
IMPLEMENTING MULTIPLE CHANNELS OVER SSL

Yong Song, Victor C.M. Leung, Konstantin Beznosov
Department of Electrical and Computer Engineering,University of British Columbia, Vancouver,Canada

Keywords: Communication security, Mobile security, Multiple channels, SSL

Abstract: Multiple-Channel SSL (MC-SSL) is our model and protocol for the security of client-server
communication. In contrast to SSL, MC-SSL can securely provide applications with multiple channels, and
each of them can have a specific cipher suite and a various number of application proxies; meanwhile, the
channel negotiation and operation in MC-SSL are still based on SSL, which needs a small change in order
to support multiple cipher suites. In this paper, we first introduce the multiple-channel model of MC-SSL,
and then focus on the design and implementation of multiple channels over SSL, especially multi-hop proxy
channels and secondary channels.

1 INTRODUCTION

To address several limitations of TLS/SSL (Dierks,
1999) (referred as SSL in this paper), we have
proposed multiple-channel SSL (MC-SSL) (Song,
2004). Based on vanilla SSL, MC-SSL has several
advantages over it. First, MC-SSL supports a various
number of application proxies (or gateways)
between a client and a server. Second, MC-SSL
supports multiple cipher suites in a single connection
so that client and server can negotiate multiple
cipher suites for different data or contents. Third,
new factors such as security policies, device
capabilities, and security attributes of data are taken
into account in the security model of MC-SSL. As a
result, the multiple-channel nature of MC-SSL
enables MC-SSL to flexibly meet diverse security
requirements from different terminals, servers,
applications, and users. In particular, MC-SSL can
help resource-constrained devices such as PDAs and
cellular phones because they may need application
proxies for proxy services such as content
transformation or virus scanning, and also they can
save battery power and CPU time by using multiple
cipher suites.

MC-SSL supports two types of channels
between a client and a server: end-to-end and proxy
channels. The proxy channel protocol is described
(Song, 2004). This paper reports on the next step in
this work, design and implementation of multiple
cipher suites as well as an extension of single-hop
proxy channels to multi-hop proxy channels. The

prototype implementation demonstrates that the
design of MC-SSL protocol is feasible.

The rest of this paper is organized as follows.
Section 2 analyses the functional limitations of SSL
that motivated this work. Section 3 describes MC-
SSL. Section 4 discusses related work. Section 5
focuses on the design and implementation of MC-
SSL protocol. Section 6 concludes the paper.

2 PROBLEM MOTIVATION

SSL is a de facto security protocol at transport layer,
but it has some functional limitations. First, while
SSL can provide a secure point-to-point connection,
it does not securely support application proxies. If a
proxy P is involved between a client C and a server
S, C would normally set up an SSL connection with
P, and then P would act as the delegate of C and set
up another SSL connection with S. The purpose of
proxies could be virus scanning, content
transformation, or compression. An example of such
an SSL chain proxy model is the WAP gateway
architecture, in which the connection between C and
P is over WTLS, a variant of TLS protocol. The SSL
chain proxy model is shown in the lower part of
Figure 1, in which there is a various number of
proxies from P1 to Pn. Since any proxy in the chain
can read and modify sensitive data at will, this
model assume unconditional trust in all proxies at
least from one side of the connection. This can be
satisfied only if all proxies are administrated by the
organization or individual that also administrates C

246
Song Y., C. M. Leung V. and Beznosov K. (2004).
IMPLEMENTING MULTIPLE CHANNELS OVER SSL.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 246-253
DOI: 10.5220/0001406302460253
Copyright c© SciTePress

(or S). In other cases, C (or S) has to take risks of
information leakage and tampering unless the
exchanged information is non-sensitive.

C S

C S
SSL SSL

SSL

P1 Pn

SSL

Figure 1: SSL end-to-end model and chain proxy model

The second limitation of SSL is that it can
employ only one cipher suite in a connection.
Although SSL allows re-negotiating the cipher suite
of a connection, frequent re-negotiations are
inefficient because of the message interaction and
certificate verification in the handshake protocol.
Besides, SSL only provides a duplex channel in
which the ciphers suites in both directions must be
the same at any time. If requests and responses need
different protection, then a client and a server have
to change cipher suite in every round, which is
inefficient for most applications. Accordingly, lots
of data is overly protected. For instance, a handheld
user checks email all day. She wants encryption for
the id/password of her email account when sending
requests but she does not require extra
confidentiality for her emails. It is good enough for
the user to have reasonable level of confidentiality
protection for the id/password, but no encryption for
email contents. This way, the battery power is
preserved. To summarize, the requirement for
communication security does not entail the strongest
cipher; moreover, security is tightly related to other
requirements. The SSL’s support for one cipher suite
at a time combined with the relatively high cost of
changing suites just in time makes it difficult for
applications to optimize the strength of data
protection according to the changes in the sensitivity
of the data in the channel.

In addition, to allow S to take various factors
into account and optimize the combination of
different channels, C may want to send S its
terminal capabilities and security policy. For
example, C may define whether proxies are allowed
to process data with sensitivity below a certain level,
and what cipher suites are strong enough to protect
data with a certain level of sensitivity. Lack of
negotiation support for proxies and multiple cipher
suites is the third limitation of SSL. These functional
limitations form a mismatch gap between the
capabilities of SSL and the requirements of the
applications with performance, power, and other

constrains. When mobile applications become more
popular, the gap will become more apparent. The
intent of MC-SSL design is to narrow this gap.

3 HIGH LEVEL DESCRIPTION OF
MC-SSL

Three key features of MC-SSL help us to address the
above limitations of SSL. Going in reverse order,
MC-SSL supports channel negotiation according to
the parties’ security policies, device capabilities, and
security attributes of data. To address second
limitation (only one cipher suite at a time and for
both directions), MC-SSL supports multiple cipher
suites and simplex channels with a specified traffic
direction. To address the first limitation (the
dilemma between unconditionally trusted proxies
and no proxy at all), we introduce proxy channels to
support partially trusted proxies.

In SSL, a channel is associated with a cipher
suite, which consists of a key exchange algorithm, a
cipher, and a hash algorithm, e.g., {RSA,
3DES_EDE_CBC/168, SHA-1}. The hash algorithm
is used to compute Message Authentication Code
(MAC). In MC-SSL, a cipher suite consists of only
two elements: a cipher for data encryption and
decryption, and a hash algorithm for MAC. We can
define it as a structure as follows:

{cipher and key size, hash algorithm for MAC} (1)

A MC-SSL connection can have multiple cipher
suites. We can characterize a point-to-point
connection as follows: {point 1, point 2, key
exchange algorithm, {cipher suite 1, cipher suite 2,
…}}, where each cipher suite forms a channel. Note
that the key exchange algorithm no longer belongs
to a cipher suite, but become an attribute of a
connection. Every MC-SSL connection must first
negotiate a cipher suite strong enough to form the
primary channel, the backbone for setting up and
controlling other channels in the same connection. A
primary channel is the first channel in a connection,
and it is established using the unchanged SSL
protocol. Other channels in an MC-SSL connection
are referred as secondary. They are new channels
added to an SSL connection so as to support
multiple cipher suites per connection. The sample
connection shown in Figure 2 can be characterized
as {A, B, RSA, {CS1, CS2, CS3, CS4}}, where
RSA is the key exchange algorithm, and CS1
through CS4 are cipher suites for channels 1 to 4.
Among them, channel 1 is the primary channel. The
protocol to support multiple cipher suites is

IMPLEMENTING MULTIPLE CHANNELS OVER SSL

247

described and discussed in Section 5.2. Secondary
channels are further divided into end-to-end and
proxy ones.

A B1

4
3

2

Figure 2: Multiple cipher suites inside a connection

C S

P1 Pn

Figure 3: Proxy channel model of MC-SSL

C S1

P15
4 4

5

2

3

Pn4
5

Figure 4: Multiple-channel model of MC-SSL

Figure 3 shows the proxy model of MC-SSL, in
which point-to-point SSL connections collectively
form a shape of arc. C-S is an end-to-end channel,
and C-P1- … -Pn-S is a proxy channel. In this model,
C-P1- … -Pn-S is no longer an independent chain
proxy channel, as in Figure 1. Instead, it relies on the
C-S channel to do channel negotiation and
application data transportation. Besides, C or S can
deliberately choose one of the two channels to
transport data according to the protection
requirements of data so that sensitive information,
such as passwords and credit card numbers, do not
have to be disclosed to a third-party proxy. An MC-
SSL session can have zero or more proxy channels.
Each of them and the corresponding end-to-end
channel follow the proxy model illustrated in Figure
3. The protocol to negotiate a single-hop proxy

channel has been described in (Song, 2004). Section
5.1.2 of this paper discusses the multi-hop proxy
channel protocol.

A combination of the proxy model and the
multiple cipher suites is illustrated in Figure 4. In
MC-SSL, a channel is defined as a communication
“pipe” with or without intermediate application
proxies. Two MC-SSL endpoints communicate with
each other through the pipe using a cipher suite. In
addition, a channel can be either duplex, or simplex
with a flow direction. An MC-SSL channel is
characterized by the following set of attributes:

channel ≡ {ID, E1, E2, CS, {P1, P2, …, Pn}, D} (2)

ID is the identifier of a channel in an MC-SSL
session context. E1 and E2 are either DNS names or
IP addresses of the corresponding endpoints. Cipher
suite, CS, is defined by expression (1). A proxy (Pi)
is identified by its DNS name or IP address. A
channel can have zero or more proxies. If a channel
has no proxies, then it is an end-to-end channel.
Direction, D, indicates whether a channel is a duplex
channel, or a simplex channel pointing to one of the
two endpoints. The sample MC-SSL session in
Figure 4 has five channels. Among them, channel 1
and 4 are primary channels, and others are secondary
channels. Channel 2, 3, and 4 are negotiated through
channel 1, and channel 5 is negotiated through
channel 4. In addition, only channel 1 is a duplex
channel for application data; others are simplex
channels from S to C. For the client application, C
uses channel 1 to send encrypted requests to S, and S
may choose one of the five channels to send back
responses.

4 RELATED WORK

To avoid information leakage in the case of SSL
proxy chain, one approach is to use encryption-
based tunnelling to make data unreadable to a proxy.
For instance, Kwon et al. (Kwon, 2001) require C to
encrypt data twice: first for S using KS, and then for
a proxy using KP. Consequently, the proxy cannot
perform functions such as content transformation
and/or scanning. Another approach is to
simultaneously have an end-to-end SSL connection
and an SSL chain between C and S, both shown in
Figure 1. To provide confidentiality, sensitive data is
sent through the end-to-end connection. This is a
typical approach, employed, for instance, by
(Kennedy, 2000), but it is insecure because proxies
impersonate C to interact with S. Most servers today
still authenticate their clients using id/password. If a
proxy keeps a client’s id/password, then it can

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

248

impersonate C in unconstrained fashion. There are a
number of solutions for C to avoid exposing
id/password, such as sharing the master key or the
symmetric session keys with proxies, or helping a
proxy sign the verification data. However, a proxy
can still impersonate C during a particular session
and conduct person-in-the-middle attacks. MC-SSL
is securer than this approach simply because every
proxy is authenticated with its genuine identity;
therefore, there is no impersonation in MC-SSL.

Portmann and Seneviratne proposed a simple
extension to SSL to get an extra cleartext channel in
an SSL connection (Portmann, 2001). However, the
security strength of this method is questionable
because the cleartext channel is granted without
negotiation and operated without control. Moreover,
this method is not capable of creating other types of
channels.

Finally, we would like to compare MC-SSL with
XML security solutions including XML Security
(W3C, 2002) and Web Services Security (WSS)
(IBM, 2002; OASIS, 2003). XML Security is a set
of core specifications that define XML syntaxes to
represent encryption, hash, and digital signature.
WSS is a framework that unites a number of existing
and emerging specifications for the purpose of
constructing comprehensive security solutions for
XML-based Web services. WSS uses XML Security
as a building block. Compared with XML Security
and Web Services Security, MC-SSL is a complete
and compact protocol under application layer and is
able to provide authentication, key exchange, and
secure data transportation for client-server
applications with or without proxies. On the other
hand, both XML Security and WSS are not self-
contained protocols, and they do not attempt to
specify a fixed security protocol for authentication
and key exchange so that they can have the
extensibility and flexibilities to integrate existing or
new security technologies at different layers. As
with SSL, MC-SSL can be combined with XML
Security, or adopted by WSS for securing Web
Services. For example, by combining XML Security
with MC-SSL, an application can use MC-SSL to do
authentication and key exchange for client, server,
and proxies, and use XML Security to perform
complex encryptions and/or digital signatures on
application data. Similarly to SSL, MC-SSL appears
to be a more efficient solution than WSS/XML
Security for those applications that require bulk
protection of data because it avoids key
negotiation/generation for each individual message.

5 DESIGN AND
IMPLEMENTATION

A channel of MC-SSL can be categorised according
to different criteria. It could be a proxy channel if
there is at least one proxy in the channel; otherwise,
it is an end-to-end channel. In comparison, the
concept of a primary channel and a secondary
channel is not as obvious as the previous criterion.
As mentioned earlier in Section 3, a primary channel
is the first channel in a connection, and it is the basis
for secure negotiation and control of secondary
channels in the same connection. Besides, a primary
channel is actually the channel negotiated by the
unchanged SSL protocol. The purpose of secondary
channels is to provide multiple cipher suites;
therefore, if an application does not need multiple
cipher suites but need proxy support of MC-SSL, the
implementation of MC-SSL can keep SSL libraries
intact (Song, 2004).

In this section, we first discuss the protocol for
primary channels in Section 5.1, and then discuss the
protocol for secondary channels in Section 5.2. This
is also the natural order in an MC-SSL session
because secondary channels are “dependents” of
primary channels. Due to the space limitation, we
omit the description of the simple parts of the
protocol, such as the removal of a channel or the
modification of channel parameters.

5.1 Primary Channels

Primary channels can be classified into two types of
channels: end-to-end and proxy. In an MC-SSL
session, there is only one primary end-to-end
channel, which is illustrated as channel 1 in Figure
4; on the other hand, there could be a various
number of primary proxy channels. Figure 4 only
shows one such channel, that is, channel 4.

5.1.1 Primary End-to-end Channel and Primary
Single-hop Proxy Channel

We have described the protocol to negotiate and
make use of the primary end-to-end channel and
primary single-hop proxy channels (Song, 2004).
The protocol was referred as MC-SSL proxy
protocol because the negotiation of the primary end-
to-end channel is simply achieved by the re-use of
vanilla SSL. In the next section, we extend a primary
single-hop proxy channel to a primary multi-hop
proxy channel.

IMPLEMENTING MULTIPLE CHANNELS OVER SSL

249

5.1.2 Primary Multi-hop Proxy Channel

A single-hop proxy channel is obviously simpler
than a multi-hop one. This is why we always try to
combine multiple proxies into one proxy by forming
a proxy “cluster” that has a “cluster head” to act as
the representative. However, we kept the multi-hop
proxy capability of MC-SSL in because multi-hop
proxy channel might be necessary due to
administrative or security reasons. Also, a multi-hop
proxy channel is more general than a single-hop one,
and thus makes the model of MC-SSL more
complete and versatile.

First, we consider the simplest way to extend the
protocol for a single-hop proxy channel (Song,
2004), that is, to iteratively reuse the message
interaction between a proxy and a server for the
interaction between any two neighbouring proxies
shown in Figure 3. There are still some small
changes to all the request messages. They are
extended to carry information of multiple proxies. In
the stage of C-S handshake, C and S need to
exchange the information about IP addresses (or
DNS names), listening TCP ports, and even
certificates (or their URLs) of all proxies. Likewise,
the request message in the C-P1 handshake is also
extended to contain information of multiple proxies.
After the C-P1 handshake is done, P1 connects to P2
as the P-S handshake in the single-hop proxy
channel protocol does. This process continues
iteratively until the last proxy (Pn in Figure 3)
connects to S.

After the handshake process is finished, every
entity in Figure 3 has authenticated its two
neighbours if we topologically look at the structure
in Figure 3 as a circle. Therefore, C can
transitionally trust proxies from P2 to Pn, and S has
similar transitional trust to proxies from P1 to Pn-1 as
well. In the case of a single-hop proxy channel, there
is no need for transitional trust because C and S
have authenticated P by themselves. However, we
believe that transitional trust to proxies is good
enough for many applications because proxy
channels in MC-SSL are supposed to transport
relatively non-sensitive data.

Further, we can enhance this transitional trust
model by appending new message interactions to the
above handshake process. The enhancement is based
on the following two considerations: First, other
proxies than P1 may also require authenticating C by
themselves, and then authorizing their proxy
services accordingly. Our solution is to help C
distribute its certificate and the verification data if C
can use a certificate for authentication. Second, S or
C might want to directly authenticate all proxies, in
other words, to verify the certificate of every proxy.

In order to satisfy these two requirements of
authentication, we have designed a protocol that
consists of two stages illustrated in Figure 5(a) and
(b). The rationale is to first obtain a random string or
number, and then ask C and all proxies to “sign” the
random string using their own private keys. The
“signatures” (verification data) are circulated and
used for identity verification.

Figure 5(a) shows the first stage, which purpose
is to generate a random string that is a concatenation
of random strings produced by all the entities in the
circle. The resultant string can be denoted as
follows:

R = RC + RP1 + RP2 + …+ RS,

RX denotes a 32-byte cryptographically random
string generated by entity X, and ‘+’ denotes the
concatenation of two strings. This process starts and
ends at C. The message sent by C to P1 contains RC,
and finally C receives the complete random string
from S. The purpose of collectively generating a
random string is to make sure that no entity can be
“deceived” by other entities to accept a random
string that is not truly random. This method is
actually an extension of SSL, in which only two
entities (C and S) are involved.

C

P1

S

Pn
RC

RC+RP1 RC+RP1+...+RPn

R = RC+RP1+...+RPn+RS

C

P1

S

Pn
{R, SC}

{R, SC+SP1} {R, SC+SP1+...+SPn}

{SP1+SP2+...+SPn}

Figure 5: The enhanced authentication:
(a) first stage (b) second stage

Figure 5(b) shows the second stage. C first sends
P1 a message, which contains the random string
generated in the first stage, the certificate (or its
URL) of C, and the digital signature signed upon R
using C’s private key. The signature proves that C is
the owner of the certificate. Each proxy adds a new

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

250

signature using its private key corresponding to its
own certificate; meanwhile, each proxy can verify
C’s identity using C’s certificate. SX in figure 6
denotes the signature of entity X. When the message
arrives at S, it has collected the signatures of all
proxies, and therefore S can choose to verify them
using their certificates. S can also forward them to C
so that C can verify them as well.

For the first stage, we add a new field in all the
proxy request messages and the S-C proxy finish
message to carry forward the random string, a flag
field to indicate if S or C requests verification of
proxies’ certificates, and another flag field to
indicate if any proxy requests verification of C’s
certificate. If the flag fields indicate that no
verification is required, the second stage will not
start. For the second stage, we create a new message
called MSG_CP_VERIFICAION to carry all the
necessary information. This protocol ends with a
MSG_CP_VERI_FINISH message from C to S.

The protocol described above is about the
authentication of proxies and the client. We may
also need to consider the security issues of
transporting and processing application data through
proxies. For example, an application may want to
make sure that every chunk of data goes through
every proxy in the proxy channel. To achieve data
authenticity, we can ask every proxy to “sign” the
data chunk using its private key or MAC key.
However, that obviously introduces heavy
computational burden because C or S has to deal
with every chunk of data. The cost for this kind of
protection seems too high for the same reason we
mentioned before: a proxy channel is not supposed
to transport highly sensitive data unless all the
proxies in the channel are highly trustable, and in
that case, the transitional trust model without strict
authenticity should be sufficient.

5.2 Secondary Channels

Up to this point, the protocols we described cannot
provide multiple cipher suites (or multiple channels)
inside a point-to-point connection. The only channel
we have is the primary channel provided by the
unchanged SSL protocol. In this section, we discuss
the protocols to negotiate and make use of secondary
channels. Every secondary channel can have its own
cipher suite and direction different from the
corresponding primary channel. In addition,
similarly to a primary channel, a secondary channel
can also be categorized as a secondary proxy
channel or a secondary end-to-end channel.

5.2.1 Negotiation of Secondary Channels

The negotiation process of secondary channels is
shown in Figure 6. The negotiation of secondary
end-to-end channels (shown in the A part) is much
simpler than that of secondary proxy channels
(shown in B part). Two new message formats are
added: the secondary channel request message
(SEC_CHAN_REQ), and the secondary channel
response message (SEC_CHAN_RESP). They are
required to be transported through primary channels.
In MC-SSL, messages for channel negotiation (or
management) must be transported using primary
channels so that all channel negotiation is as secure
as primary channels, which are provided by SSL. In
addition, both the request and the response messages
for secondary channels are able to carry requests and
responses for multiple secondary channels. The
purpose of this design is to reduce repetitive
negotiation if an application wants to negotiate more
than one secondary channel at some time, especially
at the beginning of an application session.

SEC_CHAN_REQ

SEC_CHAN_RESP

C P1 S

SEC_CHAN_REQ

SEC_CHAN_REQ

B

ASEC_CHAN_RESP

SEC_CHAN_RESP

SEC_CHAN_RESP

Pn. . .

SEC_CHAN_REQ

SEC_CHAN_RESP

Figure 6: Negotiating secondary channels

In Figure 6, SEC_CHAN_REQ is the request
message for multiple secondary channels. For each
secondary channel, it carries information as follows:
the id of the secondary channel, the id of the
collaborative end-to-end channel if the secondary
channel is a proxy channel, a list of cipher suites
preferred by the message sender, and the data flow
direction of the channel. The collaborative end-to-
end channel of a proxy channel is the end-to-end
channel through which data control messages
(APP_DATA_CONTROL_PROXY) are transported
when application data is transported through the
proxy channel. Please refer to another paper (Song,
2004) for more explanation of the application data
protocol. SEC_CHAN_RESP is the response

IMPLEMENTING MULTIPLE CHANNELS OVER SSL

251

message for channel requests in SEC_CHAN_REQ
message.

For MC-SSL to support multiple cipher suites,
we decide to make a small extension to SSL (This
will be explained in the next section). However, it is
possible that the SSL implementation at C and/or S
does not support the new extension for MC-SSL. In
that case, the negotiation of secondary channels will
either fail or not start at all.

5.2.2 Extension of SSL for Secondary Channels

SSL is the basis of the design and the
implementation of MC-SSL. In order to support
multiple channels, we propose to slightly extend
current SSL protocol, that is, to add a new field in
every SSL packet. The new field is channel id,
which indicates the channel that a packet comes
from so that the receiver can choose the right cipher
suite to decrypt and verify the data fragment
encapsulated in the packet. The purpose of channel
id is to realize (de)multiplexation inside an SSL
connection.

Considering that other new extensions may
emerge to require changing the packet format of the
SSL record protocol as MC-SSL does, we prefer
adding a general extension field so that future
extensions or options can be accommodated without
change. A similar extension mechanism has been
introduced into the client and server hello messages
of SSL handshake protocol. RFC 3546 has the
details for TLS extensions (Blake-Wilson, 2003). In
fact, many Internet protocols such as TCP and IP
have fields in their packet formats for options or
future extensions.

Because of the introduction of channel id field,
several changes regarding SSL protocol and its
implementations follow. First, the calculation of the
MAC must include the value of channel id field if a
SSL packet has a MAC field; therefore, the channel
id will not be tampered at will. Second, SSL
software must choose the right cipher suite for each
incoming packet according to the channel id. The
mapping relation between a channel id and a cipher
suite is managed by the protocol described in section
5.2.1. Third, some API (Application Programming
Interface) functions of SSL are different than before:
the write function has a channel id as an input
parameter, and the read function returns as an output
parameter the id of the channel from which the data
comes. It is up to applications to decide how to use
different channels.

Obviously, adding a channel id field is a simple
and straightforward approach for SSL to support
multiple cipher suites. The downside is that the SSL
protocol has to be revised and SSL software needs
upgrade to a new version. To completely avoid the

change of SSL protocol and implementation, we
have figured out a possible alternative for SSL
libraries such as OpenSSL (OpenSSL, 2004). The
basic idea is to “switch” among different channels
instead of simultaneously having multiple channels
in a SSL connection. The switching of channels is
realized by a handshake process implemented in the
upper layer codes of MC-SSL instead of the
underlying SSL. Basically, one endpoint sends a
MC-SSL message to notify the other endpoint what
channel it wants to switch to, and then receive the
confirmation message from the other endpoint. After
that, MC-SSL automatically changes the working
cipher suite in the SSL session. However, things are
not finished yet. First, it is much harder to switch the
working cipher suite for proxy channels, especially
multi-hop proxy channels. Second, if we change the
working channel to a cleartext channel (null cipher
suite without MAC), and then when we want to
switch it back to the primary channel, we must make
sure that the handshake messages are not tampered
by a man-in-the-middle attacker; otherwise, we
could be deceived to use a channel that is
cryptographically weaker. As a result, we must make
one more handshake through the new channel to
exchange the MAC data that is calculated upon the
previous handshake messages. This approach turns
out to require a handshake process that resembles
the abbreviated handshake of TLS 1.0 (Dierks,
1999). Such a four-way handshake is inefficient if an
application frequently uses different channels, for
example, to use different cipher suites for requests
and responses. In conclusion, we prefer to add a
channel id field in SSL packets than to add a
complex handshake process.

5.2.3 Typical Usage of Multiple Cipher Suites

A typical SSL session uses a cipher suite including a
128-bit cipher, and MD5 or SHA-1 hash algorithm
for MAC. With MC-SSL we can have an additional
channel with only MAC, but without encryption.
This channel could be useful for transporting data
that does not need confidentiality but require
authenticity. Such a channel combination is similar
to that of IPSec, in which authentication alone or
authentication plus encryption can be separately
provided by Authentication Header (AH) and
Encapsulating Security Payload (ESP) protocol.

A combination of block cipher and stream cipher
is another usage of multiple cipher suites. Streaming
media applications such as VoIP telephony often use
a stream cipher for confidentiality or privacy, but a
block cipher is probably necessary for user
authentication. For SSL, it has to renegotiate one
more time or open an additional connection.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

252

Cleartext channels are also available to
applications in MC-SSL. Certainly we must be very
cautious with a cleartext channel. As a rule of
thumb, if a cleartext channel could possibly
compromise the security or privacy of a
communication session, it should not be negotiated
from the beginning of a session. On the other hand,
cleartext channels could be very useful. A typical
usage is to transport non-sensitive information after
a person has been authenticated. For example, a
person can choose to read emails through a cleartext
channel after his authentication. Another typical
usage is to deliver “already-secured” information so
as to eliminate excessive cryptographic protection.
Examples of “already-secured” information include
but not limited to digitally signed documents or
software, and data or documents protected by XML
Security or other techniques.

5.3 Prototype

We have developed a prototype to test the ideas and
the protocols of MC-SSL. The underlying SSL
library we choose is OpenSSL (OpenSSL, 2004).
The prototype programs are written in C language
and run on Linux. The prototype has helped us
improve the protocols, and also demonstrated to us
that MC-SSL is feasible and functional.

6 CONCLUSION

In this paper, we present Multiple-Channel SSL,
which is a protocol extended from SSL. MC-SSL is
able to satisfy diverse security requirements for
different applications, especially for emerging
mobile or wireless applications.

For the protocol design and implementation of
multiple channels over SSL, we extend primary
single-hop proxy channels to further support
multiple proxies in a proxy channel, and we discuss
the protocols for the negotiation and the operation of
secondary channels. We also give some thoughts
about the typical usage of multiple cipher suites.

Currently, MC-SSL is developed on SSL. One
can also apply the multiple channel model of MC-
SSL to a security protocol on top of a datagram
protocol, such as UDP, so that applications such as
VoIP can make use of proxy channels and multiple
cipher suites. For instance, if two wireless terminals
communicate with VoIP over RTP, but they do not
support the same voice coding or compression
scheme, they can use MC-SSL to set up a proxy to
translate the voice coding without greatly
compromising the security. Besides, they can use
different cipher suites for user authentication and

voice traffic as mentioned in Section 5.2.3.
Therefore, we consider it as an interesting research
direction to develop a counterpart protocol of MC-
SSL for UDP-based applications. For current MC-
SSL protocol, we need to further analyse and
enhance its security as well as usability.

ACKNOWLEDGEMENT

This work was supported by grants from Telus
Mobility and the Advanced Systems Institute of BC,
and by the Canadian Natural Sciences and
Engineering Research Council under grant
CRD247855-01.

REFERENCES

Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen
J., and Wright, T., 2003. Transport Layer Security
(TLS) Extensions. RFC 3546.

Dierks, T. and Allen, C., 1999. The TLS Protocol Version
1.0. RFC 2246.

IBM Corp. and Microsoft Corp., 2002. Security in a Web
Services World: A Proposed Architecture and
Roadmap. http://www-106.ibm.com/developerworks
/webservices/library/ws-secmap/

Kwon, E.K., Cho, Y.G., and Chae, K.J., 2001. Integrated
Transport Layer Security: End-to-End Security Model
between WTLS and TLS. Proc. IEEE 15th Int. Conf.
on Information Networking

Kennedy, D. J., 2000. An Architecture for Secure, Client-
Driven Deployment of Application-Specific Proxies.
Master’s Thesis, University of Waterloo.

OASIS Open, 2003. Web Services Security: SOAP
Message Security. http://www.oasis-open.org/

OpenSSL, 2004. http://www.openssl.org/
Portmann M. and Seneviratne A., 2001. Selective Security

for TLS, Proc. IEEE 9th Int. Conf. on Networks, pp.
216-221

Song, Y., Leung, V., and Beznosov, K., 2004. Supporting
End-to-end Security Across Proxies with Multiple-
Channel SSL. Proc. IFIP 18th World Computer
Congress, submitted paper.

W3C, 2002. XML Signature Recommendations,
http://www.w3.org/Signature/

W3C, 2002. XML Encryption Recommendations,
http://www.w3.org/Encryption/

IMPLEMENTING MULTIPLE CHANNELS OVER SSL

253

