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Abstract: This paper examines the problem of designing a robuststate-feedback controller for a class of uncertain
nonlinear descriptor Markovian jump systems described by a Takagi-Sugeno (TS) fuzzy model with Markov-
ian jumps. Based on a linear matrix inequality (LMI) approach, LMI-based sufficient conditions for the un-
certain nonlinear descriptor Markovian jump systems to havi anperformance are derived. The proposed
approach does not involve the separation of states into slow and fast ones and it can be applied not only to
standard, but also to nonstandard nonlinear descriptor systems. A numerical example is provided to illustrate
the design developed in this paper.

1 INTRODUCTION tems normally occur due to the presence of small
“parasitic” parameters, typically small time constants,
masses, etc. In state space, such systems are com-
monly modelled using the mathematical framework
of singular perturbations, with a small parameter, say

nents; i.e., the state (differential equation) and the determining the dearee of separation between the
mode (Markov process). The Markovian jump sys- g Vel ng t 9 P ;
slow” and “fast” modes of the system. However, it

tem changes abruptly from one mode to another mode. hat it i ibl Ve the si
caused by some phenomenon such as environmental> ccessary to note that it Is possible to solve the sin-

disturbances, changing subsystem interconnectionscJUIarIy perturbed systems without separating betW‘?e”
and fast variations in the operating point of the sys- >°W andh fas;] mode subsystems. But the t;eqluwe-
tem plant, etc. The switching between modes is gov- ment 'f]t Iat';] N paras]:t;]c parameters m"u“st car ge
erned by a Markov process with the discrete and finite enough. Int ﬁpﬁse 0 Eﬂv'ng Very sr?]a dpara_5|t_|c
state space. Over the past few decades, the Markoviar1ol‘?r"’1rr?(aters r‘:v Ic lno;ma y occur in t el escrlptlonh
: ; : of various physical phenomena, a popular approac
ump systems have been extensively studied by man .

Jrese?arghers see (Kushner, 1967; Dznkin 1965¥ Won)-/adomed to handle these systems is based on the so-
ham. 1968 X Eena amm Cr,lizeck' 1992 d'e Sou,za andcalled reduction technique. According to this tech-
Fragbso 1’99'3_ Bgukas and Liu' 2001’_ Boukas and nigue the fast variables are replaced by their steady

Yang, 1999; Rami and Ghaoui, 1995; Shi and Boukas states obtained with “frozen” slow variables and con-
1997). This is due to the fact that jumping Systems trols, and the slow dynamics is approximated by the

; o corresponding reduced order system. This time-scale
have begn a subjgtt of the great practical importance. is asymptotic, that is, exact in the limit, as the ratio of

For the past three decades, descriptor systemsy,q gneeds of the slow versus the fast dynamics tends
or called singularly perturbed systems have beent0 Z€r0.

intensively studied by many researchers; see (Shi

and Boukas, 1997; K. Benjelloun and Costa, 1997; In the last few years, the research on singularly
E. K. Boukas and Liu, 2001; V. Dragan and Boukas, perturbed systems in tH& ., sense has been highly
1999; Pan and Basar, 1993; Pan and Basar, 1994 recognized in control area due to the great practical
Fridman, 2001; Shi and Dragan, 1999; P. V. Koko- importance. H..-optimal control of singularly per-
tovic and O’Reilly, 1986). Singularly perturbed sys- turbed linear systems under either perfect state mea-
tems also known as multiple time-scale dynamic sys- surements or imperfect state measurements has been

Markovian jump systems, sometimes called hybrid
systems with a state vector, consists of two compo-
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investigated via differential game theoretics approach. states into slow and fast ones, and it can be applied
Although many researchers have studiedihe con- not only to standard, but also to nonstandard singu-
trol design of linear singularly perturbed systems for larly perturbed systems.
many years, thé{., control design of nonlinear sin- This paper is organized as follows. In Section 2,
gularly perturbed systems remains as an open re-system descriptions and definition are presented. In
search area. This is due to, in general, nonlinear sin- Section 3, based on an LMI approach, we develop
gularly perturbed systems can not be decomposed intoa technique for designing a robukt,, fuzzy state-
slow and fast subsystems. feedback controller such that tifie-gain of the map-
Recently, a great amount of effort has been made onping from the exogenous input noise to the regulated
the design of fuzzyH,, for a class of nonlinear sys- output is less than a prescribed value for the system
tems which can be represented by a Takagi-Sugenodescribed in Section 2. The validity of this approach
(TS) fuzzy model; see (Nguang and Shi, 2001; Han is demonstrated by an example from a literature in
and Feng, 1998; B. S. Chen and He, 2001; K. Tanaka Section 4. Finally, conclusions are given in Section 5.

and Wang, 1996). Recent studies (Nguang and Shi,

2001; Han and Feng, 1998; B. S. Chen and He, 2001;
K. Tanaka and Wang, 1996; H. O. Wang and Giriffin,
1996) show that a fuzzy model can be used to approx-
imate global behaviors of a highly complex nonlinear
system. In this fuzzy model, local dynamics in differ-

2 SYSTEM DESCRIPTIONS AND
DEFINITIONS

ent state space regions are represented by local linear

systems. The overall model of the system is obtained
by “blending” of these linear models through nonlin-
ear fuzzy membership functions. Unlike conventional
modelling which uses a single model to describe the
global behavior of a system, fuzzy modelling is essen-
tially a multi-model approach in which simple sub-
models (linear models) are combined to describe the
global behavior of the system. Employing the existing
fuzzy results (Nguang and Shi, 2001; Han and Feng,
1998; B. S. Chen and He, 2001; K. Tanaka and Wang,
1996; H. O. Wang and Griffin, 1996) on the singularly
perturbed system, one ends up with a family of ill-
conditioned linear matrix inequalities resulting from
the interaction of slow and fast dynamic modes. In
general, ill-conditioned linear matrix inequalities are
very difficult to solve.

What we intend to do in this paper is to design
a robustH,, fuzzy state-feedback controller for a
class of uncertain nonlinear singularly perturbed sys-
tems with Markovian jumps. First, we approximate
this class of uncertain nonlinear singularly perturbed
systems with Markovian jumps by a Takagi-Sugeno
fuzzy model with Markovian jumps. Then based on
an LMI approach, we develop a technique for design-
ing a robustH,, fuzzy state-feedback controller such
that theL,-gain of the mapping from the exogenous
input noise to the regulated output is less than a pre-
scribed value. To alleviate the ill-conditioned linear
matrix inequalities resulting from the interaction of
slow and fast dynamic modes, these ill-conditioned
LMIs are decomposed inte-independent LMIs and
e-dependent LMIs. The-independent LMIs are not
ill-conditioned and the-dependent LMIs tend to zero
whene approaches to zero. #fis sufficiently small,
the original ill-conditioned LMIs are solvable if and
only if the e-independent LMIs are solvable. The

proposed approach does not involve the separation of
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The class of nonlinear uncertain singularly perturbed
system with Markovian jumps under consideration
is described by the following TS fuzzy model with
Markovian jumps:

Bei(t) = Y1, uav(t)x
[[As(n(®) + A& ()] (t)
+[B1, (n(t)) + ABy, (n()) o (2)
B2, (1(1)) + ABs, (n(H)u(t)]
2(t) = Y mlv(t)x
[C1,(n(®)) + ACy, (n(®) Ja(t)
D2, (n()) + ADia, (n(t))Ju(t)|
1)
whereE, = é EOI , € > 0 is the singular per-
turbation parametery(t) = [v1(¢) vy (t)] is

the premise variable that may depend on states in
many casesy;(v(t)) denote the normalized time-
varying fuzzy weighting functions for each rulé,
is the number of fuzzy setsp(t) € R" is the
state vector,u(t) € R™ is the input, w(t) €
P is the disturbance which belongs 1,0, c0),

€ R is the controlled output, the matrix
functions A, (5(t)), By, (n(t)), Bz, (n(t)), C1, (n(t)).
Dua,(n(t), AAi(n(t)), ABy,(n(t)),” ABa, (n(t),
AC1,(n(t)) and AD;s,(n(t)) are of appropriate di-
mensions. {n(t))} is a continuous-time discrete-
state Markov process taking values in a finite set

S = {1,2,---, s} with transition probability matrix
pr2 {P.x(t)} given by
Pi(t) = Pr(n(t+A)=kln(t) =1)
_ kA + O(A) if 2 £ k @
- 1+ XA +0(A) ifi=k
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whereA > 0, andlima__,q % = 0. Here),;, > 0 First, we consider the following{., fuzzy state-
is the transition rate from mode(system operating feedback which is inferred as the weighted average of
mode) to modé: (» # k), and the local models of the form:
Ay = — Ak 3 "
k:§¢1 u(t) = Z NjKj (Z)!L‘(t) (6)
j=1

For the convenience of notations, we let

wi(v(t)), n = n(t), and any matrixd (u, )
M(u,m = ). The matrix functionsAA;(n),
ABy,(n), ABs,(n), ACy,(n) and ADy, (1) repre- . .
sent the time-varying uncertainties in the system and Problem FormulationGiven a prescribe®(.., per-
satisfy the following assumption. formancey > 0, design a robust{., fuzzy state-
feedback controller of the form (6) such that the in-
equality (5) holds.

e 1>

Then, we describe the problem under our study as
follows.

Assumption 1

AA;(n) = F(z(t),n,t)Hi,(n), Before presenting our first main result, we recall

ABy(n) = F(a(t), n, ) Ha, (n), the following lemma.

ABy,(n) = F(x(t),n,t)Hs,(n), _ _

G 1) = P00, 0, o ool o o &
and ADso,(n) = F(x(t),n,t)Hs,(n), if there exist matrices”.(x) = PZ(2), positive con-

stantsd(z) and matricesY;(z), j = 1,2,--- ,r such

where Hy, (1), j = 1,2,---,5 areé known mafli-  ynat the followings-dependent linear matrix inequal-
ces which characterize the structure of the uncertain- itieRBDld:

ties. Furthermore, there exists a positive function
p(n) such that the following inequality holds:

Pe(@) > 0 O
|G (t),m,t)] < p(n). (4) Gae) < 0. i=1.2- @)
We recall the following definition. Uii(1,6) + Vi) < 0, i<j<r 9)
Definition 1 Supposey is a given positive number. A
system of the form (1) is said to have fhggain less where
than or equal toy if
Ty U,i(1,8) =
E LT ()2(t) — YT (H)w(t)} dt| <0, (5) YA
0 ®;j(2,€) ()" (x)" ()"
: R@B{ () —vR() ()" O
wherez(0) = 0 andE [-] stands for the mathematical Yii(s€) 0 —AR(2) ()7
expectation, for alll’y and allw(t) € £2[0, T%]. qul(z’g) 0 —P(1,e)

Note that for the symmetric block matrices, we use
(x) as an ellipsis for terms that are induced by sym- ®;;(1,¢) = A;(21) EZ ' P.(2) + B P.(1) AT (1)

e +B5,(1)Y;(2) + Y (1) BE, (1)
+ A BN P(2),
3 ROBUST H., FUZZY Yij(1,€) = C1, (1 E; ' P2 (2) + D2, (0)Y;(2),

STATE-FEEDBACK CONTROL R(v) =diag{6(s)I,1,6(1)1,1},

DESIGN Z(Z,g):(\/AﬂE;IPE(Z) o S EZTP(2)
This section provides the LMI-based solutions to /M)y ST PL(a) - )\stg_lps(l))7
the problem of designing a robust,, fuzzy state- . .
feedback controller that guarantees thegain ofthe ~ P(1,e) = diag{EE_ P.(1),--- ,EZ P(2— 1),
mapping from the exogenous input noise to the regu- ) )
lated output to be less than some prescribed value. EZ"P.(e+1),--- B PE(S)}7

93



ICINCO 2005 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

®;;(1)= Ai()P() + PT(1)AT (1) + Ba, (0)Y; (1)
+Y()BY (1) + A\ P(2),
Ti(2) = C1,(1)P(2) + Dia, ()Y;(2),

with
Bi()=[1 I I By()]

Cr, ()= [0 HE () VIR@)p()HE (1) R(Z) _ diag ()1, 1,601, 1}
0 Vet ] (0 = (VPO e PO)
Duo ()= [0 VERWo() HE (1) VA PO) - VAP(),
WWHL() VAR@DL 0] PO = diag{ P(1), - P~ 1),
$ Pl 1), P(s) },
N = (Hp ;;[nﬂz ), ||}) By - POEPTO

then the inequality (5) holds. Furthermore, a suitable i,

choice of the fuzzy controller is -
By()=[1 I I Buy() ]

= ; :quEj (Z)x(t) (10) éli ('L) = ['yp(z)HE (z) \@N(Z)p(Z)HZ (’L)
where 0 \/iN(z)ClTi(z)r
Ke; (1) = Y;(1)(P-(1) T Ee. (11)

Proof: The desired result can be carried out by a Di2,(2) = {0 V2R(1)p(2) H, (2)
similar technique used in (D. P. de Farias and Costa,

T
2000), (Nguang and Shi, 2003), and (Nguang and Shi, vp(2)Hj, (1) \@N(z)DlTQi (z)}
2001). Due to limited pages, the detail of the proof is
omitted for brevity. ]

Remark 1 The linear matrix inequalities given in LA ’
Lemma 1 becomes iII—conditiongd wherisg sulffi- R(@) = <I+92(Z)ZZ {HH;(Z)H% (2)})
ciently small, which is always the case for the sin- i=1j=1

gularly perturbed system. In general, these ill-
conditioned linear matrix inequalities are very diffi-
cult to solve. Thus, to alleviate these ill-conditioned
linear matrix inequalities, we have the following the-

then there exists a sufficiently smalt> 0 such that
the inequality (5) holds for € (0, £]. Furthermore, a
suitable choice of the fuzzy controller is

orem which does not depend on O B " 15
Now we are in the position to present our first re- Z“J (15)

sult.

Theorem 1 Consider the system (1). Given a pre- where

scribedH, performancey > 0, forv = 1,2,--- , s, K;() =Y;(0)(P(x)" " (16)

if there exist matricesP(z), positive constants(z) ] - .
and matricesy; (1), j = 1,2, - -, such that the fol- Proof: Due to limited pages, the detail of the proof

lowing e-independent linear matrix inequalities hold; 1S omitted for brevity. u
EP(1)+P()D > 0 (12)
Vi) < 0 i=1.2r (13 4y | USTRATIVE EXAMPLE
Uii(e) +P5(0) < 0, i<j<r (14)
where EP(1) = PT(1)E, P(1))D = DPT(1), E = Consider a modified series dc motor model based on
I 0 0 0 (Mehta and Chiasson, 1998) as shown in Fig. 1 which
0 0 /) D= 0o I/) is governed by the following difference equations:
Ui5(0) = JED = K, Lyi?(t) — (D + AD)a(t)
D;;(2) L O L O Ldj}ﬁ = —Ri(t) — KnLgi(t)a(t) + V(t)
RWB{ (1) —yR() (T (x)7 . )
Ti;(2) 0 —YR((2)  (x)T whereo(t) = w(t) — wrey(t) is the deviation of
ZT () 0 0 —P(2) the actual angular velocity from the desired angular
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velocity, 7(t) i(t) — iref(t) is the deviation of
the actual current from the desired curreWitt) = o M, ]
V(t) — Vyes(t) is the deviation of the actual input 1 N-m/A. Substituting the parameters into (18), we
voltage from the desired input voltagé,is the mo- get
ment of inertia kK, is the torque/back emf constant,

D is the viscous friction coefficient, anll,, Ry, L, {
and Ly are the armature resistance, the field wind- 0

The parameters for the system are givenkas=
10 Q, Ly = 0.005 H, D = 0.05 N-m/rad/s and<,,, =

1 (t) ]

e’:‘i‘g (t)

¢ ) ! ! _0.05 0'0051‘2(t) x (t)

ing resistance, the armature inductance and the field J(2) J(2) !
2 _ A —0.005x5(t) ~10 o (t)

winding inductance, respectively, wid = Ry + R, 0 0 0

andL 2 Ly + L,. Note that in a typical series- + [ 0.1 0 } w(t) + 1 } u(t)

connected dc motor, the conditidiy > L, holds. __0.05 0.005 zo(t) 21 (t

When one obtains a series-connected dc motor, we + [ AOJ(’) AJ(Z)O } [ xégtg }

havei(t) = i,(t) = is(¢). Now let us assume that

AJ| < 0.17 ) = | DO @O

|AJ] <0.1J. = o 1| a0 1

It la wherexz(t) = [z7(t) xgt)]T is the state variables,
+ o— KN AWV } w(t) = wi(t) wi(t)]” is the disturbance input,
L¢ Re u(t) is the controlled input and(t) is the controlled
N T output.
The control objective is to control the state variable
v back emf\j) zo(t) for the rangers(t) € [Ny N»]. For the sake of
¢ simplicity, we will use as few rules as possible. Note
- Dw that Fig. 2 shows the plot of the membership function
La Ra represented by
-0 /m /\/W M (:L' (t)) > —(EQ(t) +N2
1(Z2 7]\[2 _ N,
Figure 1: A modified series dc motor equivalent circuit. and My (s (t)) = m;\;t) _NN1~
P ~ ~ 2= 1
_Giving 21 (t) = w(t), xa(t) = u(t) andu(t) = Knowing thatz(t) € [N; Ny], the nonlinear system
V(t), (17) becomes
ai(t) | _ 1 M 4(x) M Ax)
85&2(1&)
K,,L
- (J+DAJ) TranTa(t) 1 (t)
— K Lyxs(t —R (1)
0
+ [ 1 ] u(t) (18) 0
P -3 0 3
wheree = L represents a small parasitic parameter. Ny X (1) Ny

Assume that, the system is aggregated into 3 modes

as shown in Table 1: Figure 2: Membership functions for the two fuzzy set.

EbleLiSystgm Terminology. (19) can be approximated by the following TS fuzzy

Mode: | Moment of Inertia] J(z) + AJ(2) model
(kg-m?)
T Small 0.0005£10% . -
E.z(t) = i [[A: AA; t
2 Normal 0.005+10% 2(t) ;H [[ @+ @l=(®)
3 Large 0.05+10%

The transition probability matrix that relates the

three operation modes is given as follows:

sz:

0.67 0.17 0.16
0.30 047 0.23
0.26 0.10 0.64

] |

+B1, ()w(t) + Ba, (u(®)], @(0) =0,

) = 3w + Do, (u(t)],

wherep; is the normalized time-varying fuzzy weighting

1 (1) },Es _

functions for each rule, = 1,2, z(t) = za(t)
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0 } AAL()
F(z(t),1,t)Hi,(2),

A1) = [ 000N, —10 } !
A=(1) = [ 000N 10 } :
A41(2) = { 000N, 10 } 7
A2(2) = [ 000N, 10 } !
A(3) = [ 000N 10 ] ’
A2(3) = [ 000N 10 ] ’
B =Bu0 = [ ¢y ¢ |
B () = B0 = | |
en=cui=| g 1.

0
and iz, (1) = Draa() = | | |.
with || F(z(t),1,t)|| < 1. Then we have
_0.05  0.05p
Hi(2) = [ 6(1) J(z()) 1 :|
_0.05 0.05
and Hy,(2) = [ 6(1) J(%N2 } |

In this simulation, we seled¥; = —3 andN, = 3.
Using the LMI optimization algorithm and Theorem 1
with e = 0.005, v = 1 andd(1) = 6(2) = 6(3) = 1,
we obtain the results given in Fig. 3 and Fig. 4.

Remark 2 Employing results given in (Nguang and
Shi, 2001; Han and Feng, 1998; B. S. Chen and He,
2001; K. Tanaka and Wang, 1996; H. O. Wang and
Griffin, 1996) and Matlab LMI solver (S. Boyd and
Balakrishnan, 1994), it is easy to realize that when
e < 0.005 for the state-feedback control design, LMIs
become ill-conditioned and Matlab LMI solver yields
an error message, “Rank Deficient”. However, the
state-feedback fuzzy controller proposed in this paper
guarantee that the inequality (5) holds for the sys-
tem (19). Fig. 3 shows the result of the changing
between modes during the simulation with the initial
mode at mode 1 and = 0.005. The disturbance in-
put signal,w(t), which was used during simulation
is with magnitude 0.1 and frequency 1 Hz. The ra-
tio of the regulated output energy to the disturbance
input noise energy obtained by using the, fuzzy
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controller is depicted in Fig. 4. The ratio of the regu-
lated output energy to the disturbance input noise en-
ergy tends to a constant value which is abown94.
Sovy = +/0.0094 = 0.0970 which is less than the
prescribed valud. Finally, Table 2 shows the perfor-
mance indexy, for different values of. O

5 CONCLUSION

This paper has investigated the problem of design-
ing a robustH,, fuzzy state-feedback controller for

a class of uncertainty Markovian jump nonlinear sin-
gularly perturbed systems that guaranteesthgain
from an exogenous input to a regulated output to be
less or equal to a prescribed value. First, we approx-
imate this class of uncertain Markovian jump non-
linear singularly perturbed systems by a class of un-
certain Takagi-Sugeno fuzzy models with Markov-
ian jumps. Then, based on an LMI approach, LMI-
based sufficient conditions for the uncertain Markov-
ian jump nonlinear singularly perturbed systems to
have anH, performance are derived. The proposed
approach does not involve the separation of states into
slow and fast ones and it can be applied not only to
standard, but also to nonstandard nonlinear singularly
perturbed systems. An illustrative example is used
to illustrate the effectiveness of the proposed design
techniques.

Table 2: The performance indexfor different values of.

The performance index
€ State-feedback control design
0.005 0.0970
0.10 0.4796
0.30 0.8660
0.40 0.9945
0.41 >1

Mode

15 2 25 3
Time (sec)

0 0.5 1

Figure 3: The result of the changing between modes during

the simulation with the initial mode at mode 1.
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Figure 4: The ratio of the regulated output energy to the dis-
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