (4) and (6), the stabilizing control law is 
defined by: 
 

kpkDdkk KKy θθθ
~~

, ++=      (8) 
 

The third part of the controller is the robust action 
added to correct the imperfect compensation of the 
nonlinear term in (1), given by the inverse dynamics 
control (2). In the assumption that only an estimation 
of the real matrices D(θ), h(θ,θ ) and c(θ) can be 
obtained, the equation (7) results: 
 

ηθθθ =++ dpddd KK ~~~                                        (9) 
 
where η  gives the discrepancies between the real 
and the estimated values for the matrices (Sciavicco 
and Siciliano, 1996). In view of this, for this 
nonlinear coupled system, tracking with zero error is 
not ensured and PD control action is not sufficient. 
Following the well-known LDM, an outer feedback 
loop on the error can be designed in order to be 
robust to the uncertainty η:  
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where  
 

 
 
 
 

 
Q2n x 2n  is a positive definite matrix and ρ is a design 
parameter. The full control law is given then by: 
 

rkdkpdkDdkk yKKy ,,,,
~~

+++= θθθ                  (11) 
 
To avoid the problems in (10) when the error 
approximates zero, the following expression is used: 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

≥
=

εξξ
ε
ρ

εξξ
ξ

ρ

k
t

k
t

k
t

k
t

k
t

rk

QDifQD

QDifQD
QDy

,

,

,   (12) 

3 IMPROVING PERFORMANCE 
OF EXISTING TECHNIQUES  

The value of the design parameter ρ is important in 
order to have a good performance of the closed-loop 
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system. Several proposals have exist in the literature 
(Spong, 1992; Corless and Leitmann, 1981; Liu and 
Goldenberg 1993; Jaritz and Spong, 1996).  
 

In this paper a new method to adjust this critical 
parameter is presented. An adaptive law based on a 
gradient descent method is used for the adaptation of 
the design parameter ρ: 
 

1
1

−
− ∂

∂
−=

k

k
kk

J
ρ

γρρ                    (14) 

 
where γ is the learning rate of the adaptation. In this 
case, the cost function is formed by two terms. The 
first of them loads the error in the state of the robot. 
The second term loads the resultant input to the load 
system. The resultant cost function is given by: 
 

111 2
1

2
1)( −−− += kad

T
kkad

T
kkk yRyQJ ξξρ   (15) 

 
where the 2n x 2n matrix Qad weighs the state error 
and the n x n matrix Rad weighs the influence of the 
inputs to the linearised system. This choice gives the 
following adaptation law: 
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To compute the derivatives in (16), a first order 
approximation has been applied. The error ξk can be 
approximated by:  
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Its derivate with respect to ρk-1 is: 
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In order to compute this derivative, the linearised 
model of the system in state-space form is used: 

 

kk

kDkDk

Cx
yBxAx

=
+= −−

θ
11                  (19) 

 

Then, the derivative of (18) is: 
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If it assumed that εεξ ∀< ,k

tQD , which is true 

except perhaps at the beginning of the motion, 
expression (11) can be approximated by: 

 

kkdkpdkDdkk MKKy ξρθθθ +++= ,,,
~~      (21) 

 
where ε/QDM T= . Expression (21) leads to the 
computation of the derivative in the right part of (20) 
as follows: 
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Using (22) and (20), expression (18) is written as: 
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Finally, expressions (22) and (23) can be used to 
evaluate the adaptation law (16). 

4 RESULTS 

The algorithm proposed was tested on a PUMA 560 
manipulator of Unimation. The model used includes 
uncertainties with respect to the real model. In 
Figure 1, the results of a trajectory-following 
experiment is shown. As can be observed, the 
performance of the RAC strategy is considerably 
better than the other two. Robust controller with the 
Spong strategy tends to reduce the tracking error, but 
the new proposed strategy improves the performance 
of the Spong controller. In both cases the uncertainty 
bound parameter is bounded along the whole 
trajectory. However, higher values are achieved with 
the RAC scheme. Actually, this is the reason why 
the performance is better with the proposed 
controller.  
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Figure 1: Tracking error comparison of the different 
strategies for a tracking experiment (link 2). 

It is important to take into account that to setup 
the Spong’s controller it is necessary to previously 
simulate the system in order to tune the parameters 

0υ  and 1υ  in equation 13. However, with the RAC 
scheme better results are obtained and it is not 
necessary any previous simulation to setup the 
controller.  

5 CONCLUSIONS 

In this work an efficient self-adaptive robust 
controller applied in a PUMA 560 manipulator arm 
was presented. It is studied the case in which model 
uncertainties are present. The standard robust control 
strategy for robot manipulators is based on a robust 
controller with fixed design parameter or an 
adaptation based on the behaviour of the model in 
the defined reference trajectory. These schemes are 
inefficient: first of them requires quite trial and error 
proofs before reaching the appropriate value for the 
design parameters, and it is valid only for the current 
trajectory. Second of them requires an evaluation of 
the dynamics terms over the reference trajectory in 
order to get some bounds parameters to form the 
adaptation law. The new self-adaptive strategy 
designed improves the performance of the standard 
controllers. It was shown that the robust design 
parameter is very important in the closed-loop 
behaviour of the controller. The new strategy adds a 
self-tuning scheme in order to vary adequately its 
value. The results obtained with this new scheme 
show a better behavior than the standard scheme 
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