
SEMANTIC DISCOVERY OPTIMIZATION
Matching composed semantic web services at publishing time

Andreas Friesen, Michael Altenhofen
SAP Research, CEC Karlsruhe, Vincenz-Prießnitz-Str. 1, D-76131, Germany

Keywords: Semantic discovery, Semantic Web Services

Abstract: This paper describes an algorithm optimizing the discovery process for composed semantic web services.
The algorithm can be used to improve discovery of appropriate component services at invocation time. It
performs semantic matchmaking of goals of a composed service to appropriate component services at
publishing time. The semantic discovery problem at invocation time is therefore reduced to a selection
problem from a list of available (already discovered) component services matching a goal of the composed
service.

1 INTRODUCTION

In the last few years a new approach to design
(integrate) software applications, called Service-
oriented Architecture (SOA), arose and became very
popular. The main idea of that approach is to build
applications through composition of loosely coupled
components called services. This approach promises
to increase interoperability and to reduce integration
costs.

Today, a standardized technological realization
of SOA, called Web Services, is available and
becomes more and more widespread. Web Services
consist of three core technologies: SOAP (Simple
Object Access Protocol) (Box, 2000), WSDL (Web
Service Description Language) (Christensen, 2001)
and UDDI (Universal Description, Discovery and
Integration) (Bellwood, 2002). There are numerous
emerging additional technologies on top of Web
Services dealing with workflows, transactions,
security and so on (W3C: http://www.w3c.org,
OASIS: http://www.oasis-open.org). However, the
above technologies support only manual integration
of the Web Services into composite applications.
This is because their semantics are not explicitly
described in a formalized way and therefore can be
understood only by humans but not by machines.

In order to enable automated usage of Web
Services several competing initiatives are
developing infrastructures, so-called Semantic Web
Services, which combine Semantic Web and Web
Services technologies (e.g.,
W3C SW: http://www.w3.org/2001/sw/,

SWWS: http://www.swsi.org/,
SDK: http://www.sdkcluster.org.)

Web Service usage comprises many aspects of
Web Services, e.g., publication, discovery, selection,
composition, mediation, negotiation, invocation,
monitoring, compensation and recovery. Within this
big picture, the paper describes an optimization of
semantic discovery in the context of composed web
services.

2 ATOMIC/COMPOSED
SERVICES

Services published to a registry can be divided into
two classes: atomic services and composed services.
An atomic service does not use any further services
to perform its functionality. Opposed to that, a
composed service relies on a set of composed or
atomic services. We call this set component services
of the composed service.

However, a composed service making an
ultimate decision about the set of its component
services at design time will probably become non-
optimized or even unable to perform its task for the
following reasons:
• New, more optimal component services may

have been added to the registry in the meantime.
• The properties of the existing services may

change (become more/less optimal or
usable/unusable for the composed service).

347
Friesen A. and Altenhofen M. (2005).
SEMANTIC DISCOVERY OPTIMIZATION - Matching composed semantic web services at publishing time.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 347-350
DOI: 10.5220/0001229703470350
Copyright c© SciTePress

• Existing services may be removed from the
registry.

In order to protect itself from becoming less
optimal or unable to perform its tasks a composed
service has to:
• Discover component services in order to detect

new, changed or removed services
• Select from the discovered set of available

services the services used for the current
execution of the service according to some
optimization algorithm

A composed service discovers a component
service using some goal. Since a composed service
also has to be published to a registry its goals used to
find appropriate component services are known to it
at publishing time and do not change as long as the
service does not change or has been removed.
However, at the time being the goals of a composite
service used to discover its component services are
hidden in its internal business logic (also known as
orchestration) and can therefore only be used by the
service itself.

The above considerations show that a composite
service, in order to keep its functionality optimized,
has to discover its component services again and
again either at each invocation or at some other time
intervals specified by its internal logic.

3 SEMANTIC DISCOVERY

Semantic discovery of Web Services means
semantic reasoning over a knowledge base where a
goal describes the required web service capability as
input. Semantic discovery adds accuracy to the
search results in comparison to traditional Web
Service discovery techniques, which are based on
syntactical searches over keywords contained in the
web service descriptions (Keller, 2004), (Motik,
2004). The additional accuracy of a match is
expensive in terms of required computational power.
The expensiveness of semantic matchmaking has
several aspects influencing the design of the
Semantic Web Services infrastructure in different
ways (Paolucci, 2004). Besides the accuracy of a
semantic match, also the following two aspects have
to be considered:
• Response time
• Scalability

Response time specifies how long semantic
discovery takes to find a set of web services
matching a goal. This criterion can restrict or even
prohibit service usage in certain scenarios, where a
Web Service has to be discovered and directly
invoked and the total time for discovery and

invocation has to be short. For instance, a composed
service may semantically discover required
component services at runtime. If potential service
requesters of the composed service expect short
response times this service becomes unusable to
them even if the functionality offered by the service
meets their needs.

Scalability specifies how many semantic
discovery requests can be processed within a given
unit of time. If a composed service identifies its
component services using time-consuming semantic
discovery techniques each time it is invoked,
discovery may become a bottleneck.

A practical approach to the above problems is to
execute semantic discovery only if necessary, e.g. by
buffering results from former searches. An even
better approach would be to do semantic
matchmaking or some sub-steps of this process
ahead of the current discovery request. Since goals
and service capabilities rely on the same ontological
concepts, it is possible to match a service capability
to the ontological concepts even if the goal is not
known at that point in time. In (Paolucci, 2004) an
OWL-S/UDDI matchmaker is proposed that
performs reasoning at publishing time in order to
find matches of different quality (exact,
subsumption, plug-in, intersection, fail) between
capabilities and the ontological concepts they rely
on. Matchmaking is often used as a synonym for
semantic discovery. The matches found are stored as
lists (identifying the different qualities of the match)
attached to the ontological concepts. The matching
of goals and capabilities is therefore reduced to
computing intersections between capabilities lists of
the concepts used in the goal. A goal is semantically
described, e.g., in:
• OWL-S through inputs and outputs (OWL-S,

2003)
• WSMO through postconditions and effects

(Roman, 2004)

4 OPTIMISATION APPROACH

We propose to make the goals of the composed
service used to discover component services part of
its public description (public to a registry, but not
necessarily to other clients of the registry). This
would allow the application of a new discovery
algorithm, which reduces the efforts to discover
component services at invocation time significantly.
In fact, using the algorithm described below, the
discovery process during the service invocation will
take a constant time in order to find a set of services
matching the goal, so the overall process identifying

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

348

component services takes a constant time for
semantic discovery plus the time for the selection
from a list of services matching the goal. (The
selection time remains dependent on an internal
algorithm of the composed service.)

Before introducing the algorithm let’s consider
what is the additional value of having goals
explicitly published in the web service description
(e.g., as a list). If the goals are known, the discovery
process can be executed by a registry at publishing
time and the list of the available services matching
the goal can be stored (linked in some way to the
goal) in the registry. This means that, if the service
sends a discovery query with the goal to a registry,
the registry first tries to find the goal and returns in
case of success the list of services linked to it. Only
if the goal could not be found, the registry starts the
semantic discovery in the “traditional way”. This
does not yet solve the problem of detecting new,
changed and removed services possibly impacting
the functionality of the composed service, since the
service could make the discovery once and store it
for the further use internally (outside of the registry).
So what is needed is a way to update the list of
available services linked to the goal if something
changes (e.g., a new service is added to the registry,
or an existing service is changed or removed).

The following observation allows achieving the
required behavior. A goal presents in fact a partial
description of the service capability, e.g. in WSMO
a goal is described through postconditions and
effects while a service capability is described by
preconditions, assumptions, postconditions and
effects. This means, that if a registry can find
matching service capabilities using a goal then it can
also find matching goals using service capabilities.

5 OPTIMIZATION ALGORITHM

The key abstractions of a registry used for semantic
discovery can be described by the following key
abstractions illustrated in Figure 1:

• Discovery Service
• Publishing Service
• Knowledge Base
• Goal-Capability Association Storage

(GCA-Storage)
Discovery Service provides an interface allowing

execution of semantic search queries against the
Knowledge Base.

Publishing Service provides an interface to add
new services or to update or remove existing
services from the knowledge base of the registry.

The published services are stored in the
Knowledge Base.

The Web Service Description (WSD) of a
composed service is modified (extended) in a way
that the goals a composed service uses to find
component services are described explicitly in its
Web Service description.

We introduce a GCA-Storage able to store
associations (links) between explicitly described
goals in the WSD of a composed service and the
WSDs of potential component services (containing
matching service capabilities). The GCA-Storage is
illustrated in Figure 2.

The Publishing Service is modified in a way
allowing the operations described in the algorithm
below.

The Discovery Service is modified in a way such
that not only a goal can be used to find service
capabilities but also a service capability can be used
as a search criterion in order to find goals explicitly
stored in the directory.

The following algorithm performs semantic
discovery at publishing time and keeps the goal-
service association storage consistent for any
changes of goals or service capabilities published to
the registry.

Figure 1: Key abstractions of a registry

Figure 2: Goal-capability association storage

SEMANTIC DISCOVERY OPTIMIZATION: Matching composed semantic web services at publishing time

349

publishService(wsd){

choose (wsd){

 newAtomic: perform InsertNewAtomic

 updateAtomic: perform UpdateAtomic
 deleteAtomic: perform DeleteAtomic
 newComposed: perform
 InsertNewComposed,

 InsertNewAtomic
updateComposed: perform
 UpdateComposed,
 UpdateAtomic
deleteComposed: perform

 DeleteComposed,
 DeleteAtomic

}
}
InsertNewComposed: Extract goal descriptions

and use the discovery service to find matching
service capabilities. Store the lists of found service
capabilities to the GCA-Storage (associating them
with the matching goals).

UpdateComposed: Remove old associations
(between goals and service capabilities) from the
GCA-Storage, find and store new associations in the
GCA-Storage (Further optimization possible, e.g.
compare the new and old WSD version to find
differences between old and new goals. If a goal has
not changed no action is required, i.e. no reasoning
is required and the already existing association
remains valid.)

DeleteComposed: Remove associations for the
goals contained in the WSD from the GCA-Storage

InsertNewAtomic: Use discovery service with
service capability as search criterion in order to find
matching goals and store found matches to the
GCA-Storage.

UpdateAtomic: Delete old associations from
GCA-Storage. Use discovery service to find new
matches and store them in the GCA-Storage.

DeleteAtomic: Remove associations for the
service capability contained in the WSD from the
GSA-Storage.

Note that a composed service can act as an
atomic service (component service) for other
composed services. Therefore, after an operation for
the composed service has been performed, an
associated operation for the atomic service must
follow (associating herewith its service capability
with goals of some other services).
The proposed optimization approach can be used in
different business scenarios. Of special interest are
scenarios with composed services aggregating
functionality of supplying component services, e.g.,
in the example of a Virtual Travel Agency
(Stollberg. 2004). A composed service in such
scenario can profit from the introduced optimization

procedure if it can express its (possibly dynamically
changing) requirements on the resources (it expects
to be provided by component services) as a set of
semantically described goal descriptions.

6 CONCLUSION

The introduced approach demonstrates that at least
for composed services in applicable business
scenarios the semantic matchmaking between goals
and service capabilities can be executed at the
publishing time instead of invocation time. This
approach reduces also the total number of semantic
queries due to buffering of existing matches in the
goal-service association storage. The introduced
algorithm ensures that the goal-service association
storage can be kept consistent for any changes of
goals or service capabilities, if they are published to
the registry.

ACKNOWLEDGEMENT

The work is partially funded by the European
Commission under the project DIP.

REFERENCES

Bellwood, T., 2002. Bellwood, T. et all; UDDI Version
2.04 API Specification, July 2002, http://uddi.org/

Box, D., 2000. Box, D. et all; SOAP 1.1, May 2000,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Christensen, E., 2001. Christensen, E., et all; Web Service
Description Language (WSDL) 1.1, March 2001,
http://www.w3.org/TR/wsdl

Keller, U., 2004. U. Keller, R. Lara, A. Polleres, “WSMO
Web Service Discovery”,
http://www.wsmo.org/2004/d5/d5.1/v0.1/20041112/

Motik, B., 2004. B. Motik, C. Preist, S. Grimm, „Variance
in e-Business Service Discovery“, ISWC 2004,
http://www.fzi.de/wim/publikationen.php?id=1238

OWL-S, 2003. http://www.daml.org/services/owl-
s/1.0/owl-s.html

Paolucci, M., 2004. N. Srinivasan, M. Paolucci and K.
Sycara, "Adding OWL-S to UDDI, implementation
and throughput”, SWSWPC 2004, 6-9, 2004,

Roman, D., 2004. D. Roman, H. Lausen, U. Keller, et all,
Web Service Modeling Ontology (WSMO),

 http://www.wsmo.org/2004/d2/v1.0/20040920/
Stollberg, M., 2004. M. Stollberg, R. Lara, et all, WSMO

Use Case “Virtual Travel Agency”,
http://www.wsmo.org/2004/d3/d3.3/v0.1/

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

350

