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Abstract: This paper describes a systematic procedure to build reduced order analytical models for a design 
of decentralized controllers for large scale interconnected dynamical systems. The design method 
employs Davison techniques to affect decoupling of the interconnections into its subsystems 
components which is done by using the most dominant eigenvalues and the most influent inputs 
in each subsystem. In this way, advantage can be taken of the special structural feature of a given 
system to devise feasible and efficient decentralized strategies for solving large control problem 
which are impractical to solve by one shot centralized methods. 

1 INTRODUCTION 

As many technological environmental or social 
systems have a high complexity, large scale systems 
became the subject of intensive research in systems 
and control theory. The complexity of the system 
leads to severe difficulties that are encountered in 
the tasks of analyzing the system and designing and 
implementing appropriate control strategies 
algorithms. These difficulties arise mainly from 
dimensionality, uncertainty and information 
structure constraints. For these reasons the analysis 
and synthesis tasks cannot be solved economically in 
a single step as it is possible for similar analysis and 
design tasks for small system. Therefore, it is 
common procedure in engineering practice to work 
with mathematical models that are simpler, but less 
accurate, then the best available model of a given 
physical process, since the amount of computation 
required to analyze and control large scale system 
grows faster than its size. It has been long 
recognized that it is beneficial to decompose a large 
scale system into subsystems, and design control for 
each subsystem independently on the basis of the 
local subsystems dynamics and the nature of their 
interconnections. These are two quite distinct 
motivations for this practice: 
The first is to reduce the computational burden 
associated with simulation, analysis and control 
system design. 

The second is based on the realization that a 
simplified model will lead to simplified control 
system design. 

2 PROBLEM FORMULATION 

Assume the large scale system is given by the 
following differential equation 
 )t(uB)t(xA)t(x +=&                                  
(2.1a) 
y(t)= D x(t) 
(2.1b) 
x(0)=0 
(2.1c)  
where x is an-vector of states and u is an-vector of 
inputs and both A and B are constant matrices of 
appropriate dimension, and let us assume that the 
system matrix A has distinct eigenvalues. Let the 
system described by equation (2.1) be composed of 
N subsystems with the ith subsystem having xi and ui 
as its state and control vectors, respectively. Let the 
dimension of xi and ui be ni and mi respectively so 
that: 
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The global system of (2.1) is assumed to be 
completely controllable and global feedback control 
law of the form  

)t(v)t(xF)t(u +=                                                

(2.2) 
has been found using conventional state feedback 
control methods so that the eigenvalues of the closed 
loop system lie in the pre-assigned location in the s-
plane, where F is an mxn constant matrix, is to be 
computed and v is an m-dimensional vector. 
The substitution of (2.2) into the system of (2.1) 
yields 

  )t(Bv)t(xA)t(x +=&                                      

(2.3a) 

where BFAA +=  
The decentralized control problem can now be stated 
as that of finding a set of decentralized controllers of 
the form 

)t(v)t(xF)t(u iiii +=                                          

(2.4) 
where )nxm(F iii  

 In this paper a method is presented for the design of 
such controller to the turbine. The design methods 
employs appropriate modal and singular perturbation 
techniques to affect complete decoupling of the large 
scale system into its subsystem components. Once 
the decoupling process is complete, the 
decentralized controller design problem becomes 
that of finding local controllers for each of the 
decoupled subsystems in isolation of the rest. 

3 EIGENVALUE CONTRIBUTION 
MEASURE 

For the ith subsystem, the ni eigenvalues that 
contribute most to the controllability of the states of 
this subsystem are chosen. Let the similarity 
transformation 

)t(zM)t(x =                                                         

(3.1) 
be applied to the open loop system (2.1), where z is 
an n-dimensional dummy state vector. 
Application of (3.1) to the system of equation (2.1) 
gives 
  )()()( tutzJtz Γ+=&                                          

(3.2a) 

   0
1

0 xMz −=                                                    

(3.2b) 

where )(1
idiagAMMJ λ== −  

            BM 1−=Γ  
and the system (3.2) experience step changes in all 
of its input variable 

[ ]Tm21U)t(u βββ== L                                 

(3.3) 
where kβ are weighting factors. The steady-state 

response of state vectors z is calculated from (3.2) as 

ZUJzss =Γ−= −1                                               

(3.4) 
substituting (3.4) into (3.1) gives the following 
steady state response 

MZx ss −=                                                           

(3.5) 
In order to determine contribution of the jth 
eigenvalues in the ith state variable, the following 
measure is used: 

  jijij Zm=ω   i,j = 1,2,..n                              

(3.6) 
where mij is the element standing on the ith row and 
jth column of the transformation matrix M, and Zj is 
the jth element of the vector Z.  
The total contribution of the jth eigenvalue, jλ in 

σ states, σ+++ k2k1k x,x,x L , is determined from 

(3.6) as 

 ∑
σ+

+=

ω=ω
k

1ki

ijj                                                       

(3.7) 
where k+1 is the index to the σ  states. 

 4 DECOUPLING OF THE 
GLOBAL SYSTEM 

The decoupling procedure is based on the outcome 
of the previous section and on the principals of 
singular perturbation techniques. Let the large scale 
system (2.1) be written as  
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where )(tzd  is (r x 1) aggregated state vector of 

subsystem i and )(tzr  is (n – r)th order residual 

state. 
System equations (4.1) can be transformed to its 
modal form, 
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where w is the vector of retained dominant states 
variables, 

[ ]TvwMMvx 2M==  

( ) AMMJJdiagBlockJ 1
21

−=−=  

[ ] BMT 1
21

−=ΓΓ=Γ M  

and M is a modal matrix. The columns of this matrix 
are its eigenvectors, and are ordered in accordance 
with the total contribution of each eigenvalue in all 
of the states of the ith subsystem 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
==

221

121
21 MM

MM
M d

n
dd µµµ MLMM  

Where d
iµ , i = 1, 2… n are the dominant set of 

eigenvectors. Assume that is desired to retain d 
( )nd p  modes (vector w) of Eq. (4.2), that is 

uPwPJPw T Γ+=&                                              

(4.3) 
where [ ]0MdIP =                                           

(4.4) 
and I is an identity matrix of order d partitioned as 
the subsystem i; and w = Pv 
Let us take the Laplace transform of the lower half 
of (4.2) to yield  

)()()( 2
1

22 sUJsIsV Γ−= −                                 (4.5) 

since 2J represents nondominant modes, Eq. (4.5) 

can be approximated by 

)()()( 2
1

22 tLutuJtv =Γ−= −                                 

(4.6) 
The partitioned forms of zr and v lead to 
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(4.7) 

2121 vMwMzd +=  

2221r vMwMz +=                 

assuming that M1 is nonsingular, then by using these 
two last equations we get 

LuMMMMzMMz dr )( 12
1

1212
1

121
−− ++=   

uEzNz dr +=                                                (4.8) 

Eliminating rz in Eqs. (4.1)), using Eq. (4.8) leads 

to the aggregate decoupled model in condensed form 
)t(Hu)t(Gzzd +=&  

if we set )(~)( txtzd ≡ , then 

)()(~~ tuHtxGx +=&  

NAAG 121 +=  

EABH 121 +=  

in this method, the effects of the nondominant 
modes have been neglected to result in the 
decoupled model 

5 DECENTRALIZED 
CONTROLLER DESIGN 

In this section we develop the design of 
decentralized controller utilizing the approach 
outlined in the previous section. 
After identifying the ni eigenvalues which make the 
largest contribution to the dynamics of the ith 
subsystem, we use the procedure outlined in § 4 to 
obtain an approximate model of the ith subsystem 
given by: 

)()(~)(~ tuHtxGtx iiii +=&   i = 1, 2,…N                 

(5.1) 
Thus the overall system can be approximated by 

)t(Hu)t(x~G)t(x~ +=&                                            

(5.2) 
where 
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we set jju β=  and uk = 0, k = 1, 2…m; jk ≠ to 

calculate the controllability measure of each of the ni 
eigenvalues of the ith subsystem from the jth input. 
We retain those columns of Hi that correspond to the 
input uj that has the largest controllability measure, 
which gives the following approximate models of 
the ith subsystem: 

uĤ)t(x~G)t(x~ iiii +=&                                         

(5.3) 
where  

[ ]
⎩
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⎧

≠
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kjnull

kjfinite
hĤ ij                                    

(5.4) 
The global approximate model takes the following 
form: 

)(ˆ)()(~ tuHtGxtx +=&                                             

(5.5) 
where k is the index to those inputs that exert large 
influence on the behavior of subsystem i. 
Let us assume that the global system described by 
(2.1) is completely controllable and a satisfactory 
global state feedback control law of the form 

vFx)t(u +=                                                         

(5.6) 

ON THE DECENTRALIZED CONTROL OF LARGE DYNAMICAL COMPLEX SYSTEM

385



has been found using existing state feedback control 
methods, so that the eigenvalues of the closed loop 
system lie in pre-assigned locations in the s-plane. 
This gives 

)t(Bv)t(xA)t(x +=&                                             

(5.7) 

where BFAA += is the closed loop system matrix 
Next, we design a state feedback controller 

vx~F̂u += for the decoupled system (5.5), so that 
the closed-loop eigenvalues are the same or close to 
those of the original global closed-loop system (5.7). 
This yield 

vĤ)t(x~Ĝ)t(x~ +=&                                                 

(5.8) 

6 EXAMPLE 

In this example a four interconnected power system 
(TAIPS) will be considered for the application of the 
proposed decentralized control approach. 
The following state vectors are defined with respect 
to [10] as: 

)t(Bu)t(Ax)t(x +=&      where 
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Following the procedure given in the previous 
section we get:  
Eigenvalues contributions 

Table 1: Eigenvalue contribution measures 
 X1,2 X3,4,5 X6,7 X8,9 

1λ =-19.53 0 0.001 0 0.05 

2.405.22 j+−=λ  0.016 0.106 0.004 0.001 

2.405.23 j−−=λ  0.016 0.106 0.004 0.001 

003.24 −=λ  0.477 0.115 0.026 0.003 

061.05 −=λ  1.095 0.355 0.018 0.063 

01.057.06 j+−=λ  7.897 10.47 4.383 7.153 

01.057.07 j−−=λ  7.897 10.47 4.383 7.153 

03.006.18 j+−=λ  3.022 30.61 17.98 2.057 

03.006.19 j−−=λ  3.022 30.61 17.98 2.057 

 
From the table, we see that  
Subsystem 1. The eigenvalues that contribute most 
in its states x1, x2 are 7,6λ  

Subsystem 2. The eigenvalues that contribute most 
in its states are x3, x4, x5 � eigenvalues 9,8λ  

Subsystem 3. States are x6 , x7 � eigevalues 9,8λ  

Subsystem 4. States are x8 , x9  � eigenvalues 7,6λ  

It is clear from these results that, the relative 
contribution measures are satisfactorily high. 
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6.1 System decoupling 

Application of the decoupling procedure may now 
be carried out, incorporating the results of the 
previous section. As a result each subsystem is 
represented by an approximate model having the 
same states as the original subsystem, but with the 
input to the global system. 
To determine the relative importance of each input 
to each subsystem, the controllability measure of the 
state of each subsystem from each input must be 
evaluated. 

Table 2: Controllability measures for subsystem 1 

                          7,6λ  states 

U1 U2 U3 U4 
X1 0.112 0.268 3.453 0.284 
X2 0.388 0.923 11.89 0.978 

Table 3: Controllability measures for subsystem 2 

                          9,8,6λ  states 

 U1  U2  U3  U4 
X1 0.100 0.161 5.256 0.037 
X2 0.476 0.755 25.104 0.095 
X3 0.536 0.850 28.248 0.107 

Table 3: Controllability for subsystem 3 

                          9,8λ  states 

U1 U2 U3 U4 
X1 0.286 0.448 15.271 0.003 
X2 0.357 0.559 19.051 0.004 

Table 4: Controllability measures for subsystem 4 

                          7,6λ  states 

U1 U2 U3 U4 
X1 0.310 0.737 9.499 0.782 
X2 0.143 0.341 4.401 0.362 
 
From the tables, the following conclusion with 
regard to the four subsystems can be easily made. 
For example; subsystem 1 is most influenced by u3, 
subsystem 2 is influenced by u3 and so on. 
Accordingly the following approximate 
representations for each subsystem are obtained: 
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6.2 Design of optimal controller 

The optimal control problem may be stated as that of 
finding the control input u(t) which, subject to  the 
constraints given by the system dynamical 
equations, minimizes the following cost function: 

[ ]dttRututQxtxJ TT∫
∞

+=
0

)()()()'  

where Q and R are the state and control weighting 
matrices, respectively. The solution to this is given 
by 
u(t) = F x(t) where F is the state feedback optimal 
control matrix. If Q and R are chosen as: 
Q = diag(0,2,2,0,0,0,2,0,2) and R = (1,16,4,1) then  
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BFAA +=  have the following set of 
eigenvalues: 

56.1;23.405.2;48.19 43,21 −=±−=−= λλλ j

54.0;301.098.0;05.0 87,65 −=±−=−= λλλ j
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FBAA
~~

+=  has the following set of eigenvalues 
27.2;53.409.2;82.19 43,21 −=±−=−= λλλ j

81.0;07.054.0;75.1 87,65 −=±−=−= λλλ j

063.09 −=λ  

These eigenvalues are close to those of the closed-

loop matrix A . 

7 SIMULATION RESULTS 

Extensive simulation studies on the four subsystem 
interconnection have been carried out under both the 
decentralized and global optimal controllers. To test 
the effectiveness of the decentralized controller, the 
closed loop system performance was tested when 
multiple changes in the reference settings at different 
time intervals were introduced. Figures 1-4 show the 
two set of responses overlaid on each other. 

8 CONCLUSION 

An interconnected dynamical system comprising 
four subsystems has been considered as a study case. 
Based on the example studied the proposed design 
method appears to be quite attractive. A satisfactory 
global optimal controller was designed for the 
system. It was shown that the performance of the 
decentralized controller designed by using the 
method presented is satisfactorily close to that of the 
global optimal one. 
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Figure 1: Responses to a step change in 3υ  at t = 0 
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Figure 2: Responses to a step change in 1υ  at t = 0; 3υ  at 

t = 25s 
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Figure 3: Responses to a step change in 1υ  at t = 0; 2υ at 

t = 25s 
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Figure 4: Responses to a step change in 2υ  at t = 0;  

1υ at t = 25s 
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