
External Object Trust Zone Mapping for Information
Clustering!

Yanjun Zuo1, Brajendra Panda1

1Department of Computer Science and Computer Engineering
University of Arkansas, Fayetteville, AR 72701

Abstract. In a loosely-coupled system various objects may be imported from
different sources and the integrity levels of these objects can vary widely. Like
downloaded information from the World Wide Web, these imported objects
should be carefully organized and disseminated to different trust zones, which
meet the security requirements of different groups of internal applications.
Assigning an object to a trust zone is called trust zone mapping, which is
essentially a form of information clustering and is designed to guide internal
applications when they are using objects from different zones. We developed
methods to perform trust zone mapping based on objects’ trust attribute values.
The defined threshold selection operators allow internal applications to best
express their major security concerns while tolerating unimportant issues to
certain degrees. As two major trust attributes, the primary and secondary trust
values are explained and we illustrate how to calculate each of them.

1 Introduction

Information assurance is a major concern for participating subjects in a loosely-
coupled system such as a virtual organization, a federated system, or a dynamic
coalition since various objects may be imported from different sources and the
qualities of these external objects can vary widely. Conventional computer security
and information assurance mechanisms, such as access control [8][9][10] and
information flow models [11][12][13][14], have limitations when being applied to
these semi-open systems since they are originally designed under a closed-world
assumption and users must be known in advance. This assumption may not be valid
for semi-open systems whose members dynamically join and leave the systems.

Clustering imported objects in a secured manner is important to facilitate
information assurance and comply with the internal security polices of a computing
system. One important aspect of information assurance is to disseminate data to
different zones based on their security characteristics. All the members of a trust zone
share the required trust features as defined for that trust zone.

Component-based approach provides a way to study an object’s trust attributes.
In [1], the authors developed a formal model to represent object component
information and use this information to reason on an object’s trustworthiness. Some

! This work was supported in part by US AFOSR under grant FA9550-04-1-0429.

Zuo Y. and Panda B. (2005).
External Object Trust Zone Mapping for Information Clustering!.
In Proceedings of the 3rd International Workshop on Security in Information Systems, pages 196-206
DOI: 10.5220/0002569301960206
Copyright c© SciTePress

objects are processed or produced from others by performing certain logical functions
or methods. We call the former as compound objects and the latter as their
components. Qualities of components directly determine the integrity of a compound
object. This is similar to the case of logic reasoning that if some conditions are wrong,
the conclusion is hardly correct. On the other hand, for a given compound object, if its
components are highly trusted and the formula that was used to integrate the
components is accurate, then it is very likely that the compound object is correct and
trustworthy.

In our model, each object is associated with a data value and also a trust value for
its owner. A compound object’s data values (or trust value) are dependent on the data
values (or trust values) of its components. This dependency relationship is transitive.
For example, if C is a component of B (hence B is dependent on C) and B is a
component of A (hence A is dependent on B), then A is indirectly dependent on C.
We call C a sub-component of A. This component-based object dependency
relationship can be visualized as a tree, where the root of the tree is a compound
object, each vertex represents a component or a sub-component, and a directed edge is
drawn from one vertex presenting a component object to another vertex representing
one of its components. We call it as a component dependency tree for a given
compound object. Depth of a sub-component in a dependency tree is the length of the
directed path from the root to the sub-component.

In this paper, we developed methods to determine the trust features of an object
by studying the trustworthiness of the owners of its components or a sub-component,
the owner’s reputation, contact history of the owners with the evaluating subject, the
correctness of the formula to integrate the components, etc. Based on these trust
related characteristics of imported objects, different objects are mapped to different
trust zones. Each zone has unique trust features and all members of each zone satisfy
these features. This form of information clustering for external objects can help
reduce risks associated with uncertainties of imported information and protect internal
resources.

The rest of this paper is organized as follows. Section 2 outlines some related
work. Section 3 presents methods for calculating trust values, which are crucial trust
attributes of an object. Section 4 discusses trust zone in detail and describes the cases
for trust zone mapping. Section 5 concludes the paper.

2 Motivations and Related Work

Internet browsers classify downloaded external objects based on their origins.
Internet Explorer, for instance, isolates the downloaded websites from native
documents in local systems. It includes five predefined zones: Internet, Local Intranet,
Trusted Sites, Restricted Sites, and My Computer [6]. Web sites in each zone have
different levels of security. In our model, external objects can be mapped in a similar
fashion based on their trust characteristics in a loosely-coupled system.

The concept of trust has been a subject of continuous interest in different research
areas. Blaze et.al. [17] and Marsh [3] are among the first to formalize trust in
computational models. Among the existing trust models, role-based trust
management methods [2][15][16] assign each user, internal or external, to a role,

197

which identifies a set of subjects that satisfy the security requirements of the role. It
is designed based on trust delegation for external subject classifications. Our model,
on the other hand, is developed to assign an object to trust zones and, hence, our trust
management mechanism is focused at object level. We argue that trust management
at object level is more appropriate for a decentralized system, where no single
authority is assumed. Focusing on the security concerns at object level gives a higher
level of information assurance since the ultimate goal of information assurance is to
maintain the quality of objects. Making decisions solely based on subjects is not
always reliable. Sometimes even honest people make unintentional mistakes. We
believe trust management at object level is more attractive to ensure information
quality within the context of a loosely-coupled system.

3 Computational Trust

An object has inherent attributes and trust attributes. The former describes the
inherent characteristics of an object, such as its height, weight, etc. for a specific
object. Trust attributes are defined by users to describe the object’s trust-related
features, such as its trust value for a user, its owner’s trust value, its component trust
information, etc. Reputation of a subject is also considered as a trust attribute of the
subject. The difference between a subject’s reputation and its trust value (for an
evaluating subject) is that the former is a global consensus and the latter is an
individual opinion towards the subject under evaluation (see [18] for an example of
reputation models). Trust attributes are identified by system administrators as crucial
factors to facilitate trust-based security management and help users evaluate the
object’s trustworthiness. We first define subject trust and object trust and introduce
methods for their calculations. These are two essential attributes in trust zone
mapping. Next, we give an algorithm for subject trust calculation.

3.1 Subject trust

Algorithm: All-pair shortest path discovery for subject trust computation
1. For every e∈E(G), convert the “distance” as indicated by the weight of e from t to

t’ such that t’=1-t. This generates a new trust network, G’, such that V(G) =
V(G’) and E(G) = E(G’) but each e∈ E(G’) has new weights as t’;

2. Perform all pair shorted path algorithm on G’ and generate a path P = {Si, Si+1, …,
Sj} for every pair of nodes Si and Sj.

3. For every pair of subjects (Si, Sj), the trust value of Sj for Si is calculated as
 Tij = Tsi,si+1 * Tsi+1,si+2, …, *Tsj-1, sj

where (Sk, Sk+1) ∈ E(G) and (Sk, Sk+1) ∈ P for j-1 ≥ k ≥ i ; Tsk,sk+1 is the trust value
of Sk+1 for Sk as indicated in G, i.e., edge value of (Sk, Sk+1) and j-1 ≥ k ≥ i; R(k) is
the reputation value of subject k and j ≥ k ≥ i.

Subject trust is a one-way relationship indicating how much a subject trusts

another. This trust describes a general confidence of expectation that the trustor has
on the trustee. Subject trust is reflexive, transitive (in a discounting manner) but not

198

symmetric. A trust network represents only direct trust of a subject on its neighbors.
But indirect trust can be calculated based on the principle of trust transitivity
(see[4][5]). Based on the maximum aggregation principle, the “all pair shortest path”
algorithm is applied to calculate the indirect trust values between any pair of subjects
based on a trust network after some modifications on the value of each edge. The goal
of this algorithm is to find a path between any pair of nodes with minimum
accumulated t’ values.

3.2 Object Trust

Object trust refers to the degree to which a subject evaluates the trustworthiness of an
object within a certain context. Trust value of an object can be calculated in two ways.
One is based on direct experiences obtained from a user’s study of the object, its
components, and combination functions. The trust value of the object obtained in this
way is called the object’s primary trust value for the user. The other method is
related to a user’s secondary experiences, which referred to indirect study of the
object and its components. The trust value calculated in this way is called secondary
trust value of the object. Primary trust and secondary trust values of an object can be
used separately by a user or can be combined to an overall trust value of the object
(for the user).

For an evaluating subject, S, the secondary trustworthiness of an object, O, can
be calculated as the mathematical product of the trust level of the object for its owner,
S’, the trust level of S’ for S, as well as a context adjusting parameter. The trust level
of S’ for S is context independent, which is similar to general or basic trust as defined
in [3]. The context adjusting parameter reflects the degree of belief of S about the
ability of S’ evaluation of O in a specified context. For instance, the context adjusting
parameter for the trust value of a mathematical function is the evaluator’s belief of the
domain knowledge of the subject, which provides the function.

In order to calculate the primary trust value of an object, an evaluating subject
studies the component information of the object, i.e., how it has been integrated,
which set of combination functions have been used to calculate the object, whether
the owners of the components are trustworthy, what those owners’ reputations are,
etc. Let the set {C1, C2, …, Cn} be a set of components of the compound object O.
{S1, S2, …, Sn} are owners of these components respectively. The trust value of O for
an evaluating subject, S, is represented as Ts,o, which can be calculated by the
following formula:

Ts,o = Γs,o (F, Ts,s1 * Ts1,c1, Ts,s2 * Ts2,c2, …, Ts,sn * Tsn,cn)
where Γs,o is a trust function of o’ based on its component trusts; F is the
combination function used to form O from its components; Tsi,ci is the trust value of
ci for its owner Si and Ts,si is the trust value of Si for S, where 0<i≤ n. A trust
function answers such question as “given the trust values of all components and the
combination function for an object, how much should the object be trusted?”
Developing a general format for a trust function is domain and user dependent. We
give a simple example to illustrate the idea (for more information, see [1]). For a
weighted average data function F = (w1* C1) θ (w2* C2) θ … θ (wn * Cn), the
corresponding trust function is

199

 Γs,o (F, Ts,s1 * Ts1,c1, Ts,s2 * Ts2,c2,…, Ts,sn * Tsn,cn) = w1* Ts,s1 * Ts1,c1 +
w2* Ts,s2 * Ts2,c2 + … + wn * Ts,sn * Tsn,cn)

where w1, w2, …, wn are real numbers in the range [0, 1] and they add up to 1; the
symbol θ represents binary operators such as addition, subtraction, multiplication,
division, union, join, intersection, etc. Intuitively, for the data formula with the format as
weighted average, the trust weights assigned to each component is the same as the
contribution of that component to the compound object’s data value as expressed by
that data function.

4 Trust Zones

In order to map external objects into different trust zones, a user’s system defines
testing conditions based on each individual trust attributes. Each condition is used to
check if the value of an attribute for an object is satisfied with user’s expectation for
that trust attribute. We give some examples of trust attributes and their testing
conditions here. The secondary trust value is a trust attribute for an object. The
corresponding testing condition evaluates if a given object’s secondary trust value is
greater than a threshold. Consider another attribute called Good object that indicates if
an object is publicly known as a good object. The corresponding testing condition
checks if a given object is a member of the system-maintained good object list.
Consider another trust attribute called Security carrying proof, which indicates if an
object has been certified by some authorities to be free of common vulnerabilities.
The testing condition for this trust attribute checks if such a valid proof can be
presented and the integrity of the proof is not compromised.

Some trust attributes are considered as positive in the sense that users want to see
higher values for them. For instance, a positive trust attribute could be the trust value
of an object, or the reputation of the owner of an object. In contrast, some attributes
are considered negative and users want objects to have lower values for those
attributes. Those negative attributes represent unfavorable features of objects as
viewed by users and they are identified in order for the system to define criteria to
limit objects with these “negative” features to an acceptable degree. Based on these
two types of attributes, the corresponding testing conditions are defined.

Trust attributes can be organized into dimensions. Each dimension consists of a
set of trust attributes, which describes one aspect of the trust features of an object as
viewed by users. For instance, a dimension of trust attributes for an object is based on
the owners of the objects and their sub-components. Examples of trust attributes in
this dimension include the trust value (for a user) of an object’s owner and/or the
owners of the object’s sub-components, the reputation of the object’s owner and/or
the owners of the object’s sub-components, the contact history of the object’s owner
with the evaluating user. Another dimension for the object is related to the trust
features of the object itself as well as its sub-components, such as its secondary or
primary trust values (for the user), the membership of the object and/or its sub-
components to a public known good object list, trustworthiness of the combination
function, etc. A third dimension is based on the object’s security features such as
security-proof-carrying code issued by an authority to demonstrate that the object

200

program is free of malicious code, software security level is classified by some
standard agents, etc.

It is usually too restrictive to require that an external object satisfy the entire trust
attribute testing conditions. Rather, users may allow an external object to satisfy a
subset of trust attribute conditions as defined for the corresponding trust dimension.
In this sense, trust attributes within one dimension are “replaceable”, meaning as long
as an external object satisfies a minimum number of test attribute testing conditions
within that dimension, the user believes that the object satisfies the security
requirement as specified by the trust attribute dimension. An analogous example is the
curriculum developed for a graduate program, which specifies that a certain number
of core courses must be successfully completed by a degree candidate in order for the
student to be considered to satisfy the requirements of core knowledge. We have
defined threshold operators to allow users to specify a subset of testing conditions that
an object must satisfy in order to be selected.

Trust zone mapping policies are applied to assign an object to one or more trust
zones according to its values for the pre-identified trust attribute testing conditions. A
trust zone consists of a set of objects such that every object satisfies the logical
combination of trust attribute testing conditions. A set of trust zone mapping polices
can be represented in BNF format as shown in Figure 1.

trustZonePolicy ::= statement | statementSet
statementSet ::= statement statementSet | ε
statement ::= zoneName ← terms
zoneName ::= STRING
terms ::= term op1 terms | term | ε
term ::= op2(conditionList)
op1 ::= AND | OR
op2 ::= Өj | Ωi

 conditionList ::= condition COMMA conditionList | condition | ε
 condition ::= function(attribute values)

Fig. 1. Formal Representation for Trust Zone Mapping Policy Syntax

A trust zone is specifically designed to fit the needs of a set of internal
applications with similar security focus. The logical combination operators used to
connect trust attribute testing conditions include AND, OR, and threshold-selection
operators.

Two types of threshold-selection operators, namely, lower-bound and upper-
bound threshold-selection operators are used in trust zone mapping policies. These
operators represent different forms of compositions of trust related information. The
semantic meaning of a lower-bound threshold-selection operator, denoted as Өi(C1,
C2, …, Cm), is to select any object, which satisfies at least i out of m trust attribute
testing conditions, A1, A2, …, Am, where i ≤ m. In contrast, the semantic meaning of
an upper-bound threshold-selection operator, denoted as Ωj(C1, C2, …, Cn), is to select
any object, which satisfies no more than j out of n test attribute testing conditions, C1,
C2, …, Cn, where j ≤ n. Hence, if trust zone t is defined as the set of objects, which
satisfy 4 of trust attribute testing conditions C1, C2, …, C6 and no more than 2 trust

201

attribute testing conditions C’1, C’2, …, C’7, then the mapping policy for trust zone t
can be expressed as

Trust Zone t ← Ө4(C1, C2, …, C6) AND Ω2 (C’1, C’2, …, C’7)
An AND-OR graph-like data structure, called trust zone mapping graph (see

Figure 2), is used to visually represent how a trust zone is constructed based on a
group of attribute-based sets. The root is labeled with the identifier of the given trust
zone. Each of the leaf nodes represents an attribute-based set. Each node except for
the root and the leaf is either an AND, OR, Өj, or Ωi node.

 Trust Zone i

AND

Өj Ωi

C1 C2 … … C’m

Fig. 2. A Trust Zone Mapping Gra

Specifying trust attribute d
within different trust dimensio
mapped to a trust zone. Ou
implementation of this idea.
threshold operators together,
attributes with different weight
can specify the critical trust a
some pre-defined conditions
attributes as no worse than som

As we have mentioned bef
passive data objects and activ
trust zones serves two purposes
local resources and guide in
documents, database items, o
situations below.

Case 1: Information assuranc
applications S1, which need to
processing. For the application
The users of S1 focus on the tr
sub-components. Regarding th
are not supposed to be run as e
specify some minimum condit
negative security features wors
in S1. Based on this specified s
are defined:

202
Cn C’1 C’2

ph

imension allows sub-set of attribute te
ns to be satisfied by one external objec
r defined lower-bound threshold op
 By using both the upper bound an
users of some internal applications

s according to their security needs. Fo
ttributes in certain dimensions as at l
while requiring other less important
e pre-defined conditions.
ore, an object is a generic term and it c
e executable programs. Mapping exter
: limit access rights of external executa
ternal applications to use external o
r other passive knowledge. We d

e example: Assume that we have a
 use external objects for calculation a
s in S1, the accuracy of the objects is
ust features of the owners of external o
e security features of those external ob
xecutable programs, the users of applic
ions and as long as an external objec
e than those, it can satisfy the needs of
ituation, the following trust attribute te
sting conditions
t in order to be
erator provides
d lower bound
 can use trust
r instance, they

east as good as
 trust negative

an refer to both
nal objects into
ble programs to
bjects such as
iscuss the two

 set of internal
nd information
very important.
bjects and their

jects, since they
ations in S1 only
t does not have
the applications
sting conditions

C1: all of the owners of an object and its sub-components (up to the depth of 3 in
the version dependency tree) have trust values (for the users of S1) greater than 0.8;

C2: all of the owners of an object and its sub-components (up to the depth of 3 in
the version dependency tree) have reputation values (for the users of S1) greater than
0.7;

C3: more than half of the owners of an object and its sub-components (up to the
depth of 3 in the version dependency tree) had been in contact with the users of S1 and
the performances of those objects’ owners were satisfactory;

C4: the owner of the object is listed as a bad subject by some authority agencies;
C1’: an object and its sub-components (up to the depth of 3 in the version

dependency tree) have trust values (for the users of S1) greater than 0.8;
C2’: the combination function used to form an external object should be

reasonable as viewed by at least two domain experts;
C3’: no sub-component of the given object is in the bad object list kept by the

system;
C1’’: the given object under evaluation has no security-proof carrying code;
C2’’: sensitivity classification of the given object is high.
Based on the above testing conditions, trust zone 1 is defined as below:

Trust zone 1 ← Ө2(C1, C2, C3) AND Ө2(C1’, C2’, C3’) AND Ω0 (C4) AND Ω1 (C1’’,
C2’’)

Any object, which can be mapped to trust zone 1, must satisfy at least two
conditions of C1, C2, and C3 as well as 2 conditions of C’1, C’2, and C’3. At the same
time, the object mapped to trust zone 1 must not satisfy condition C4 and, in a worse
case, satisfy no more than 1 of conditions C’’1 and C’’2. We use the term Ω0 (C4) to
indicate that no external object can be selected if it is tested by condition C4 as true.
Besides, all external objects mapped to trust zone 1 can be used by internal
applications in S1, namely

Internal applications ∈ S1 ← Trust zone 1
The term Ө2(C1, C2, C3) only specifies that an object should satisfy at least two of

three testing conditions, C1, C2,and C3. But it does not specify which particular
conditions an object must satisfy in order to make the term as true. In order to specify
that C1 must be satisfied by an object within the first dimension and C2’’ must be
satisfied within the second dimension, a restricted lower-bound threshold operator is
defined as below:

Trust zone 1 ←
Ө2, C1(A1, A2, A3) AND Ө2, C2’’(C1’, C2’, C3’) AND Ω0 (C4) AND Ω1 (C1’’, C2’’)
In general, the restricted lower-bound threshold operator Өj, Ck(C1, C2, …, Cn)

indicates that an object satisfies this operator if it satisfies at least j out of n trust
attribute testing conditions, C1-n, and Ck must be one of the conditions satisfied.

Case 2: Access control example: By defining trust zones, we can limit access rights of
external objects such as executable programs to get access to local resources.
Formally, this form of access control is essentially a mapping between R × O ← Z,
where Z is a set of trust zones, R is a set of access rights, e.g., read, write, and O is a
set of local protected resources. Each member of a trust zone can access local
resources as defined for all the objects in the trust zone as a whole. If an object is a
member of multiple trust zones, then its access rights is the union of the rights for all
the trust zones. If two conflict rules exist, one may supersede another based on a pre-

203

defined policy. Below, we provide a concrete example to illustrate the mapping of
executable object programs to trust zones as well as trust zones to a set of access
rights.

Suppose we have a set of internal applications, S2, which would call external
objects as sub-routines and these called external programs need to get access to local
resources in order to be run correctly. In this case, the trust attributes along the
security dimension is more important. The users of applications in S2 identify the
following testing conditions:

C1: majority of the owners of an external object and its sub-components (up to
the depth of 3 in the version dependency tree) are new to the users of S2;

C2: no more than one third of the owners of an object and its sub-components (up
to the depth of 3 in the version dependency tree) have reputation values (for the users
of internal applications in S2) less than 0.4;

C1’’: the external object program successfully passed intrusion detection test
monitored by a system authority agent;

C2’’: the external object carries security-proof code and the security assurance is
verified by an internal security agent;

C3’’: the external object program is without any known software bugs;
C4’’: the external object program neither uses any routine to make network

connections nor carries any sniper programs as verified by internal security agents;
C5’’: the external object program does not pass the malicious code detection.
Based on the above trust attribute testing conditions, trust zone 2 is defined as:

Trust zone 2 ← Ө2(C1’’, C2’’, C3’’, C4’’) AND Ω0 (C5’’) AND Ω1 (C1, C2)
As an example, consider that in order to grant minimum system resource

requirements to external objects to be executed successfully, the internal applications
in S2 allow external objects, which satisfy the trust condition as defined for Trust zone
2, to access two public drives, D1 and D3, with full rights (Read and Write), access
drive D2 with only Read right, and no access rights on other storages. The mapping
between Trust zone 2 and the specified access rights can be expressed by the
following policy.

{[D1, R, W], [D2, R], [D3, R, W]} ← Trust zone 2

5 Conclusion

In this paper, we have presented a model for information assurance by mapping
external objects to appropriate trust zones. This mapping serves two purposes: limit
access rights of external executable programs to internal resources and guide internal
applications to use trusted external information. We have defined two powerful
threshold selection operators to check and verify if an external object satisfies the
trust-based security conditions as specified by each trust zone. Formulas are provided
to calculate primary and secondary trust values for an object in evaluation. We have
also presented a simple algorithm to calculate indirect trust based on a given trust
network by applying the well-known “all pair shortest path” algorithm.

204

Acknowledgment

We are thankful to Dr. Robert L. Herklotz for his support, which made this work
possible.

References

1. Y. Zuo and B. Panda, “Component Based Trust Management in the Context of a Virtual
Organization”, The 20th ACM Symposium on Applied Computing, NM, USA, March
2005

2. J. Bacon, K. Moody, W. Yan, “A Mode of OASIS Role-based Access Control and Its
Support for Active Security”, ACM Transactions on Information and System Security, p.
492-540

3. S. P. Marsh, “Formalising Trust as a Computational Concept”, Ph.D. Dissertation,
University of Stirling, 1994

4. M. Richardson, R. Agrawal, P. Domingos, “Trust Management for the Semantic Web”,
the Second International Semantic Web Conference,. Sanibel Island, FL, USA, 2003.

5. R. Bellman, M. Giertz, “On the Analytic Formalism of the Theory of Fuzzy Sets”,
Information Sciences, 5, p. 149-159, 1973

6.
msdn.microsoft.com/library/default.asp?url=/workshop/security/szone/overview/overview.
asp

7. E. Lupu and M. Sloman, “Reconciling Role Based Management and Role Based Access
Control”, Second Role Based Control Workshop, Virginia, USA, 1997

8. L. Bauer, M. Schneider, and E. Felten, “A General and Flexible Access-Control System
for the Web”, The 11th USENIX Security Symposium, p. 93-108, 2002

9. M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A Calculus for Access Control in
Distributed Systems”, ACM Transactions on Programming Languages and Systems,
p.706-734, October, 1993

10. E. Bertino, B. Catania, E. Ferrari, and P. Perlasca, “A Logical Framework for Reasoning
about Access Control Models”, ACM Transactions on Information and System Security,
p.71-127, February 2003

11. D. F. Brewer and J. Nash, “The Chinese Wall Security Policy”, The IEEE Symposium on
Security and Privacy, 1989

12. Dorothy E. Denning, “A lattice Model of Secure Information Flow”, Communications of
the ACM, 19(5): p. 236-243, 1976

13. D. Bell and L. LaPadula, “The Bell-LaPadula Model”, Journal of Computer Security,
p.303-339, 1997

14. Thomas A. Berson and Teresa F. Lunt, “Multilevel Security for Knowledge-Based
Systems”, In proceedings of the 1987 IEEE Symposium on Privacy and Security, p. 235-
242, 1987

15. Ninghui Li and John C. Mitchell, “RT: A Role-based Trust-management Framework”, The
Third DARPA Information Survivability Conference and Exposition, Washington, D.C.,
April 2003. IEEE Computer Society Press, Los Alamitos, CA, USA, p. 201-212

16. Ninghui Li, William H. Winsborough, and John C. Mitchell, “Distributed Credential
Chain Discovery in Trust Management”, Journal of Computer Security, 11(1): p. 35-86,
February 2003

17. M. Blaz, J. Feigenbaum and J. Lacy., “Decentralized Trust Management”, IEEE
Conference, Anguilla, British West Inides, 1998

205

 18. S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina, “The Eigentrust Algorithm for
Reputation Management in P2P Networks”, in Proceedings of the twelfth International
Conference on World Wide Web, ACM Press, p. 640-651, 2003

206

