
SIMULTANEOUS QUERYING OF XML  
AND RELATIONAL CONTEXTS 

Madani Kenab 
IRIT, 118, Route de Narbonne 31062 Toulouse 

Tayeb Ould Braham 
MSI, 83, Rue d’Isle 87000 Limoges 

Keywords:  Relational schema, XML schema, XML view, XQuery language, SQL language 

Abstract:  The presentation of the results of relational queries is flat. The prime objective of this work is to query an 
XML view of relational data in order to have nesting results of data implemented in the form of flat data. The 
second objective is to combine, in query results, structured data of a relational database and semi-structured 
data of an XML database. A FLWR expression (For Let Where Return) of the XQuery language can be 
nested at various levels in another FLWR expression. In our work, we especially are interested in the nesting 
of a FLWR expression in the Return clause of another FLWR expression in order to imbricate data in the 
result. In this paper, we will describe all necessary stages in order to carry out these two objectives.  

1 INTRODUCTION 

Still today, much of data are stored in relational 
databases. The relational model is constrained by the 
normal forms that prohibit the existence of attributes 
having aggregate values. XML schemas offer a richer 
set of data type than that which is proposed in the 
relational model. Contrary to the relational model, 
XML schemas enable to define personal and 
eventually recursive types. The relational model use 
only structured data, on the other hand, the XML 
model can use structured or semi-structured data 
according to the utilization or not of an XML schema 
and according to the contents of the used XML 
schema. This possibility brings flexibility to the 
XML model. The XQuery language uses the Xpath 
language to identify the different elements and/or 
attributes from an XML document in order to handle 
them according to the needs. Contrary to the XQuery, 
the SQL language provides results in the form of 
tuples and does not allow nesting results. All these 
advantages of the XML model encourage to use it as 
a pivot model in the systems integrating 
heterogeneous databases.  

In this paper, we present a system of integration of 
heterogeneous databases that we carried out in the 
form of a software layer on an XQuery engine and a 
relational engine contrary to the studied systems 

which use only one engine (CLIO (Hernandez, 
2001), SilkRoute (Fernandez 2002, Fernandez 2000), 
XTABLES (Fan, 2002), AGORA (Manolescu, 2000) 
and LeSelect (INRIA, 1998)). Our system offers two 
graphic interfaces: one allowing to generate and 
visualize an XML schema describing a relational 
database according to the choice of the user (Kenab, 
2004a) and the other allowing to query 
heterogeneous databases (relational database RDB 
and documentary database DDB) by using the 
XQuery language. The XML schema generated in the 
first interface is built from information concerning 
the relational schema of the database to integrate. 
The translation of the Xquery requests, intended to 
the relational engine, in SQL requests is based on 
XML schema without using intermediate 
representation such as it is made in the studied 
systems. The results coming from the query of 
heterogeneous data are converted and displayed in 
the form of a persistent XML document. In order to 
improve the presentation of these results, we enable 
to display these results in the form of an XHTML 
document. This last is obtained by using an XSLT 
processor and an XSL stylesheet. This XSL 
stylesheet is generated automatically from the XML 
document corresponding to the result and its XML 
schema (Kenab, 2004b). This XML schema is 
generated automatically from the metadata 
concerning these results. The XML document result 

353
Kenab M. and Ould Braham T. (2005).
SIMULTANEOUS QUERYING OF XML AND RELATIONAL CONTEXTS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 353-358
DOI: 10.5220/0002515403530358
Copyright c© SciTePress



 

with its XML schema become an XML entity that we 
can query.  

This paper is structured in the following way. In 
the first section, we present a method allowing to 
obtain an XML schema describing an XML view on 
a relational database. In the second section, we model 
the translation of an Xquery request to an SQL 
request in a functional way. The transformation of 
the results of an SQL request, in the form of tuples, 
to an XML document is presented in the third 
section. In the fourth section, we present the 
possibility of querying heterogeneous databases 
(documentary and relational) in the same query.  

2 INTEGRATION OF A 
RELATIONAL SCHEMA INTO 
AN XML CONTEXT  

A relational database consists of a set of tables. Each 
table contains fields (attributes). This database can be 
described by the following relational schema: 
Relational_schema=(table1(Attribute11:Attribute_Typ
e11,…,Attribute1m1

:Attribute_Type1m1
),…, 

tablen(Attributen1:Attribute_Typen1, …, 
Attributenmn

:Attribute_Typenmn
), Primary_Keys, 

Reference_Links) 
We chose to offer a view of this relational 

database through an XML schema that is made up of 
three levels. In this XML schema, at a first level we 
declare a compound global element, which contains 
the various tables of the database. Then, at a second 
level for each table, we define a compound element, 
which contains a set of simple elements of third level 
which are attributes belonging to this table. This 
XML schema corresponds to the model without 
nesting in element oriented mode with key and 
keyref clauses to express keys and reference links. 
This XML schema enables to avoid the drawbacks of 
the update as well as the cases of associations with 
minimal cardinality equal to zero (Kenab, 2004a). 
The construction of this XML schema can be 
modelled by the following functional expression: 
XML_Schema( 

Compound_global_element( 
XML_RDB, 
Compound_element( 

table1,  
Simple_element(Attribute11,  

Attribute_Type11), 
 …,  
Simple_element(Attribute1m ,  

1Attribute_Type1m1
) 

), 
 …,  
Compound_element( 

tablei,  
Simple_element(Attributei1,  

Attribute_Type i1),  
…,  
Simple_element(Attributeim ,  

iAttribute_Typeimi
) 

),  
…,  
Compound_element( 

tablen,  
Simple_element(Attributen1,  

Attribute_Type n1),  
…,  
Simple_element(Attributenm ,  

nAttribute_Typenmn
) 

),  
Key(table1, Attribute1c1

), 
… 
Key(tablen, Attributencn

), 
Link(table1, Attribute1j1

, tablek1
), 

… 
Link(tablen, Attributenjn

, tablekn
) 

) 
)  
with : i = 1..n, ci ∈ {1, ..., mi}, ji ∈ {1, …, mi}, ki ∈ 
{1, …, n} and n being the number of tables in the 
database and mi the number of fields (attributes) of 
the table tablei. 

XML_schema is a function which tags a 
parameter with <xs:schema 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
and </xs:schema>. Compound_global_element is a 
function allowing to define the compound global 
element which contains the XML elements 
corresponding to the tables, the keys and the 
reference links of the relational database. 
Compound_element is a function allowing to define a 
compound XML element corresponding to a table of 
the relational database. Simple_element is a function 
allowing to define a simple XML element 
corresponding to a table attribute of the relational 
database. Key is a function allowing to define a key 
corresponding to a table key attribute of the relational 
database. Link is a function allowing to define a 
reference link corresponding to a table foreign key 
attribute of the relational database. 

The realization of this integration of the relational 
schema into an XML schema (XML view) is made 
according to the schema of Figure1. The two 
principal stages of this integration are: 

• The querying of the relational engine in 
order to obtain the relational schema 
(metadata). 

• The transformation of the relational schema 
into an XML schema as view on the 
relational database thanks to the functional 
expression described previously. 

 

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

354



 
 
 
 

3 TRANSFORMATION OF AN XML 
REQUEST (XQUERY) INTO A 
RELATIONAL REQUEST (SQL)  

In this section, we use an Xquery request to query an 
XML view on a relational database (Figure2). Before 
being translated into an SQL request, the consistency 
of this request, with the XML schema describing an 
XML view, is checked. The result of the SQL 
request, in the form of table, is converted into an 
XML document as it will be described in next 
section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A general R Xquery request is a FLWR 

expression which we can model in the following 
form: 
for $f_var1 in f_exp1  (: f_ for for :)   
... 
for $f_varn in f_expn
let $l_var1 := l_exp1  (: l_ for let :) 
... 
let $l_varr := l_expr
where  condition(BFs, JFs) 
return  XML_doc(Results, SRs) 
Where:  

• f_expi and l_expi are simplified Xpath 
expressions (without condition between [ ] 
and without wildcard) used respectively in 
the for and let clauses. 

• BFs are boolean expressions expressed 
thanks to Xpath expressions, each one 
containing f_vari or l_vari variable. 

• JFs are boolean expressions of joint 
expressed thanks  to Xpath expressions , 
each one containing f_vari or l_vari variable. 

• condition is a boolean function returning the 
value of a logical expression made up of 
logical expressions built from the results of 
the BFs and JFs functions passed in 
parameters. 

• XML_doc is a function which models an 
XML document from the tags provided by 
the user and parameters having various 
types according to the context. In this 
precise context, the parameters correspond 
to Results and nested FLWR expressions 
SRs. 

• Results are Xpath expressions expressed 
thanks to f_vari and l_vari variables of the 
for and let clauses of the XQuery request R.  

• SRs are nested FLWR expressions (XQuery 
Sub-Requests) of the return clause having 
the same format than R, they enable to 
formulate nested sub-requests of the same 
level. The other levels of nesting will be 
generated recursively. 

The Tran(R) function of the above R FLWR 
expression will return an SQL request which we can 
model in several stages and in a recursive way. The 
contents of the select part (S function) and the from 
part (F function) of Tran(R) will be built from the 
return clause and from the for and let clauses of the R 
Xquery request. The contents of the where part (W 
function) of Tran(R) will be built from the where 
clause and from the for and let clauses of the R 
Xquery request. The transformation of the XML 
element into relational attributes or tables is related 
to the structure of the XML schema resulting from 
the integration of the relational schema. In our case, 
it is the XML schema without nesting, element 
oriented mode with keys and reference links 
expressed respectively thanks to key and keyref 
clauses. For that reason, an Xpath expression 
indicating an attribute will have the following form 
/XML_RDB/Named_tuple/Attribute. 

The result of the function Tran(R) which will 
have the following shape: select S(Tran(R)) from 
F(Tran(R)) where W(Tran(R)) will be an SQL 
request where the S(Tran(R)) part will be a sequence 
of Ci attributes, prefixed by the variable names f_vari 
and l_vari which have been used to specify each 
attribute, followed by S(Tran(SRs)) parts of the sub-
requests SRs. The Ci attribute is the third level 
element of the Xpath expression obtained by 
replacing the f_vari or l_vari occurrence of Results by 
the corresponding Xpath expression f_expi or l_expi.  

    Querying of a 
 relational engine 

  Results in the form of a table 

  SQL request 

 Checking and Translation to SQL 

 Xquery request 

    Conversion into 
 an XML document 

  XML document result 
Figure 2: Querying of an XML view 

on a relational database 

Figure 1: Integration of a relational schema into an XML schema

RDB 
 XML    
 schema 

Relational
 Schema 

  Transformation   Querying 

 
 
 

SIMULTANEOUS QUERYING OF XML AND RELATIONAL CONTEXTS

355



 

The F(Tran(R)) part of this SQL request will be a 
sequence of f_vari and l_vari of the for and let 
clauses, which have prefixed the attributes of the 
S(Tran(R)) part, preceded by the relational table 
names followed by F(Tran(SRs)) parts of the sub-
requests SRs. Each relational table name is the 
second level element of the Xpath expression 
obtained by replacing the f_vari or l_vari occurrence 
of Results by the corresponding Xpath expression 
f_expi or l_expi.  

The W(Tran(R)) will be obtained by replacing, in 
the condition function of the R XQuery request, the 
Xpath expressions of the BFs and JFs boolean 
expressions by a sequence of Bi attributes, prefixed 
by the variable names f_vari and l_vari of these 
Xpath expressions, followed by W(Tran(SRs)) parts 
of the sub-requests SRs. The Bi attribute is the third 
level element of the Xpath expression obtained by 
replacing the f_vari or l_vari occurrence of the Xpath 
expression of the BFs and JFs boolean expression by 
the corresponding Xpath expression f_expi or l_expi. 

4 TRANSFORMATION OF THE 
RESULTS OF A RELATIONAL 
REQUEST INTO AN XML 
DOCUMENT  

The result of an SQL request corresponding to 
Tran(R) consists of a set of tuples. These tuples 
contain redundant information due to the absence of 
nesting in the relational model. The results of each 
sub-request are repeated as often as the number of 
existing values in the next sub-request result. We 
assume that the SRs sub-requests are ordered 
according to their position in the return clause of the 
R XQuery request. The construction of the XML 
document corresponding to the tuple of the Tran(R) 
SQL request result, is done in two stages. The first 
one consists at first to extract, for each sub-request of 
SRs, the corresponding results by eliminating the 
redundancy due to the flat nature of the relational 
tuples, then to extract the result corresponding to the 
Xpath expressions of Results of the return clause of 
R XQuery request. In the second stage, we built the 
XML document by tagging, thanks to the XML_doc 
tagging function of the return clause of the R XQuery 
request, each result corresponding to Xpath 
expressions of Results followed by the SRs sub-
request results linked to this result. The SRs sub-
request results are tagged, at their turn, thanks to 
thanks to the XML_doc tagging function of their 
return clauses. The final XML document is obtained 
by tagging the previously obtained XML document 
by <Global_result> and </Global_result>.  

The XML schema associated with the XML 
document result corresponding to the result provided 
by the relational engine will be generated 
automatically. The construction of this XML schema 
will be made, thanks to the XML_schema function, 
from the return clause of the R Xquery request and 
the table schemas used by the relational engine. At 
the first level, this XML schema will contain  the 
opening tag <xs:schema 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
and the closing tag </xs:schema>. These tags will 
cover a second level which will contain the definition 
of a compound global element named Global_result 
generated by the Compound_global_element function 
(first section). The building of the XML schema 
continues by replacing each opening tag <tag> of the 
return clause of the R XQuery request, except the 
tags of the last level elements, by the following 
declaration tags of the XML schema language:  
<xs:element name="tag"> 

<xs:complexType> 
<xs:sequence>  

Then each closing tag </tag> of the return clause of 
the R XQuery request will be replaced by the 
following corresponding closing tags of the XML 
schema language:  

</xs:sequence> 
</xs:complexType> 

</xs:element> 
 
The last level tags of the return clause and their 

contents will be replaced by description tags of 
simple elements generated by the Simple_element 
function (first section). The building of the XML 
schema will continue recursively in the same way for 
the sub-requests SRs.  
Note: The information on keys and reference links do 
not appear in the XML schema of the results. Their 
meaning depends on the original relational database 
from which the results are extracted. 

5 QUERYING OF XML AND 
RELATIONAL CONTEXTS  

In this section, we present an extension of the Xquery 
request use such as it was formulated in the second 
section in order to query two heterogeneous 
databases: a documentary database and a relational 
database as it is shown in Figure3. The $f_vari and 
$l_vari variables will be used to reach either the 
documentary database by specifying the name of the 
XML document (document.xml) or the relational 
database by specifying the name of the XML schema 
(schema.xsd) which describes an XML view on this 
relational database. In this case, the Xquery request 
will be broken up into two sub-requests: one 

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

356



concerning the relational database and the other the 
documentary database.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The various stages which enable us to obtain the 

final result of the Xquery request querying the 
relational database and the documentary database are 
illustrated in Figure4. The querying of the relational 
engine is done as it is described in Figure2 (second 
section). In the synthesis stage, the results of the two 
sub-requests will be transformed into an XML 
document corresponding to the return clause of the 
initial R Xquery request. When it is necessary, a 
rewriting stage precedes the decomposition of the 
Xquery request in order to facilitate the latter. The R 
Xquery request, which was modeled in the second 
section, will be rewritten into an Rt Xquery request 
by modifying only the contents of the where clause. 
The rewriting of the R Xquery request is done in two 
phases. The first one consists in gathering boolean 
expressions BFs into BF_Es on the same variable in 
the where clause. The contents of the where clause of 
the Rt Xquery request, after the first phase, will have 
the following form: 
condition_t1(BF_Es, JFs) 

The second phase of the rewriting stage consists 
in gathering the FB_Es boolean expressions and the 
JFs joint boolean expressions on the variables which 
query the same database (relational or documentary). 
The rewriting stage will apply recursively in the 
same way on the where clauses of the SRs sub-
requests. After the second phase, the contents of the 
where clause of the Rt Xquery request will have the 
following form: 
condition_t2(RDB_Es, DDB_Es, JF_SYNs) 
Where: 

• RDB_Es is the gathering of the BF_Es 
boolean expressions and the JFs joint 
boolean expressions relating to the variables 
which refer to the relational database.  

• DDB_Es is the gathering of the BF_Es 
boolean expressions and the JFs joint 
boolean expressions relating to the variables 
which refer to the documentary database.  

• The JF_SYNs expressions are joint boolean 
expressions of synthesis relating to two 

variables: one which refers to the relational 
database and the other which refers to the 
documentary database. For synthesis 
reasons of the results coming from the 
relational database and the documentary 
database, there must be at least one joint 
boolean expression of this last type.  

The stage of decomposition consists in breaking 
up the Rt Xquery request obtained at the rewriting 
stage into two sub-requests: the first one intended for 
the relational database and the second one intended 
for the documentary database. The for and let parts of 
the XQuery sub-requests RDB_R and DDB_R will 
contain the for and let parts of the XQuery request Rt 
concerning the variables referencing respectively the 
RDB and DDB. This distinction will be done 
according to the name of the XML document (.xml) 
or the name of the XML schema (.xsd) referenced in 
the f_expi or l_expi Xpath expressions. The where 
parts of the XQuery sub-requests RDB_R and 
DDB_R will be constituted respectively by RDB_Es 
and DDB_Es expressions obtained after the rewriting 
stage. The return parts the XQuery sub-requests 
RDB_R and DDB_R will be the result of the 
decomposition of the XML_doc tagging function into 
two parts which are respectively: the tags concerning 
variables which refer the RDB and the tags 
concerning variables which refer the DDB. This 
decomposition will apply recursively on the SRs sub-
requests. 

If the attributes of the synthesis joint are not 
mentioned in the return clause of an Rt Xquery 

XQuery sub-request
on XML documents

XQuery sub-request
on XML view 

Decomposition of Rt 
 in two sub-requests 

 R Xquery request 

Rt Xquery request 

 Rewriting stage 

   Querying of the 
    XQuery engine 

 Querying of the 
relational engine

Figure 4: Query plan of a documentary database 
and a relational database 

 Synthesis stage 

 Final XML document  

XML document result XML document result

Figure 3: Querying of two heterogeneous databases 
(documentary and relational) 

   XML 
  Schema   DDB  XML 

 View   RDB 

  XML interface 

 User 

 
 
 

SIMULTANEOUS QUERYING OF XML AND RELATIONAL CONTEXTS

357



 

request, these attributes must be added in the return 
clauses of the two sub-requests by tagging them in 
order to be able to identify them. In the same way if 
after the decomposition, each one of DDB_R and/or 
RDB_R has at least one nested sub-request with a 
joint condition between one of its attributes and one 
of the enclosing request and if this attribute does not 
appear in the return clause then we must to add it in 
the return clauses of the request and the sub-request. 
The results of the two DDB_R and RDB_R sub-
requests will be stored respectively in the two XML 
documents: res1.xml and res2.xml which has 
respectively as compound global element: 
DDB_global_result and RDB_global_result. The 
synthesis joints will be treated after obtaining the 
results of the two DDB_R and RDB_R sub-requests 
by using the SYN_R synthesis sub-request which is 
generated automatically.  

The SYN_R synthesis sub-request will be 
constituted by two for clauses with two variables $r1 
and $r2 in order to query respectively the two result 
XML documents res1.xml and res2.xml. These two 
variables $r1 and $r2 specify the XML element 
corresponding respectively to the first tags of the 
return clauses of the DDB_R and RDB_R sub-
request. The where part of SYN_R sub-request will 
contain the synthesis joint expressions SYN_JFs. The 
return parts the XQuery sub-requests SYN_R will be 
constituted by the XML_doc tagging function of Rt 
applied, for each Results Xpath expression of the Rt 
XQuery request return clause, to the equivalent 
Xpath expression in the DDB_R or RDB_R sub-
request. The building of SYN_R will continue 
recursively in the same way on the SRs sub-requests.  

The XML schema describing the structure of the 
XML document result of the SYN_R synthesis sub-
request will be built from the XML schema 
describing the XML view on the relational database, 
the XML schema of the documentary database and 
the return clause of the XQuery request R. The types 
of the simple elements making up the XML 
document result are deduced from the original 
schema. In the case of a simple element coming from 
the XML view of the relational database, the type of 
this element is deduced form the XML schema 
describing this view. If this element is coming from 
an XML document of the documentary database, the 
type of this element depends on the existence of the 
document XML schema. If the document does not 
possess an XML schema, the type of the simple 
element will be anyType. The building of the XML 
schema of the synthesis sub-request SYN_R result 
will be done according to a similar method than that 
used for the building of the XML schema of the 
document created from the tuples returned by the 
relational engine thanks to the XML_Schema function 
described in the third section.   

6 CONCLUSION  

Our system takes advantage of relational systems 
which are powerful for the management of structured 
data and it takes advantage of XML systems for the 
management of non-structured or semi-structured 
data. It is in this meaning where our work is different 
from the systems which store XML documents in the 
shape of tables. In these systems, it is often non-
optimal to reconstitute the document. Our system 
enables us to build results made up of non-structured 
data, coming from documentary database, and 
structured data, coming from relational database, in 
the shape of an XML document. These results could 
then be consulted as persistent documents thanks to 
an Xquery request.  

This work is intended to be extended to a 
distributed system where relational and documentary 
data could be on geographically distributed sites. In 
this distributed system, the XML schema will be the 
pivot schema and the Xquery language will be the 
pivot language. 

REFERENCES  

Fan, C., Funderburk, J., Lam, H.I., Kiernan, J., Shekita, E., 
Shanmugasundaram J., 2002. XTABLES : Bridging 
Relational Technology and XML. IBM Corporation.   

Fernandez, M., Kadiyska, Y., Morishima, A., Suciu, D., 
Tan W.C., 2002. SilkRoute : a framework for 
publishing relational data in XML. ACM Transactions 
on Database Technology.   

Fernandez, M., Tan, W.C., Suciu D., 2000. SilkRoute : 
Trading between relations and XML. International 
Conference WWW'00.  

Hernandez, M., Miller, R. J., Haas L. M., 2001. Clio: A 
Semi-Automatic Tool For Schema Mapping. 
International conference SIGMOD'01. ACM Press.   

INRIA., 1998. LeSelect (CARAVEL project).  
 http://www-caravel.inria.fr/~leselect/ 
Kenab, M., Ould Braham, T., Bazex P., 2004.  Evaluation 

of a document database description by different XML 
schemas. International conference IASTED: DBA'04. 
Acta Press. 

Kenab, M., Ould Braham, T., Bazex P., 2004.  
Parameterized Formatting of an XML document by 
XSL rules. International conference ADVIS'04. 
Springer-Verlag. 

Manolescu, I., Florescu, D., Kossmann, D., Olteanu, D., 
Xhumari F., 2000. Agora: Living with XML and 
relational. International conference VLDB. Morgan-
Kaufmann. 

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

358


