A Tiny Overview of Cfengine:
Convergent Maintenance Agent

Mark Burgess

Oslo University College, Norway

Abstract. Cfengine is a widely used software tool with an on-going research
project, looking at distributed system administration. System administration deals
with the setup, configuration and maintenance of computing devices in a network,
a task where it is natural to apply methods of automation. Since its inception in
1993, the cfengine tool-set has been adopted by a broad range of users from small
businesses to huge organizations[1]. It is currently running on close to a million
nodes around the world.

1 Introduction

Cfengine falls into a class of approaches to system administration which is called
policy-based configuration management [2]. Instead of providing detailed imperative
programs for software agents to follow, policy based management is about painting the
broad strokes, or placing limits on the behaviour of self-adapting agents. A cfengine
agent has expert knowledge and a set of tools to configure and repair systems according
to a declared policy.

Cfengine’s task is to configure the files and processes running on networked com-
puters, e.g. Unix or Windows workstations.

— Policy (P) is a description of intended host configuration. It comprises a partially
ordered list of operations or tasks for an agent to check.

— Operators(O) or primitive skills/actionsare the commands that carry out mainte-
nance checks and repairs. They are the basic sentences of a cfengine program. They
describewhatis to be constrained.

— Classesre a way of slicing up and mapping out the complex environment into dis-
crete (‘digital’) regions that can then be referred to by a symbol or name. They are
formally constraints on the degrees of freedom available in the system parameter
space. They are an integral part of specifying rules. They desstibeesomething
is to be constrained.

— A cfenginestateis a fuzzy region within the total system parameter space. It is de-
fined formally with symbolslasseghat define the environment in which a policy
rule lives and by the specificity of the policy rules themselves with respect to the in-
ternal characteristics of the operators (e.qg. file permissions, process characteristics).
States have the form{ addr ess, constrai nt) = (cl ass, val ues)

Burgess M. (2005).

A Tiny Overview of Cfengine: Convergent Maintenance Agent.

In Proceedings of the 1st International Workshop on Multi-Agent Robotic Systems, pages 183-188
DOI: 10.5220/0001159201830188

Copyright © SciTePress



Rather than assuming that transitions between states afiatiel occur only at
the instigation of an operator, or at at the behest of a pobtafengine imagines that
changes of state occur unpredictably at any time, as pahieogéivironment to be dis-
covered[3]. Cfengine holds to a set of principles, refetteds themmunity model4],
for seeking correctness of configuration. These embodydit@ning features:

— Centralized policy-based specification, using an opagatyistem independent lan-
guage.

— Distributed agent-based action; each host agent is refipp@ifisr its own mainte-
nance.

— Convergent semantics encourage every transaction to thréngystem closer to an
‘ideal’ average-state, like a ball rolling into a potentiall.

— Once the system has converged, action by the agent desists.

A ‘healthy state’ is defined by reference to a local policy. Wlesystem com-
plies with policy, it is healthy; when it deviates, it is sidRfengine makes this process
of ‘maintenance’ into an error-correction channel for naggs belonging to a fuzzy
alphabet [5], where error-correction is meant in the sefi§&hannon [6].

The main components of cfengine are:

— A central repository of policy files, which is accessible ¥y host in a domain.

— A declarative policy interpreter (cfengine is not an impeealanguage but has
many features akin to Prolog [7]).

— An active agent which executes intermittently on each hoatdomain.

— A secure server which can assist with peer-level file shaand remote invocation,
if desired.

— A passive information-gathering agent which runs on eadt, hassisting in the
classification of host state over persistent times.

2 Classes, Environment and States

Setting configuration policy for distributed software aradtdware is a broad challenge,
which must be addressed both at the detailed level, and atdne abstract enterprise
level. Cfengine is deployed throughout an environment eadsifiesits view of the
world into overlapping sets. Those tasks which overlap wiparticular agent’s world
view are performed by the agent.

A class based decision structure is possible because eatkruws its own name,
the type of operating system it is running and can determihetker it belongs to
certain groups or not. Each host which runs a cfengine apen¢fiore builds up a list
of its own attributes (called the classes to which the hotirs). Some examples
include:

The identity of a machine, including hostname, addrestsyark.
The operating system and architecture of the host.

An abstract user-defined group to which the host belongs.
The result of any proposition about the system.

A time or date.

agkroobPE



6. Logical combinations of any of the above.

The environment is large and complex and we cannot desdribgrecise terms,
so cfengine classifies it into coarse abstract propertesatie suitable for management
purposes. The classifiers form a patchwork covering of tkeé@mment.

Given that the agent, running on a host, can determine tke atéributes for that en-
vironment, it can now pick out what guidelines it needs frogiabally specified policy,
since each policy task is also labelled with the classes iowihapplies. This policy
predicates the agent’s application of skills according nmall criteria, encompassing
distributed collaborations.

A command or action is only executed if a given host is in thmea&lass as the
policy action in the configuration program. There is no nesddther formal decision
structures, it is enough to label each statement with ctags®r example:

['inux:: |inux-actions
solaris:: solaris-actions
More complex combinations can perform an arbitrary cowedha distributed system
[8], e.q.

Al Servers. Hr22. ! exception_host::
actions
whereAl | Ser ver s is an abstract group, arekcept i on_host is a host which is
to be excluded from the rest. Classes thus form any numberesfapping sets, which
cover the coordinate space of the distributed system, t), for different hosts:, with
software components over timet. Classes sometimes become active in response to
situations which conflict with policy.

The inherent unknowability of the host environment meaias tfiengine does not
operate with any single notion of state; it has effectivadyesal template definitions.
Administrators do not use the same mental model to descetveonk arrival processes
as they do the permissions of files, even though the esseatiale of maintenance is
the same.

A state is defined by policy. The specification of a policy tiglike the specification
of a coordinate system (a scale of measurement) that is agedimine the compiance
of the system. The full policy is a patchwork of such rulesnemf which overlap. A
cfengine state does not appear as a digital string, butrrasheeset ‘language’ classes[9],
often represented in the form of a number of regular exprassithat place bounds on

— Characterizations of the configuration of operating systéjects (cfagent digital
comparisons of fuzzy sets).

— Numerical counts of environmental observations (cfenwdhe®or values with real-
valued averages).

— The frequency of execution of closed actions (cfagent logki

3 Policy and Convergence

The view of policy taken in ref. [3] is that of a series of ingttions that summarizes
theexpectedehaviour. The precise behaviour is not enforcable, s@tisaro sense in
trying to specify it at each computational timestep.



This is where the split between system and environment hasidamental con-
ceptual bearing on our description of it. There are two kioflsormality that pertain
to:

— Properties that we feel confident in deciding for oursehmerhissions of files,
processes etc). These are decided and enforced. Deviditnsthese ‘digital’
specifications can be repaired or warned about directly an&bn-like error cor-
rection.

— Properties that are controlled by the environment and meig¢drned (number of
users logged in, the level of web requests). These have #tictuvalues but might
develop stable averages over time. These cannot normalgobrected’ but they
can be regulated over time (again this agrees with the mantz theorem’s view
of average specification over time).

Cfengine deals with these two different realms differenthe former by direct lan-
guage specification and the latter by machine learning anddsgifying (digitizing)
the arrival process.

The Shannon communication model of the noisy channel has e to provide
a simple picture of the maintenance process [5]. Maintem@the implementation of
corrective actions, i.e. the analgoue of error correctiothe Shannon picture. Main-
tenance appears more complex than Shannon error correbtarever. What makes
the analogy valid is that Shannon’s conclusions are inddgrerof a theory of observa-
tion and measurement. For alphabetic strings, the tasks#robtion and correction is
trivial.

To view policy as digital, one uses the computer sciencedfl@danguage [9]. One
creates a one-to-one mapping between the basic operafiefengine and a discrete
symbol alphabet. e.g.

A->"'""file nbde=0644""

B->"''file nbde=0645""

C -> ‘‘process emai|l running ' Since policy is finite, in practice, this is
denumerable. In operator language, the above action méritten:

Of1e(name, mode, owner) (1)

The transmission medium in this process is time itself. Vgare the system as being
propagated from its current location to exactly the sameglaver time. In other words,
the time development of the system is just the transmisditimecsystem into the future
over no distance.

Cfengine introduced the notion of ‘convergence’ into systdministration. This
was orginially only implicit in the early work, but was namexplicitly in the Computer
Immunology essay in [10] and was immediately taken up by Gatal [7] and formed
the basis of the configuration management workshops. Thiseqt was quickly under-
stood to be important.

A key part of avoiding uncontrolled behaviour are cfengirteansaction locks [11].
These were designed to ensure three things:

— Consistency of the outcome of atomic operations, i.e. avoidention due to con-
current execution of multiple agents.



— To limit the frequency with which operations could be repeéat
— To ensure that operations would not be able to hang inddfinite

Behind these, is the assumption that new cfengine agertsensippawned frequently to
check for maintenance operations.

Cfengine uses the idea obnvergenceo an ideal state. This means that, no matter
how many times cfengine is run, its state will only get clasathe ideal configuration.
This is a stronger condition thadempotenceas in Couch’s interpretation [12,13].
Since idempotence requires or}y? = O, while convergence is relative to a specific
policy stategg [14]:

Oq = qo
Oqo = qo. (2

The point of convergence over multiple runs is that multiptthogonal, convergent
operations will always lead to the correct configuration,nmatter which part of the

configuration is incorrect, or in what order things occurmex operations might not
complete within a single scheduled iteration, if exteraatdrs intervene in an untimely
manner; but they will always converge eventually. This sven in ref.[4].

If two operations are@rthogona) it means that they can be applied independently
of order, without affecting the final state of the system. Tamstruction of a consistent
policy compliant configuration has been subject to interedzate[4, 15, 13].

A little-discussed but relevant part of the ordering prabie the matter of cfengine’s
adaptive transaction locking [11]. The transaction lockswacfengine processes to
‘flow through’ one another and avoid going into infinite reggien and also prevents
agents from repeating themselves too often, or gettindksina problem. If an agent
gets stuck, another one will destroy it and take over.

4 Anomalies

In cfengine, an extra daemon (cfenvd) is used to colledssital data about the recent
history of each host (approximately the past two monthg),dassify it in a way that

can be utilized by the cfengine agent. The agent learns. &atayradually aged so
that older values become less important [16]. The daemamaittcally adapts to the
changing conditions, but has a built-in inertia which prégeanomalous signals from
being given too much credence. Persistent changes wilugiigdchange the ‘normal

state’ of the host over an interval of a few weeks. Unlike s@ystems, cfengine’s
training period never ends. The challenge of future anordakgction is the find a
stochastic anomaly language for a reactive agent policy.

References

1. Burgess, M.: Evaluation of cfengine’s immunity model of system teaignce. Proceed-
ings of the 2nd international system administration and networking cordeiSANE2000)
(2000)



10.

11.

12.

13.

14.

15.

16.

. Sloman, M., Moffet, J.: Policy hierarchies for distributed systemsagament. Journal of

Network and System Managemerit (1993) 1404

. Burgess, M.: On the theory of system administration. Science of G@nprogramming

49(2003) 1

. Burgess, M.: Cfengine’s immunity model of evolving configuratiocanagement. Science

of Computer Programmingl (2004) 197

. Burgess, M.: System administration as communication over a noisyieh&roceedings of

the 3nd international system administration and networking confered¢¢g3002) (2002)
36

. Shannon, C., Weaver, W.: The mathematical theory of communmnicatioiversity of lllinois

Press, Urbana (1949)

. Couch, A., Gilfix, M.: It's elementary, dear watson: Applying logiogramming to conver-

gent system management processes. Proceedings of the Thirtgstegm$ Administration
Conference (LISA XIII) (USENIX Association: Berkeley, CA) (199123

. Comer, D., Peterson, L.: Understanding naming in distributed sgsteistributed Comput-

ing 3 (1989) 51

. Lewis, H., Papadimitriou, C.: Elements of the Theory of Computati@toBd edition.

Prentice Hall, New York (1997)

Burgess, M.: Computer immunology. Proceedings of the Tweltke8ysAdministration
Conference (LISA XII) (USENIX Association: Berkeley, CA) (1998333

Burgess, M., Skipitaris, D.: Adaptive locks for frequently sehed tasks with unpre-
dictable runtimes. Proceedings of the Eleventh Systems Administratiore@mce (LISA
X1) (USENIX Association: Berkeley, CA) (1997) 113

Couch, A, Sun, Y.: On the algebraic structure of convergeScdmitted to DSOM 2003
(2003)

Couch, A, Sun, Y.: On observed reproducibility in network camfigjon management.
Science of Computer Programmiftg appear) (1994)

Burgess, M.: Analytical Network and System Administration — Manggituman-
Computer Systems. J. Wiley & Sons, Chichester (2004)

Traugott, S.: Why order matters: Turing equivalence in automatdras administration.
Proceedings of the Sixteenth Systems Administration Conference (LI¥A (KISENIX
Association: Berkeley, CA) (2002) 99

Burgess, M.: Two dimensional time-series for anomaly detectidmegulation in adaptive
systems. IFIP/IEEE 13th International Workshop on Distributed Syst@psrations and
Management (DSOM 2002) (2002) 169



