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Abstract: A polynomial-time algorithm for the identification of interaction and memory structures in discrete valued, 
nondeterministic, cyclic social behavior data is developed. The output of the probabilistic search algorithm 
is the strategy update function for each individual automaton agent in given population. For our modeling 
purpose, we used automata networks model and added “block-extended memory” property to its original 
definition. The approach can also be considered as a limit cycle construction technique for discrete 
dynamical systems. 

1 INTRODUCTION 

Understanding the nature of social conventions in 
human (or agent) societies may contribute to 
obtaining more natural and better design forms in 
synthetic (or in virtual) environments. The study on 
social conventions is not new (Ullman-Margalit, 
1977), but it is relatively new in the context of 
artificial intelligence and multiagent systems 
(Walker and Wooldridge, 1995); (Shoham and 
Tennenholtz 1997); (Coen, 2000); (Delgado, 2002). 
“A social law is a restriction on the set of actions 
available to agents. If it restricts the agents’ behavior 
to a particular action (or strategy) it is called social 
convention” (Shoham and Tennenholtz, 1997). From 
this definition, one may conclude that the existence 
of a social convention generated by an agent 
population requires all agents to reach (or converge) 
to the same state at time t. On the other hand, some 
social interaction forms may contain repetitive 
patterns of individual and/or collective action 
(strategy) choices while they may never evolve into 
a mature social convention form at all. Such time-
distributed, nondeterministic, cyclic regular behavior 
converging to a limit cycle of some length k >1 can 
still be a solution to recurrent coordination 
problems. From the game-theoretic perspective, they 
are the collection of interacting meta-strategies 
enabling some intended flexible strategy changes. 
The identification of interaction topology (or 
neighborhood structure) among such agents 
producing what we call, cyclic social convention (or 
timed social equilibrium) behavior may provide 

useful information feedback for possible online 
emergent design solutions. And, the mechanisms 
producing them are worth to be investigated. 

Automata Network (AN) is a useful 
mathematical model for analyzing such global 
dynamics emerging from collective behavior of local 
components (Aspray and Burks, 1987). 
Identification of an AN that can generate given 
arbitrary collective behavior sequence problem is a 
typical inverse problem (Wolfram, 1984). In this 
paper, we used a modified AN model in which the 
automata components (i.e. agents) are not 
memoryless. By this way, the model fits better into 
our cyclic social convention definition. The inverse 
problem has been worked on different research 
domains by using different subclasses of the 
Automata Networks model like cellular automata, 
non-uniform cellular automata and Boolean 
networks (Langton, 1986); (Adamatzky, 1994); 
(Akutsu et.al., 2000);  (Ideker et.al., 2000). In 
(Ideker et.al., 2000), it was pointed out that the 
inverse problem of finding minimum neighborhood 
automata network that can generate given 
deterministic sequence can be considered as the NP-
Complete problem of set-covering (but without 
giving a formal proof). In (Fitoussi and Tennenholtz, 
2000), it has been proven that the “automatic 
synthesis of social laws” problem is NP-Hard. In this 
paper, our aim is not to find an agent interaction 
topology with minimum interaction neighborhoods 
but to identify a topology by using apriori 
knowledge about the relation between the 
neighborhood and memory parameters of the 
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system. Simply, the neighborhood/memory relation 
is represented in the form of a binomial distribution 
function. For our AN identification purpose, we 
proposed a probabilistic search algorithm called 
Nearest Neighbors Recent Values (NNRV) that 
enables the generation of arbitrarily given discrete-
valued, nondeterministic, cyclic behavior sequence. 
Note that the approach does not consider any 
optimization criterion and for the same sequence 
data one may obtain different topologies. However, 
the obtained topologies show the general 
characteristics defined by given binomial 
distribution function. 

Section 2 includes formal definition of our 
modified AN model. Section 3 describes the NNRV 
identification algorithm. Section 4 is the conclusion.  

2 THE MODEL 

Let I be a finite set of vertices. An automata network 
can be defined on I as a triplet A = (G, Q, (fi : i∈I )) 
where  

• G = (I, V) is a graph showing the interaction 
topology between vertices where 

IIV ×⊂ . A finite neighborhood is 
defined as Vi = {j∈I : (j, i)∈V} for any 
i∈I. The neighborhood system is defined by 
V = {(j, i) : j∈Vi, i∈I}.  

•  is the finite set of states. Q
• fi :  is the state transition function 

for vertex i. Here, the f
QQ iV →

i function determines 
the next state of i from the current states of 
the neighbors of i. The global transition 
function F : is defined on the set 
of configurations Q

II QQ →
I with synchronous 

updates (Goles and Martinez, 1990). 
Synchronous update requires all vertex values to 

be updated simultaneously. The dynamics of 
synchronous update can be given by x(t+1) = 
F (x(t)) whose  component is xA

thi i(t+1) = fi(xj(t) : 
j∈Vi).  

The above definition can be extended to an 
automata network with block extended memory. For 
this purpose, we need to redefine the strategy update 
function fi. For a given j∈Vi, let Pij = q1q2…qs…ql-

1ql be a finite sequence of state values of length l 
where l ∈N+ and qs∈Q for all 1 ≤  s ≤  l. Then, the 
size of the memory pattern for vertex i is 
Zi = ∑Pij where j takes values from 1 to |Vi|. 

The state transition function for vertex i using 
“block extended memory” is fi : . As a 
consequence, the dynamics of the  component in 
synchronous update mode becomes: 

QQ iZ →
thi

xi(t+1)=fi(xj(t), xj(t-1), xj(t-2)……xj(t-|Pij|+1):j ∈Vi) 
 

In the context of interacting social agents, the set 
Q defines agent strategies; Vi is the set of agents in 
ith agent’s interaction neighborhood; and fi is the 
deterministic strategy update function for the ith 
agent which may not necessarily be the same for all 
agents. One can recognize the existing redundancy 
in the accounting of the memory usage. Each 
neighbor of say automaton j has the history j 
accounted in its memory usage. It is necessary due 
to the private nature of observations made by 
independent autonomous automaton agents. 
However, it should be clear that the agents are 
assumed to cooperate (but not compete) in sharing 
their private history information.  

Definition 1. A cyclic sequence S with period T 
is an ordered list of global configurations, S = x(0), 
x(1), …, x(s), … where s∈N, x(s)∈QI  and x(s) = 
x(s mod T). 

Definition 2. A cyclic sequence S with period T 
is nondeterministic iff there exists s, t ∈N  and 0 ≤  
s < t < T such that (x(s) = x(t))  (x(s+1)  ≠  
x(t+1)) holds, otherwise it is deterministic. 

⇒

Lemma 1. There exists a nondeterministic cyclic 
sequence S with period T such that one cannot find 
any automata network A working in synchronous 
update mode and without using block extended 
memory (i.e. |Pij| = 1 for all j ∈ Vi and  i∈I ) that 
can generate S.  

Proof. Let x(s), x(t), x(s-1) and x(t-1) be 
configurations in sequence S where s≠ t, x(s)≠x(t) 
and x(s-1)=x(t-1). Then, there exist at least one 
vertex i of A such that xi(s)≠xi(t) and xi(s-1)=xi(t-1). 
However, xi(s)≠xi(t) implies fi(xj(s-1): j∈Vi) ≠  
fi(xj(t-1): j∈Vi) which contradicts with the existence 
of xi(s-1)=xi(t-1) for all i∈I. 

An implication of Lemma 1 is the existence 
cyclic social convention forms that cannot be 
generated by reflexive, memoryless society of agents 
that are updating their strategies synchronously. A 
simple example binary-valued, nondeterministic 
cyclic sequence showing this fact is:  00 00 10 
where T=3. If there is no such memory usage 
restriction on agents, any such arbitrarily given 
cyclic sequence can be generated.   

 Lemma 2. Given a nondeterministic cyclic 
sequence S with period T, one can always find an 
automata network A working in synchronous update 
mode and with block extended memory size of at 
most O(T2|I|2) that can generate S.  

Proof. Simply, the cyclicity of the sequence 
provides a memory of size T for each individual 
automaton agent and this makes the generation of 
the given nondeterministic sequence trivial. The 
upper bound for memory usage can be reached if the 
network A is fully connected. In this case, each state 
transition rule of the strategy update function

i
 of 

the i
f

th agent uses the whole pattern information, 
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T*|I|, of the sequence S. This implies O(T2*|I|) 
amount of memory per agent and O(T2*|I|2) in total. 

In Figure 1, one can see an example 
neighborhood/memory pattern for an individual 
automaton i.  The horizontal axis defines neighbor 
vertices of vertex i (including itself). The vertical 
axis, on the other hand, defines the memory patterns 
used by vertex i. The gray-colored column P(i),(i+1) is 
the memory pattern generated by vertex (i+1) and 
used by vertex i. From Figure 1, P(i),(i+1) = 3, |Vi| = 5 
and the total size of memory patterns for i: Zi = 11.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1: A neighborhood/memory pattern for an 
automaton i 

3 THE ALGORITHM 

Before describing the algorithm, we may need to 
figure out the number of possible automata network 
neighborhood topologies and potential individual 
automata definitions to be searched. Since the 
system has |I| number of automata, the number of 
possible   network neighborhood topologies is:

2

2I . 
An automaton i with our block extended memory 
definition has |Q| states and decides on its next state 
by looking at Zi size memory pattern. Then, the 
number of possible fully-defined automaton for i is: 

iZQQ . The search space size is huge and one can 
find more than one different automata network 
definition that can generate the given 
nondeterministic cyclic sequence. Different 
solutions are characterized by how individual 
conflicts (defined below) are handled by the 
algorithm. Note that each resolved conflict requires 
some extension on memory pattern of the automaton 
which implies an evolution of possibly partially-
defined automaton. The evolution occurs only on 
G’s connection topology and on the state transition 

rule space (i.e. fi). The states (q∈Q) and the number 
of automaton (|I|), on the other hand, are fixed. 

Definition 3. Let A(t) be a partially-defined 
automata network at time t. Then, the next state 
value required to be generated by automaton i of A(t) 
is xi(t+1). Let Pi be a memory pattern value valid at 
time t. If there exist a state transition rule Pi  q  
(where q∈Q) defined by fi at time t such that 
q≠xi(t+1) then we say that reading xi(t+1) causes an 
individual conflict for the automaton i at time t.  

In our approach, individual automaton conflicts 
can be resolved by neighborhood extension and/or 
through memorization. Neighborhood extension can 
be thought analogous to increase of cooperation 
among ordered automaton units. Then, the 
cooperation/memorization structure of an automaton 
i can be defined by movements in neighborhood 
and/or memory directions of a 2-D memory pattern 
space. Figure 2 shows an example time evolution for 
memory pattern Pi of an automaton i.  
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prefer cooperation then it should be able to 
memorize the old. 

What can be a more realistic representation of 
automaton neighborhood/memorization structure? 
The answer depends on the characteristics of the 
generator of sequence S which is wanted to be 
identified. In our approach, we considered basic 
space (i.e. physical distance) and time (i.e. 
recentness) costs. We assumed that automaton tends 
to resolve its conflicts by extending its neighborhood 
to its nearest neighbors and recent values can be 
remembered more easily. We implement this idea by 
our Nearest Neighbors Recent Values (NNRV) 
algorithm (see Figure 3). It selects the recent 
memory value of the next nearest automaton to the 
current one as the candidate for resolving the current 
automaton’s conflict. Our implementation of NNRV 
based on memory patterns showing binomial 
distribution characteristics. As a consequence, the 
conflict resolver selection process generated 
evolving sand pile like memory patterns (see Figure 
2).  

The magnitude and spread values of sand piles 
are upper-bounded by T and |I|, respectively. The 
second input of the algorithm (i.e. p) defines the 
neighborhood/memory characterization for each 
automaton agent. It is the probability of using the 
candidate automaton’s recent value for resolving 
current automaton’s individual conflict. The 
algorithm executes a probabilistic search in the 
space until it resolves all conflict cases.  p=1 is the 
no-cooperation case where the automaton tries to 
resolve its conflicts by itself. In other words, 
memory pattern is extended only in memory axis 
direction of the current automaton. When p is close 
to zero, the automaton mostly prefers cooperation to 
memorization. In this case, the spread of the 
distribution is dominant over its magnitude. In the 
algorithm, we assumed that the p value does not 
change by time and it is the same for all automaton 
units.   
 
ALGORITHM NNRV 
Input:Nondeterministic Sequence (S), 
      Binomial Dist. Prob. (p) 
Output: Automata Network (A) 
Initialize: For each column of S, 
establish one automaton of A with 
initially empty state transition rule 
set; 
For each automaton i of A {                                                   

Our approach can also be considered as a general 
purpose limit cycle construction technique for 
discrete dynamical systems. However, one may need 
to find more realistic memory formation models. For 
such purpose, he/she may need to consider 
domain/problem specific characteristics of the 
sequence data.  Pi(0) = xi(0);                                            

 For each config x(j) of S  where j > 0                          
For each config x(k) of S from x(0) 
    to x(j-1)  
  if ( xi(j)!=xi(k)) then  

         while (Pi(j)==Pi(k)) { 

         Find i’s next Nearest  
    Neighbor’s most Recent  
   “not memorized yet” Value 
   xm(r) with probability p; 

           Extend Pi using xm(r); 
      }      

    if Pi is extended then  
  extract state transition rules  
 for automaton Ai from S using Pi

} 
 
 

Figure 3: Pseudo-code for the NNRV algorithm. 

Let m=T (cycle period) and n=|I| (# of automata). 
Then, the worst-case time complexity of the above 
algorithm can be defined as: [O(m2n) for the For 
loops]*[O(mn) for checking the equivalence of 
patterns Pi(j) and Pi(k)]*[O(mn) for conflict 
resolution by extending pattern Pi] = O(m4n3) which 
is polynomial-time. 

4 CONCLUSION 

A new discrete-valued, nondetermistic and cyclic 
social convention definition is introduced. It is 
shown that the structure behind such timed social 
equilibrium forms can be investigated by the use of 
automata networks model. While doing this, we 
added block extended memory property to the 
original automata networks definition. It is shown 
that for any nondeterministic cyclic sequence data, 
one can find an automata network definition that can 
generate it while working in synchronous update 
mode using block extended memory. For our 
structure identification purpose, we developed a 
polynomial time probabilistic automata network 
search algorithm with time complexity, O(m4n3) 
where m is the cycle length and n is the population 
size. The algorithm identifies an automata network 
whose neighborhood/memory characteristic is 
defined by the parameter (p) of binomial distribution 
function. Specifically, we may conclude that the 
identification can be achieved even without 
cooperation between automaton agent units.  
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