
Service Composition in eHome Systems:
A Rule-based Approach

Michael Kirchhof and Philipp Stinauer

Department of Computer Science III, Aachen University of Technology,
Ahornstr. 55, 52074 Aachen, Germany

Abstract. This paper deals witheHome systems. We focus on theservice compo-
sition in order to reduce complexity and to leverage maintainability and extensi-
bility of eHome services. Talking about services, we mean any piece of software,
which is executed in anetwork environment, making the usage and administration
of ubiquitous appliances easier. Current situation is, that the complete function-
ality is hard-coded into services without the facilities to be extended or reused.
Many logical correlations (e.g., how to react if an alarm condition is raised) are
made explicit in an inappropriate way. To tackle this problem, we introduce a
declarative approach to specify logical correlations and to combine functionali-
ties and services to new services, offering the required flexibility and comprehen-
siveness.

1 Introduction

As technology emerges to everyday life, it is brought to households, too. There is a vari-
ety of areas, in which the usage of technology (i.e., smart devices and computers) makes
sense. Services of the first area target the comfort of inhabitants, e.g., remote access and
automatic control of appliances. Services in the security area can be surveillance of the
house or alarming the house owner if something unexpected happens. Communica-
tion services comprise enhanced electronic mail and instant messaging. Services in the
health-care area targets for example instructions in the case of illnesses or diets. Info-
tainment stands for video on demand and similar. Consumption targets the monitoring
and optimization of energy consumption. Services in all these areas can be autonomous,
i.e. the execution of them only depends on the computer system in the house. A natural
extension would be the usage of remote systems providing information database and
services. Services of this nature are also known asvalue-added services. Bringing an
enhanced lifestyle to consumers and, in turn, bring new revenues to companies seems
to open a new powerful market [1].

In this paper we will take a look at systems combining automated homes, called
eHomes, with enterprises and virtual enterprises. We call these systemseHome systems.
We focus on theservice composition in order to reduce complexity and to leverage
maintainability and extensibility of eHome services. Talking about services, we mean
any piece of software, which is executed in anetwork environment, making the usage
and administration of ubiquitous appliances easier.

Kirchhof M. and Stinauer P. (2005).
Service Composition in eHome Systems: A Rule-based Approach.
In Proceedings of the 2nd International Workshop on Ubiquitous Computing, pages 28-38
DOI: 10.5220/0002576700280038
Copyright c© SciTePress



The scenario discussed in this paper is illustrated in figure1. The connected home
(1) at the bottom of the drawing is equipped with a so calledresidential gateway (2), a
hardware device, which provides access to connection infrastructure and acts as runtime
environment for theservice gateway. The service gateway manages and runs eHome
services. These services realizeeHome services (3), which are then visible to the house
owner. Examples of this kind are an automated air conditioning system, or an auto-
mated energy control and optimization system. The household is equipped with several
devices. These are connected with arbitrary network protocols to the residential gate-
way in the same manner as the services inter-communicate (4). The gateway acts as
the central intelligence of the eHome. From the consumer’s point of view, the residen-
tial gateway is a maintenance-free computing device. The connection (5) to the service
provider is realized through a dialup connection (e.g., DSLor cable modem). The ser-
vices interactingsporadically with the provider are connected via the Internet. User
interaction (6) is realized via different kind of devices, e.g. mobile phones, PDAs, ter-
minals, and personal computers.

��������	
���
����	���������������

��
���

�

��
���

�

��
���

�

��
���

�

��
���

�

��

����
��������

�����������
��������

�� �!���"���

�#�

$��
���!

%���������!�&�����


	�������&�����


	������
�

	���'��

	���'
�

	������
#

�
�
�
�
��
�
��
�
	
�
�

�
�
�
��
�



��
��
�
��
�
�
��
�
�
�
��
�
�

�
�
�
	
��
��
�
�
�
�
�
�

�
�
	
�
�

���

���

���

���

���

� �

�!�

�"�

Fig. 1. Scenario

One often mentioned problem is the existence of many established home automa-
tion standards. While several papers address this topic, we use an OSGi-compliant gate-
way [2–4] as the nerve center of our solution. The usage of theopen service gateway
enables an abstract, almost protocol-independent view onto the different home automa-
tion protocols used. We are more interested in the mechanisms of composite services,

29



rather than in the mechanisms oflocal communication and service development. To
ease the development of eHome services, we rely on the Layered Approach to OSGi-
based service gateways (PowerArchitecture) [5] and the Distributed Services Frame-
work (DSF) [6].

One application of these technologies is a modular alarm system. The alarm sys-
tem consists of multiple cameras, multiple sensors, an outbound connection for alarm
messages (e.g., email facility, SMS), and some power switches. All components are
connected to the residential gateway. The residential gateway integrates and coordi-
nates the components. The procedure is the following: when some of the sensors, for
example motion detectors, detect something worth mentioning, a predefined subset of
available switches (also called actors) are activated and selected cameras should take
pictures of the location and store them. The house-owner is informed about what is cur-
rently happening in his house in order to take adequate measures based on the kind of
event and the pictures obtained from within his house. Possible actions would be to call
the police in emergency cases or to discard the event, in situations where the cat raised
the alarm accidentally. The system should be extensible by additional functionality. For
example, the alarm system setup can be tweaked by the user in terms of which rooms
should be monitored. Or, the way to alarm the owner should be made flexible.

Another example is a wakeup system, which leverages the comfort of the eHome
users. The time to get up in the morning is usually determined-in a broad sense- by
the first appointment of the next day. If the user sets up his alarm clock, many different
factors are taken into account: the time needed in the bathroom, duration of having
breakfast, other people sharing the bathroom, the traffic conditions, and so on. Based
on the cumulative time needed for all these tasks, the wake uptime is roughly estimated
and is entered manually into the alarm clock. Other systems utilized in the morning
like the water heating system, the alarm system, the independent vehicle heating, and
similar are not been covered in this decision making. This would make the estimation
too difficult and the required interaction with all the subsystems would be too time
consuming. The point in time when to start these diverse systems is set to the earliest
reasonable value and is triggered by a clock timer, which leads to a waste of energy
by providing unnecessary capacities. In an enhanced solution, the user should still be
able to enter a desired time to get up, but the application should support the user. For
example, a warning can be raised if the selected time would lead to lateness at the first
appointment or a time for wake up can be suggested. This suggestion can be based on
the current traffic conditions, the personal preferences (e.g., breakfast, bath) and the
times the bathroom is occupied by other residents. Preferably, energy consumption can
be optimized by an accurate triggering of the water heating system and other systems
requiring leadtime.

Current situation is, that the complete functionality is hard-coded into services with-
out the facilities to be extended or reused. Many logical correlations (e.g., how to react
if an alarm condition is raised) are made explicit in an inappropriate way. These con-
ditionals are transferred into a procedural programming language and in turn become
incomprehensible. To tackle this problem, we will introduce a declarative approach to
specify logical correlations and to combine functionalities and services to new services,
offering the required flexibility and comprehensiveness.

30



2 Rule-based Approach

Looking at an eHome from an abstract view, it consists of a setof sensors, actors, and
eHome services. To offer functionality to the user, in most cases an eHome service has
to monitor some sensors and control some actors. In our system, these devices are also
represented by services (see section 3). Thus, the service has to compose other services
to deliver the expected result.

Our approach separates service composition from services.Each composition is de-
scribed declaratively by a set of rules responsible for flow control. Every rule consists
of conditions and actions. For example, the alarm system introduced in section 1 con-
sists of rules describing which conditions have to be fulfilled to trigger some action. For
evaluating the conditionals, an execution environment called rule engine service is pro-
vided. For each composed service a rule set is installed in the execution environment.
At runtime, the execution environment listens to events from other services, checks the
conditionals, and executes the actions of satisfied rules.

The residential gateway can contain services in many different combinations. Thus,
it is important not to have too many dependencies between services. To achieve loosely
coupled services, a message-driven approach is pursued. Services can send and receive
messages through a message service and do not depend on the existence of other ser-
vices. In addition to the reduction of dependencies, it is also possible to replace a service
with another one from a different vendor as long as the same message format is being
used. Sensors send notification messages through the message service to the rule engine.
The messages containservice events stating what has happened and where. Depending
on the installed rule sets, the engine involves some action like an activation.

������������	��
���

�

���
�����

	�	�����
���

	��
�����
���

����
����������

����
��	�

����
��	�����

����	��		���

���
�����

���
�����

�

���������
���

�������	��
	��
���	

����
����	��		���

	��
���
�����������

�

��		���
����	��		���

��������
��������

���������

����

Fig. 2. Modules of the Rule Engine Service

Describing the composition declaratively by using a rule-based approach offers
many advantages. It is the natural way of human thinking. So,it is easy to formulate
rules for deciding which services to compose under which circumstances. Furthermore,
having rules instead of a hard-coded imperative program improves variability. Rules
can be replaced during runtime without having to rebuild andinstall a whole eHome
service.

Having a closer look at the rule engine service, it consists of four main modules as
depicted in figure 2. Module A is responsible for getting and converting information
from the outside. Beside the introducedservice event two other types of events exist.

31



System events inform about newly started or stopped services andtime events supply the
current time. The module converts every event, tags it with atimestamp, and saves it in
the fact base located in module C. Rule sets can be installed and removed in the rule
engine through the service interface offered by module B. They are separated from each
other by different namespaces to prevent name collisions. Facts specific to a rule set are
facts that belong to a specific rule set and exist only in the namespace of this rule set.
Adding, modifying, and deleting of facts specific to a rule set is also possible. Module C
evaluates the installed rules against the fact base in a periodic interval. If a rule matches,
the appropriate action is triggered. The action can be to modify data, to execute services,
or to send messages. Generating messages and calling eHome services is handled by
module D. For tracking the system behavior during rule execution a logging facility is
offered.

Conducting an eHome service from within the rule engine consists ofdynamic ser-
vice selection and execution at runtime. For this purpose, every service is described
by some properties, e.g., name of the service, service type and location of the service.
The values are partially set by the vendor and partially by the resident. When a service
should be called from within the rule engine, it is selected dynamically using the ser-
vice properties. Therewith, writing a music-follows-userservice becomes quite simple:
Having a sensor for user detection and a loudspeaker in everyroom, the composition
consists of two rules. The first rule activates the speaker ifthe user enters the room.
The selection of the speaker service depends on the locationproperty transmitted by
the sensor. The second rule turns the speaker off again afterthe user left the room and is
stated analogous. As seen in this example, the advantage of dynamic service selection
is that the developer can write more generic rules and thus reduce the number of rules
which improves maintainability.

Two different possibilities for service execution exist. As explained in the music-
follows-user example, exactlyone service matching the properties can be called. But
what if there are more loudspeakers -represented by services- in the same room? For this
purpose a second method exists, which allows the developer to call all equal services
matching the specified criteria. Using thismultiple service execution all speakers in a
room can be switched on with one statement from within the rule.

Having some variability from the rule execution environment to the outside, there
is also some variability when an event coming from the outside is inserted in the fact
base. One event can activate the same rule several times, because of other conditions in
the rule which have more than one fact matching a condition. For example, a rule for
a alarm clock consists of three conditions: (1) get current time fact, (2) get alarm time
fact for a user, and (3) compare both times. If two alarm time facts exist in the fact base
with same time values for different users, the rule engine will activate this rule twice
and the appropriate action for each user will be executed. This makes it also possible to
write more generic rules, where the action is based on some facts from the conditions.
See section 3 for a extensive example from our prototype.

This approach offers the required flexibility and comprehensiveness. It is easy for
the service developer to create new rule sets, because the execution environment pro-
vides all necessary data for triggering rules. Thus, the developer can concentrate on

32



specifying the logic in a declarative language, which is natural in terms of the human
way of thinking.

3 Software Architecture and Protoype

As stated, we use an OSGi-conform service gateway as a basis for our solution. This
gives a quite complete component model of basic infrastructure services and makes
an additional component-based development easy and naturally. Within OSGi, com-
ponents are calledbundles. Relevant for service and component development are two
questions. Talking about component-based development, itis a design prerequisite to
choose between (a) specialized components, which can not beused in other contexts,
and (b) generic components, which can be used several times,but always with modi-
fications necessary [7]. Applied to service development based on OSGi, the task is to
strike the balance between isolation and sharing among bundles, which means that there
is no reuse of basic components [4].

Fig. 3. PowerArchitecture with Rule-based Service

The architecture of the current prototype developed at our department is calledPow-
erArchitecture [5] (cp. figure 3.) The lowest level comprises components mirroring
functionality of native devices and network protocols. We named this layernative de-
vice and protocol layer. The middle layer is called thedevice layer. There the repre-
sentations of device and protocols asservices reside. These components wrap details
visible at native device and protocol layer. This is also known as a structural design
pattern calledfacade [8]. From an outside point of view, we have now an abstract view
on the basis, the device infrastructure. OSGi’s device access technology is integrated
into both lower and middle layer, enabling to reflect the dynamic aspects of the eHome
system. Seamless integration of device access and protocoldrivers provide means to
reflects thedynamic of the system.

33



To meet the requirement of focusing on functionality instead of devices, we abstract
from vendor-specific and device-specific implementations and used network infrastruc-
ture. We introduce interfaces for types of devices, which reflect a well-understood com-
mon functionality of devices. To incorporate existing technologies and devices, the
specific interface has to be adjusted to the abstract interface. This enables the easy
introduction of arbitrary devices and their implementations into the proposed system
architecture.

The highest level provides room for sophisticated eHome services. These are the
components developed by programmers, who now do not have to deal with device in-
frastructure details. They can concentrate on the abstractservices, their functionality
and requirements. Worth mentioning is, that services can not only be developed by
turning lower levels to account, they can be build by composing high-level services,
too. This brings developers in a quite comfortable position.

PowerArchitecture describes a model for eHome services, especially for partition-
ing and integration of those. With this model, a structure isintroduced, which separates
the application logic of eHome services from infrastructure details. The so defined lev-
els of abstraction build the basis for the rule-based approach. The application logic
resides on the service layer. Thus, the composition of eHomeservices is reasonable for
artifacts on the service layer.

The rule-based approach to service composition leads to thearchitecture shown in
figure 3. The rule-specific parts are marked by a white box. ThecomponentPower-
LogicPlusWakeup contains the rules and facts for the wakeup application. It utilizes
the componentPowerLogic, which realizes the rule execution engine.PowerLogic in-
teracts with the eHome system via the functionality-driveninterfaces on the Device
Layer and the messaging systemPowerMessage. The components required by the
rule-based applications fit well into the purpose-build architecturePowerArchitecture.

The specification of rules provides an adequate way to formalize interdependencies.
A rule consists of an if-part containing conditions and a then-part with desired actions
to be taken if all the conditions are satisfied. An example rule from the wakeup system is
shown in listing 1.1. The if-part of the rule consists of fourconditions: (1) get a resident
profile fact where the alarm is turned on (alarmActive TRUE) and save user name
and wakeup time in local variables (starting with question mark) for later use, (2) get a
wakeup action fact forthis user, (3) get the time fact which contains the current time,
and (4) check whether current time and wakeup time are equal.If all of these conditions
are satisfied the action-part behind the=> is triggered.?powerLogic is a reference to
module D of the rule engine service (see figure 2) andrunServices the method for
service selection and execution. This method selects and executes services matching
the given class name, property filter, and method signature.For each matching combi-
nation of resident profile, wakeup action, and current time the action-part is executed
independently.

The realization ofPowerLogic is based on Jess [9], a Java rule engine. For inte-
gration into the system, we developed three different ways:First, the integration can
be message-driven.PowerLogic can be triggered by messages as well as other compo-
nents can be triggered by messages. Second, method invocation can be used. Third, data
in the eHome system can be bidirectionally reflected within the facts of the rule engine.

34



Listing 1.1. Rule Cutout from PowerLogicPlusWakeup
(defrule wakeup-alert
(resident_profile (alarmActive TRUE)

(name ?name) (wakeupTime ?wTime) )
(wakeup_action (name ?name)

(wakeupClass ? wClass)
(wakeupFilter ? w F i l t e r)
(wakeupMethod ?wMethod)
(wakeupParameter ? wParameter) )

(MAIN::current_time (time ? cTime) )
(test (= ?wTime ? cTime) )

=>
(? powerLogic runServices

? wClass ; class name
? w F i l t e r ; service property filter
?wMethod ; method to call
? wParameter ; parameter list

)
)

This enables the usage of the most appropriate realization strategy per application while
maintaining the software architecture of the system (PowerArchitecture).

4 Related Work

Several approaches in the field of service composition exist. In this section, we will
give an overview of these and point out the advantages of our solution. As we will
show, none of the current developments offers a manageable and complete solution to
the specific problems in the area of eHome systems.

eFlow [10] composes services by defining a workflow process which ismodeled
by a graph. The graph consists of service, decision and eventnodes. A decision node
allows the parallel execution of different services and synchronizes the flow afterwards.
An event node receives event notifications from services. A service node can contain a
service or a composed service described by another workflow graph. To execute equal
services in parallel, eFlow has the concept of multiservicenodes. When creating the
workflow process, it is not possible to know all combinationsof services for the work-
flow. Therefore, eFlow offers the concept of generic servicenodes, which allow place
holders in the graph to define the services at runtime. A comparison between eFlow and
the rule-based approach shows many similarities. Multiservice nodes are equivalent to
the runServices method. Generic service nodes are similar to generic rules which are
instantiated through facts. Both solutions offer dynamic service selection. Main dif-
ference is the way the flow is defined. eFlow uses a workflow graph to identify the
sequence of service execution. The rule engine allows complex conditions to combine
events, which is not possible in eFlow.

SELF-Serv [11] is a framework for peer-to-peer service composition indistributed
systems. A statechart containing states and transitions describes the composition. The
transitions can have Event-Condition-Action rules to control the flow. The states can
be divided into simple and composed states representing simple and composed services
where composed services are statecharts again. Every service has a wrapper responsible

35



for life cycle management of this service and a coordinator responsible for handling the
flow. A complex service configures the coordinators of the needed services to create the
composition. At runtime, the coordinators communicate with each other peer-to-peer.
The advantage of this solution is that there is no central unit for flow control at run-
time and the system scales better than central systems. Comparing SELF-Serv with the
introduced rule-based approach shows that both languages have the same expressive-
ness. Our eHome system can not taken advantage of the peer-to-peer concept, because
within the eHome a centralized approach is pursued by relying on the idea of residential
gateways. The coordinators would only lead to an unnecessary overhead in the system.
The same applies for SELF-Serv’s wrapper: it is not needed, because the life cycle is
managed by the underlying platform.

The Ninja project [12] has the goal to build a scalable and robust service execu-
tion platform. The architecture consists of the four elements base, unit, proxy, and path.
Services are executed in bases. A base can be a server or a cluster of servers. Units
are devices used to communicate with services. Proxies convert data between services
and units. A path describes the composition of units, services and proxies to let the
user interact with a service through a given unit. Ninja offers automatic path creation
for a given set of items. Beyond, a service can be composed of different stages. A
stage is a small component which can be independently executed within the cluster. Us-
ing stages improves scalability. The composition through path creation is static. Ninja
can not react to events within path execution. In contrast, our approach offers dynamic
composition during runtime. Service execution is triggered by events, which offers a
more suitable way for the eHome environment. Nevertheless,scalability and robust-
ness through stages are interesting features for a composition environment and will be
further researched for incorporation in our approach.

Web services [13] offer interoperability between various software applications run-
ning on various platforms. For composition of web services,several approaches exist,
e.g. Business Process Execution Language (BPEL4WS) [14], Web Services Choreog-
raphy Interface (WSCI) [15], WS-Coordination [16], and WS-Transaction [17]. The
granularity of web services differs from the granularity ofeHome components. Web
services are adequate to integrate external Internet-based services. So, the composition
techniques are concerned with problems of remote invocation and remote interaction,
but not with the evaluation of multiple aspects within a dynamic environment.

5 Summary and Outlook

In this paper we discussed the composition of eHome services. We introduced a rule-
based approach, which can overcome the problems of combining functionalities and
appropriate specification of logical correlations. First and foremost, it fits very well
into an OSGi-based residential gateway and second it has a clear and straight-forward
declarative programming interface. This eases the introduction of the rule-based ap-
proach into OSGi-based solutions. Thus, it insures the investment in the large number
of OSGi-based residential gateways in the intended mass-market and it provides means
for continuous development and realization of eHome systems.

36



The concept has been proved with a prototype. The implemented functionality has
shown, that the rule-based approach eases the realization and extension of eHome ser-
vices. The separation of concerns is preserved throughout the whole system. The inte-
gration into the eHome system is enabled by three means: method invocation, data ma-
nipulation, and message-driven. Thus, the components of the eHome system are loosely
coupled within the architecture.

While the rule-based approach is very promising, problems are to be expected for
maintainability if the composition of eHome services are taken onto a very high level.
Such problems fields cover scalability issues, security issues, context issues, and con-
flict situations. Also, ensuring that the system is available and failsafe is an open prob-
lem. Other areas for future work are the problems of a data layer covering the distri-
bution aspects while addressing security issues. Furthermore, integration aspects have
to be observed in the domains of configuration and deploymentmanagement and the
conceptual modeling of buildings.

We do feel confident, that the proposed approach provides a flexible and exten-
sible solution to the problems in composite eHome systems. Several eHome-services
are developed according toPowerLogic to further validate the proposed approach. The
described servicePowerLogicPlusWakeup is currently evaluated by the project in-
Haus [18] in Duisburg, Germany.

References

1. Sun Microsystems: The Connected Home.http://www.sun.com (2002)
2. Open Services Gateway Initiative: OSGi Service Platform Specification. (http://www.

osgi.org/osgi technology/download specs.asp (2.3.2005))
3. Gong, L.: A Software Architecture for Open Service Gateways. IEEE Internet Computing5

(2001) 64–70
4. Chen, K., Gong, L.: Programming Open Service Gateways with JavaEmbedded Server

Technology. Addison-Wesley Professional (2001)
5. Kirchhof, M., Linz, S.: Component-based Development of Web-enabled eHome Services.

In Baresi, L., Dustdar, S., Gall, H., Matera, M., eds.: Proceedingsof Ubiquitous Mobile
Information and Collaboration Systems Workshop 2004 (UMICS 2004).Volume 3272 of
Lecture Notes in Computer Science., Springer (2004) 181–196 Revised Selected Papers.

6. Kirchhof, M.: Distributed and Heterogeneous eHome Systems in VolatileEnvironments.
In Weerawarana, S., ed.: Proceedings of Forum at 2nd International Conference on Service
Oriented Computing (ICSOC 2004). Volume RA221 W0411-084 of IBM Research Report.,
IBM (2004) 123–131 Refereed Papers.

7. Szyperski, C.: Component Software. 2 edn. Addison-Wesley/ACMPress (2002) ISBN 0-
201-74572-0.

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

9. Friedman-Hill, E.: Jess, The Rule Engine for the Java Platform. (2003) Version 6.1.
10. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.C.:Adaptive and Dynamic Ser-

vice Composition in eFlow. In Wangler, B., Bergman, L., eds.: Advanced Information Sys-
tems Engineering: 12th International Conference, CAiSE 2000, Proceedings. Volume 1789
of LNCS., Springer (2000) 13–31

37



11. Sheng, Q.Z., Benatallah, B., Dumas, M., Mak, E.O.Y.: SELF-SERV: A Platform for Rapid
Composition of Web Services in a Peer-to-Peer Environment. In: Proceedings of The 28th
International Conference on Very Large Data Bases (VLDB02), Morgan Kaufman (2002)
1051–1054

12. Gribble, S.D., Welsh, M., von Behren, J.R., Brewer, E.A., Culler, D.E., Borisov, N., Czer-
winski, S.E., Gummadi, R., Hill, J.R., Joseph, A.D., Katz, R.H., Mao, Z.M., Ross, S., Zhao,
B.Y.: The Ninja Architecture for robust Internet-scale Systems and Services. Computer
Networks35 (2001) 473–497

13. Gottschalk, K.D., Graham, S., Kreger, H., Snell, J.: Introduction to Web Services Architec-
ture. IBM Systems Journal41 (2002) 170–177

14. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J.,Leymann, F., Liu, K., Roller, D.,
Smith, D., Satish Thatte, I.T., Weerawarana, S.: Business Process Execution Language for
Web Services Version 1.1 Specification.http://www.ibm.com/developerworks/
library/ws-bpel/ (24.02.2005) (2003)

15. W3C (World Wide Web Consortium): Web Service Choreography Interface (WSCI).http:
//www.w3.org/TR/wsci (24.02.2005) (2002)

16. Cabrera, L.F., Copeland, G., Cox, W., Feingold, M., Freund,T., Johnson, J., Kaler, C.,
Klein, J., Nadalin, A., Orchard, D., Robinson, I., Shewchuk, J., Storey, T.: Web Services
Coordination (WSCoordination) Specification.ftp://www6.software.ibm.com/
software/developer/library/ws-coordination.pdf (09.08.2004) (2003)

17. Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T., Thatte, S.:
Web Services Transaction (WS-Transaction) Specification.http://www.ibm.com/
developerworks/library/ws-transpec/ (09.0ß8.2004) (2002)

18. inHaus Duisburg: Innovationszentrum Intelligentes Haus Duisburg.(http://www.
inhaus-duisburg.de (22.6.2004))

38


