Scalable Continuous Query System for Web Databases

Ather Saeed, Savitri Bevinakoppa

School of Computer Science and Information Technology, RMIT University,
Melbourne, Australia

Abstract. Continuous Queries (CQ) help users to retrieve results as soon as
they become available. The CQ keeps track of two important events. If thereis
any change in the source information, it immediately notifies the user about
that particular change. Secondly, it also keeps track of the timer-based events,
in case information is required after a fixed period of time. Existing techniques
such as OpenCQ[1] and NiagaraCQ[2] are inadequate to optimise Continuous
Queries. These techniques focus on defining the semantics for execution of CQ
and much less effort was spent to define the tradeoffs required for evaluating
the specific condition and generating a cost-effective query evaluation plan
(QEP). The optimising scheme used in [1],[2] for information retrieval is not
appropriate for an environment like the Internet. This paper aso provides a new
architecture and group optimisation strategy for the efficient retrieval of CQ on
the web.

1 Introduction

Continuous Queries (CQ) [1],[2],[3],[4] help users to obtain new results soon after an
update occurs in a system. Once a CQ istriggered, it will continuously run and moni-
tors a particular threshold value. Result will be sent whenever the desired value be-
comes true.

Successful CQ execution is a major chalenge in distributed environments because
of the unpredictable behaviour of nodes connected to a network. Failure of CQ will
schedule the same query over and over again, which is I/O and resource intensive. |f
an appropriate optimization strategy is not used latency would become extremely
high and it will slow down the information retrieval process on the Web.

NiagaraCQ [2] addresses group query optimization to some extent by providing a
comparison of pull-based and push-based approaches using signature matching and
query split scheme. Thisis not a cost-effective strategy to generate a highly efficient
global access plan necessary for CQ execution.

OpenCQ [1] address the problem of Continuous Queries and defines necessary
semantics for the sequential execution of each CQ.

OpenCQJ1] generates an execution plan for each CQ separately. If CQ fails, execu-
tion would be resource and 1/0 intensive especially in queries that involve large join
operations.

Saeed A. and Bevinakoppa S. (2004).

Scalable Continuous Query System for Web Databases.

In Proceedings of the 2nd International Workshop on Web Services: Modeling, Architecture and Infrastructure, pages 59-72
DOI: 10.5220/0002676500590072

Copyright © SciTePress

60

In this paper we address importance of web-based CQ in regards to the optimisation
problems with the existing Continuous Query systems [1],[2]. By performing
experiments, we also show that the scalability of a system is compromised when an
appropriate optimisation scheme is not used. This paper also provides analysis of the
two systems. OpenCQ[1] and NiagaraCQ[2] which highlights the limitations of the
existing optimization techniques used in both systems.

The remaining paper is organized as follows. Section 2 gives an overview of
problems with the existing Continuous Query systems. Section 3 describes our
proposed grouping technique. Section 4 describes the architecture of CQ system.
Section 5 describes cost parameters required for the cost analysis of a CQ-System.
Section 6 describes the experimental analysis. Section 7 describes related work.
Section 8 describes the conclusions and future work. Section 9 gives the Web CQ-
system overview. Finally section 10 contains references used in this paper.

2 Problemswith Existing CQ Systems

Continuous Queries are standing and long running queries that monitor a particular
update based on the specified condition. Thereforeit is hard to stop CQ in the middle,
particularly when the update frequency is very high. In highly dynamic environments
like the Internet, major challenge is to control trade-off between the specified
condition, such as the frequency of update and efficiency of the Query Evaluation
Plan (QEP).

The other challenge is to send the most accurate and up-to-date information in an
environment like the Internet, where source information is constantly changing and
the behaviour of node is highly unpredictable.

Therefore we need a new multi-query optimization approach that exploits the
commonalities among the sub-expression, present in queries, with a focus on
providing a shortest access path, which can be used for answering a particular query.
Itisonly possibleif the global access plan is used to answer queries.

The problem with NiagaraCQ [2] is that, its mgor focus was on routing a huge
amount of data using XML-QL and retrieving information from the XML type files
and data integrity was not the magor concern. We have observed through
experimentation that sometimes no result was retrieved at al but the cost for
generating a valid execution plan was also very high.

In NiagaraCQ [2], a query split scheme was used, which group queries by
matching signatures and consider it as a potential group, by ignoring the fact that it
might not be the potential solution or plan, which will further increase the cost of
scanning query evaluation plans. Beside that more appropriate strategy is required to
cache resultsin order to deal with the temporary materialized results.

Although OpenCQ[1] provides data integrity to some extent but it does not
provide a cost-effective solution to the problem of scalability because it sequentially
executes each CQ. Many researches such as [5],[6],[7] have shown that sequential
execution of queries is expensive compared to the global execution in many
circumstances. Especially when queries are routed to heterogeneous data sources with
large join expressions.

The major problem is to look at one fundamental question which is: How to deal
with the scalability issues in an environment like the Internet? Especially when the

61

query involves a large number of joins and triggered condition needed to check the
frequency of update isvery high?

The answer to the above question lies in the new scalable architecture that optimises a
group of Continuous Queries together with a view to exploit commonalities by
providing a cost-effective solution to the evaluation of monotone or redundant
queries which will be discussed in the next section.

3 TheProposed Grouping Technique

Existing techniques [1],[2] for optimising CQ are not adequate, which is clear from
the above discussion. The techniqueis not suitable dueto three reasons:

A group might not produce an optimal solution to the problem.

Unsuccessful execution of CQ will increase the latency rate of data retrieval on the
Internet due to which query evaluation cost would become extremely high.

Efficiency of query evaluation plan (gep) was not taken into account in order to get
cost-effective solution.

Our grouping strategy takes care of the above-mentioned problems by dynamic re-
grouping of CQ and generates a global access plan which is as follows:

A single query might have many plans; the role of an MQO optimiser isto find a
best plan with a minimum cost. For simplicity we will use the same notion mentioned
in many database research papers[5], [6], [7].

Suppose we have two plans, plan (A) is X ><Y ><Z and plan (B) is
Y B><zB><T, where > < represents ajoin operation.

MQO (Multiple Query Optimisation) is a two-step process. In first step the
optimiser will decompose queries into sub queries to find common sub expressions,
then executes the partial plans and materialize the results as shown in fig.3.2. In the
second step it explore the search space using some heuristic algorithm and starts
merging the best plans and generates a global plan that will minimize the cost of a
query evaluation. Our optimiser will filter the timer-based queries and store the
temporary query-id (qid) in cache memory for a certain period of time. Asjoins are
the most expensive operation on any database system. The main purpose of the query
decomposition scheme is to reduce the query evaluation time by efficiently retrieving
results from the primary storage then incrementally evaluate each query before
sending it to the user on the Internet. The Join trees of Plan (A) and Plan (B) using a
bottom-up approach is shown below on the next page.

In the fig.3.1, leaf nodes represent relation and inner nodes represent join
operators. The whole query tree is not shown in the figure, because major goal was
just to show that many queries usually use the same base relations and contains
common sub-expressions.

Previous researches in MQO [5],[6] have shown that left-deep trees are more
efficient to execute, but due to the sensitive nature of continuous queries, as soon as
the optimiser finds the best plan, it starts merging them together and store the
temporary query-id (Qid) in the main memory for a certain period of time instead of
keeping the whole result in the main memory. Materialized Result (Mres) can be
added or deleted from the cache and copied to hard disk. In this case additional disk

62

[/0O will be required. The aim is to reuse the same result for the next group when
required. Mres is also shown in result table fig.3.3 and Triggeri etc are triggers
defined on data soures.

AP
SN AN

Fig. 3.1. Right deep join trees of Query plans

3.1 Grouping Strategy

Our grouping strategy will partially execute each Plan as follows:

YZ zT

I !
NS

Fig. 3.2.. Partial results of Plan A and Plan B

Global access plan for the plan A and plan B is shown on the next page. YZ and ZT
are the partial result of Plan A and Plan B, which isa DAG (Directed Acyclic Graph).
For simplicity we are showing the joins only. Our model is not limited to executing
joins. Although it holds the projection for a certain period of time until a global
access plan is finalized and passed to the optimiser.

In order to make our idea more general, the whole query tree of Plan A and Plan B is
not shown. More details can be found in [5],[7],[9]. The select operations are pushed
down the query tree in order to reduce the search space for efficient join processing.

63

Our MQO algorithm is an extension of [5],[7],[9]. These algorithms are used for
normal SQL-type queries, whereas we are dealing with event-driven and timer-based
Continuous queries.

Beside that algorithms [5],[6],[7] were not designed for an environment like the
Internet. In order to define the Multi-Graph strategy used in our model, we will use
somewhat similar graph definition used in [5],[6]. The Main objectiveisto find a new
technique that shows how to store, where to store and how to access the materialized
nodes in case of CQ?

r==—=====7 I r==—====75 |
' Triggeri ' | Trigger !
! 1 ! 1
_____/::__J -__7:_____'
--=-=- !—--1| r___' _____
I | M | FileScan
TN SR :
R M T
| >< >< |
: / \ / \ V4
1 1
1 1
- [1z T
| ’ T |
1 ,’ 1
';::::::::::If """" B W W S !
Y i
! id res |
R
1 1
| 5 vz, :
['
b YZ Y z
1 n !
1 1
N 1
Result Table

Fig. 3.3. Global AccessPlan

3.2 1E-CQ Algorithm

Input: Multi-Query Graph G(V,E,L M), where V is vertex, E is edge, L is label of
vertex V., and ™, contains the materialized result in an intermediate file.

Decompose the queries into sub-queries, so that partial results of a query can be
temporarily stored. If the query has any of the three conditions:

64

If aquery shares common base relation

If query isidentical or similar

If query subsume another query (asin [6])
materialize the node and generate a new arc that represents an edge of a vertex V..
Generate an arc from ¥, to ¥, apply the merge (similar to [6]) operation as shown in
fig.3.2 and materialize the node.

Store “%4 and cache result into an intermediate file ™ Starts assembling the result
of queries in regards to there Cqid and send it to the CQ-Scheduler as shown in
fig.4.1. Continue the process for the next group and perform the process for “%,,4
number of queries.Compare new group of queries with previous group plan, if the™
can be shared. Always select plan with a minimum cost until no common expression
existsin agroup

3.3 Caching Technique

In our MQO, caching improves the performance of query evaluation plans by putting
the materialized results in the main memory.

For simplicity we are using LRU-K [8] type caching technique. Due to the ad-
vancement in technology, we assume that main memory is large enough to hold re-
sults of queries for certain period of time as shown in the fig. 3.2. After the execution
of a particular group, stored results and plans will be transferred to the disk in the
form of small delta file somewhat similar to NiagaraCQJ[2], which further involves
additional 1/0O cost.

Benefit is that the next group might share results from the previously materialized
nodes. This process will be continued for a certain period of time say from 24 to 36
hours. If new groups are getting benefit from the cached results and plans which are
materialized for a particular time then it can be used for other newly created groups.
Main objective is to reduce the number of hits to data sources as much as possible
and evaluate results incrementally.

4 Web CQ System Architecture

Details about each component in the Continuous Query system is described as fol-
lows and is shown in fig.4:

4.1 CQ-Scheduler

The Continuous Queries are content sensitive and event driven {same term is used by
Ling Liu}in [1], therefore the global plan created by the plan merger cannot be
discarded because of the specified triggered condition. We are assuming that there is
enough memory to hold the materialised results at least for one hour, if the query
needs a time greater than one hour it can be written to disk and will be activated,

65

which will incur additional 1/0 cost. It schedules each query when the triggered
condition becomes true.

4.2 Time Extractor

It will assign a unique ID to each query by extracting the time, before sending it to
the global optimizer, which will be reassembled again before sending the result of a
query to user.

4.3 CP- Analyzer

The Common Part analyser (CP-Analyser) is the most important part of the query
optimiser that analyse all queries present in a particular group and exploits the
commonalities with a view that result of a common sub-expression can be used for
answering other queries. The % will be cached and partial results of a query will be
stored in aresult table for certain time as shown in fig.3.2.

4.4 Cost Estimator

The main purpose of this module is to estimate the cost of generating a valid CQ
execution plan (QEP) before sending to the data source. A valid plan is necessary to
achieve scalability. we have already discussed above that if the query evaluation Plan
is not valid then efficiency of the system will be compromised, which ultimately
resultsin high latency.

4.5 Incremental Evaluator

The role of this particular module is to incrementally evaluate each query in order to
avoid repetitive computation and has similarities with the techniques discussed in
OpenCQ[1] and NiagaraCQ[2].

4.6 CQ-Client Interface

This section provides an interface, where user will be able to add or delete the
Continuous Queries. This module will work as a front-end to Web CQ-System. It also
assist usersin writing XML and XSQL type queries.

4.7 Data Handler

The role of a Data handler module is to analyse the type of data request coming from
a source on the Internet, whether it is a text file, XML type files or database systems,
it retrieves the information and sends result in arequired format to the user.

66

Continuous Queries

CQ-Client GUI

CQ-Scheduler

Event Han-

Time Extractor

\4

CO -Parsaer

\%

CP-Analyzer

\Z

MQO Optimizer

Plan Evaluator

!

DataHandler

Table 1. Cost Parameters

Parameters Values
Network bandwidth 100 (mbps)
QEP evaluation time Milli (secs)
Update frequency of node Dynamic
Number of tuples 100-5000

R,ST ae XML, RDBMS
and text files

400 rows in each data
soruce.

AR, AS, AT

deltafilefor R,S,T

Cost of global access plan.

Cost of evaluating each CQ

Total number of queries

200-2000

-
j, cgand C

Details section-6

Fig. 4. Web CQ-System Architecture

5 Cost Parameters

Ar | ASand Al gre the update, insert or delete event on arelation R. In our experi-
mental analysis, we are separately storing the three possible events that can occur on
a database system, which is not done in [1][2]. The benefit is less chances of getting
errors, while sending final results to the CQ-scheduler. Keeping the whole snapshot
of delta files [2], is not a cost-effective strategy. It is better to keep the delta file as

small as possible.

The benefit of using IE-CQ algorithm is that, it can decompose a single query into
multiple queries. Finally by using some graph traversal strategy like depth-first search
somewhat similar to [6], we can prune the redundant nodes in a graph. Cost
parameters are shown in the Table. 1.

67

5.1 CQ Cost Estimation

Join based decomposition of CQ has similarity with the selection base decomposition.
|E-CQ decomposes and assembles the results of “?, queries using very similar cost
estimation scheme as mentioned in [5],[9],[10] for evaluating group of queries.

CQ]_: Rl >< Rz > R3 > R4
EQ2= zres (EQ1)><‘ r;s
%= res (QZ) >

CQn—l = Mres (CQn—Z) > Rn

Q= 7(0 Mes (1)) - @)

If the Qs of type [77 (0 (I> < (RELATIONS)] then materialized result (Vo) of aquery
can be assembled as shown in equation (1). The above query evaluation as shown in
(1) has similarity with [5], [6], [7], [9] and [10], but these schemes were never used in
the context of CQ. In case of subsumption, if “, is strongly related to “?1 ten “nt
can be used to answer “%, or it contains a partial answer to query <.

Final result of a“? can be retrieved by scanning Ar with regards to the change in
data source. In our model we are assuming that queries share a large number of com-
mon sub-expressions and that partial results of a query can be assembled using join
based decomposition strategies as mentioned above, which is very similar to the strat-
egy mentioned in [5], [6], [10].

We also assume that some queries might be answered by simply intersecting some
previously stored intermediate results or could be obtained from the union of some
previously stored results.

Our model provides a new approach to optimize Continuous Queries by generat-
ing a global access plan instead of blindly generating a plan by matching signature
and consider it as a potential group such asin [2]. The major problem would be that;
delta files will become bigger due to unnecessary information, which was not re-
quired to answer a particular query. In the worst case it might not be a potential solu-
tion to a particular group.

The cost of CQ is sum of five components; which can be obtained by dightly
modifying the cost formula as mentioned in [5], [10].

Cost of scanning Relation: R“?

Cost of materializing nodes: M e <9

Cost of scanning materialized nodes; M9
Cost of re-scanning data source: A

Cost of retrieving results of “9: ¥

Where A istheratio of update frequency with regards to the change in data sources,

68

As the group part of a query is executed only once, therefore global plan can be ob-
tained asfollows:

m k ©)
(MQO) — P (CQ) + G (CQ).
Cost = Z gep i Z gep i
=) =

Where Pqep is the partial query evaluation plans which is individually evaluated and

qup is the group QEP, which is evaluated only oncein an
integrated way when the triggered condition becomes true.

6 Experimental Analysis

The experimental analysis of the technique for group optimization strategy mentioned
in section 3 will be discussed in the following section:

The experiments are performed using Pentium 1V 2400 MHz machines with 1GB
RAM, 40GB Hard disk and running Windows 2000/ XP/ NT.

The initial prototype of a system was designed in J2ee and Java XSQL Servlet
API for the server side scripting such as CGlI related tasks. Oracle 9i and MS SQL
Server 2000 were used as database servers for retrieving and storing XML, text and
SQL type data.

The types of Continuous Queries performed on Oracle 9i and MS SQL-Server
2000 data sources are described below.

Type-1: Notify me when Passenger No:2 and Passenger No:15 arrive at termi

nal 10.
This type of query is important in tracking a passenger if the message for them is of
high importance.

Type-2: Notify me when plane B707 takes-off from the USA and arrivesin

Canada.
This type of query needs a partial execution between a two specific time interval such
as departure and arrival. Arrival might be after 10 hours in Canada. Therefore partial
plan of a query will be saved in an intermediate file and sent to CQ-Scheduler as
shown in the fig.4.1 Finally after the arrival whole plan will be executed.

Type-3: Notify me every 10 minutes about the current position of the plane
B707.

This type of query will be scheduled after every 10 minutes and notify about
the current position of plane, which is atimer-base query.

69

6.1 CQ Installation Semantics

Our semantics for the execution of CQ are very similar to [1], [2] only the optimiza-
tion approach is different as discussed above:

CQ-Install: Airline-DB SQL-query
Query: SELECT <attr> FROM <source>
WHERE <join-condition-evaluations>

Trigger: <specified-conditions>

Stop: <minutess><dailys<monthly>

The XSQL type query format the results in XML before sending it to the CQ-
Scheduler as:

CQ-Install: XSQL-Query for xml DTD
<?xml version=1.0?><xsqgl:query
xmlns:xsgl=urn:oracle-xsqgl>
SELECT <attr> FROM <XML-Schema>
WHERE<join-condition-evaluations>

Trigger: <specified-conditions>

Stop: <minutes><daily><monthlys>

Changes to the data sources are made artificialy in order to simulate the results of a
query. Simulation results are shown in fig.6.1 and fig.6.2 graphs.

The purpose of simulation was to observe the behavior of grouping technique in
regards to the sequential execution of Continuous queries, when it involves large join
operations.

The graphs are based on results obtained from web CQ-System by applying type—
1, type-2 and type-3 querles Infig.6.1 following parameters are considered: ch =Tc=
200 and M i < 10, where cq are the triggered CQ and "c are changed base triggers
which are f|red in case of any change occurred in the data source. " is the total num-
ber of joins operation permitted. In figGl and fig.6.2 the only parameter that is
changed was the join parameter such as ™ i >10 and the curve obtained was almost a
straight line. One can easily observe that curve obtained was highly skewed in case of
traditional non-grouped approach, which shows that our grouped approach for global
evaluation of CQ is outperforming the existing ones mainly due to the following three
reasons. 1) The global optimization approach that incrementally evaluate each query
before sending to the user. 2) It takes care of operations, which involve large number
of joins. 3) Our system also provides data integrity, which was not the major concern
in[2].

LRU-K [8] type caching algorithm was used to store and transfer results to the
secondary storage after a certain period of time. Discussion about LRU-K techniques
for caching is beyond the scope of this paper and cannot be explained due to space
limitation.

70

200 o Group
] a— NonGroup

Time (s)

Execution Time (s)
N
o
o

-
) ¢ Group I\ NonGroup
Queries

Fig. 6.1. Group and Non-grouped CQ Fig. 6.2. Group and Non-grouped CQ

7 Related Work

A huge amount of research has already been done in the area of Continuous Queries.
OpenCQ [1], provides semantics necessary for the execution of CQ in the form of
triplet (Query, Trigger-Condition, Stop-condition), which also provides an optimiza-
tion strategy for the sequential evaluation of CQ.

NiagaraCQ [2], provides a group optimization strategy using query split scheme, in
which they match the signature and put it in a group. It also provides an incremental
evaluation strategy so that repetitive computation of queries can be avoided.

D.Terry [3], had first provided the notion of Continuous Queries on Append-only

databases, which restricts the evaluation of CQ only to append-only and also provides
strategy to incrementally evaluate each query in order to get the most up-to-date re-
sult and avoids repetitive computation.
Simiarly goal of TriggerMan [11] system was also to create scalable triggers that
identify unique experission signature and group predicate using trigger condition. The
approach was very similar to the rules used in Active database systems using ECA
(Event-Condition-Action) typerules.

Our research is different from above-mentioned work, because its main focus is on
scalability problem and the efficient retrieval of information on the Internet from
various data sources such as text, XML and database systems by providing high accu-
racy and data integrity.

Globa optimization of queries is also one of the most active areas of research.
[5].[6].[7], it provides an optimization strategy by exploiting similarities among the
common sub-expressions present in a query and generates a global access plan by
merging them together and showed that global optimization can significantly improve
the performance as compared to the individual query execution plan.

We have some similarity in regards to the above-mentioned approaches but our
proposed group optimisation strategy is different from the approaches for group op-
timisation discussed in [2],[5],[6],[7],[10] due to the following two aspects: 1) None

71

of them were on Continuous Queries, which are highly sensitive. 2) None of them
were aimed for an environment like the Internet.

The mgjor goa of this paper is to show some experimental analysis that can pro-
vide valid arguments on problems with the existing optimization techniques. It also
shows the need for a new architecture that can solve the scalability and adaptability
problems on the Internet.

8 Conclusions and Future Work

Our proposed model has significantly improved the scalability problem, which has
not been addressed in the existing Continuous Query systems due to the following
two reasons:

The global optimization approach, to minimize the cost of evaluating queries that
involve large join operations.

A controlled trade-off mechanism that checks the specified condition and use the
shortest access path that existsin the globa query evaluation plan to evaluate query.
Our future work involves the optimization of CQ using Evolutionary approach, so it
can support 1000’ s and millions of Continuous Queries efficiently.

The current CQ-System prototype is at preliminary stage and also needs some
improvements in the design of the Client Interface. Time and event algebrais also not
inculded in this paper on which we are currently working.

9 Web CQ-System Overview

The output from Web-based CQ-System written in Java, J2ee, XSQL Servlet
using XML schema APl and the Client-interface is shown above: A client can re-
trieve information using Web CQ-System Client interface. Triggers and timer can be
added by clicking on the buttons shown in the fig.9. Actual processing strategy is also
shown in the fig.9. Current simulation deals with four types of data sources such as:
Oracle 9i, MS SQL-Server 2000, XML and text. As soon as the query passes through
the web server, it is passed to the MQO optimizer for further processing, details about
the grouping strategy is aready discussed above. XSQL servlet formats the data in
XML, XHTML etc before sending it to CQ-Scheduler, which then send result of
queriesto various clients on the Internet. Oracle XSQL template also enables to write
dynamic XML data pages by traslating schemainto required DTD. CQ-Scheduler can
communicate directly with the group optimizer as well as with J2ee-Server depending
on needs of the client. Triggers can dynamically added or deleted by clicking on
appropriate button as shown in fig.9 on the next page.

References

1. Ling Liu, Cdton Pu, W.,Tang,.: Continuous Queries for Internet Scale Event-Driven
Information Delivery. IEEE Transactions on Knowledge and Data Engineering. Vol.

72

11 (1999) 610-628
2. J.Chen, David, J. ,D.,DeWitt, F.,Tian, Y., Wang.: NigaraCQ: A Scalable Continuous
Query System for Internet Databases. Proceedings of the ACM SIGMOD International
Conference on Management of Data. Dallas, TX, New York (2000) 379-390
3. Douglas Terry, David Goldberg, David Nichols, Brian Oki.: Continuous Queries Over
Append-Only Databases. Proceedings of the 1992 ACM SIGMOD International
Conference on Management of data, San Diego, CaliforniaVoal. 21. (1992) 321-330
4.LingLiu, Pu, C.,Barga, R.., T., Zhou, Differential Evaluation of Continuous Queries.
Proceedings of the 16th International Conference on Distributed Computing Systems
(ICDCS), ACM, New York (1996) 458 —465
5. Martin.,L.,.Keresten, M.F.N., Boer,.: Query Optimization Strategies for Browsing
Sessions. Proceedings of 10th International Conference on Data Engineering, Houston
Texas, USA (1994)
6. T.K.,.Sellis.: Multiple Query Optimization. ACM Transaction on Database Systems,
Vol..13. (1988) 23-52
7. Fa.,Chung, Fred Chen, M.H.,Dunham.: Common Subexpression processing in
Multiple-query Processing. |EEE Transaction on Knowledge and Data Engineering,
Vol. 10. (1998) 493-499
8. Elizabeth J.O'Neil, P.E.O.,Ne€il, G.,Weikum.: The LRU-K Page Replacement
Algorithm for Database disk buffering. Proceedings of the ACM Sigmod International
Conference on Management of Data, Washington D.C., USA, (1993)
297-306
9. P.,Roy, S.,Sudarshan, S.,Bhobe.: Efficient and Extensible Algorithm for Multi-
Query Optimization. ACM SIGMOD Conference on Management of Data, TX,
USA (2000) 249-260
10. On Multi-Query Optimization - Choenni, Kersten,, v., Den, Akker, Saad,
Wiskunde en Informatica, REPORTRAPPORT J.F.P. van den Box 94079, 1090
GB Amsterdam, The Netherlands, Department of Computer Science, Alexandria
www.cwi.nl/ftp/CWIreports/ AA/CS- (1996) R9638.ps.Z
11. Hanson, E. N., Carnes, C., Huang, L., Konyala, M., Noronha, L., Parasarathy, S.,
Park, J.,, & Vernon, A.,: Scalable Trigger Processing. Proceedings of Interna-

tional Conference on Data Engineering, IEEE Computer Society, Los Alamitos,
CA, March (1999) 266-275

Web data sources

& anrline Reservation System (Local Client) N o [53

Flight Mo

[Bro7 "

. Oracle 9i/

assenger No X L

Reservation Mo, — SQLServert - —
I I
G0 Results: | .)_(ML'_SQ _L. .
B707,USA Australia, 2004-01-01 10:00:00,2004-02-01 15:00:00,2,4 =]

B707,UK,USA,2004-01-01 10:00:00,2004-02-01 01;00:00,3,4 Web 4—Pp XML/XSLT
B707,ChinaAnstralia, 2004-01-01 10:00:00,2004-02-01 14:00:00,1 4

B707 Melbourne, Thialand, 2004-01-01 10:00:00,2004-03-01 11:00:00,5,4 Server ~ XDRDTD " —
B707,USAAlabarna, 2004-01-01 10:00:00,2004-04-01 11:00:00,2,4

‘ A ¢
3earch F\lgm{ﬁearch 52314 Book Seat | AddTr\ggerl AddTimer | SE\EC!F’DI’H' DataType |

4

] Select Command Prompt - java s =10 x|
CQServer is ready for scheduling gueries ! MQO
| | Ontimizer

Fig. 9. Web CQ-System Overview JEEServ

