

Treatment of Anterior Cruciate Ligament (ACL) Injuries

Yiyang Geng

Rehabilitation Physical Therapy, Capital Medical University, Beijing, China

Keywords: Anterior Cruciate Ligament (ACL) Rehabilitation, Digital Physical Therapy, Surgical and Non-Surgical Treatment.

Abstract: Anterior cruciate ligament (ACL) injuries are prevalent among athletes, necessitating a bound of effective rehabilitation strategies for optimal recovery and return to play. This paper explains ACL anatomy, epidemiology, diagnostic methods, treatment options, and emerging rehabilitation technologies. Diagnosis relies on physical examinations and imaging techniques such as MRI, X-rays, and CT scans. Treatment options include surgical reconstruction for severe cases and non-surgical management for less active individuals. Innovative rehabilitation methods such as telehealth, wearable technology, enhance patient engagement and adherence to recovery plans. Psychological factors such as fear of re-injury also impact rehabilitation outcomes. Future strategies should integrate digital tools for personalized rehab.

1 INTRODUCTION

Anterior cruciate ligament is one of the most important knee-stabilizing ligaments, which helps to maintain dynamic-static stability as well as knee joint coordination (Al-Khalifa et al, 2014). The ubiquity of ACL injuries within athletic contexts necessitates an advanced understanding of rehabilitation processes to ensure efficacious treatment plans that guarantee return-to-play capabilities. As sports continue to evolve in competitiveness and intensity, the prevalence of ACL injuries has obligated the sports medicine field to pursue continuous improvements in rehabilitation strategies. This sentiment is echoed by Esfahani and Thompson, who highlight the utility of adopting innovative rehabilitation protocols (Esfahlani & Thompson, 2021). Physical therapy thus emerges as a pivotal strategy within this domain, supported by empirical evidence that underscore its benefits in the comprehensive recovery landscape.

Empirical inquiry reflects a sex deviation in the happening of ACL injuries, with females have a higher non-contact ACL injuries proportion and exhibited higher injury-related patterns (Chia et al, 2022; Brunetti et al, 2024). This phenomenon proposes underlying sex-associated differences in biomechanical or anatomic factors that could work hurt susceptibility. Particularly, adolescents and immature adults have a higher incidence of ACL injuries (Chia et al, 2022). During growth spurts, adolescents experience rapid changes in height,

weight, and bone length, which can affect coordination and balance, increasing the risk of ACL injuries (Prince, Laor & Bean, 2005). Individuals who sustained non-contact ACL injuries had markedly increased their participation in activities such as running, jumping, cutting, pivoting, and decelerating in the six months leading up to the injury (Grodman, Beaulieu & Ashton-Miller, 2023). There's no sufficient research of how these factors interact to impact ACL hurt rates, foregrounding an important spread in our comprehensive apprehension of ACL injuries mechanism and reclamation needs.

2 EPIDEMIOLOGICAL INVESTIGATION

ACL is a significant ligament, and its injuries are unusually mutual among athletes, which stresses the grandness of effectual reclamation. Understanding the anatomic construction of the ACL, together with preponderance information and expert penetrations, and the function of forcible therapy in the reclamation of ACL injuries is of cardinal grandness.

The prior cruciate ligament is a cardinal construction in the knee articulation, its chief intent being to brace the knee by associating the thighbone to the tibia (Duthon et al, 2006). The ACL consists of two parts: the anteromedial bundle (AMB) and the posterolateral bundle (PLB). These bundles do not

maintain a constant length, as the AMB elongates while the PLB shortens when the knee bends (Duthon et al, 2006). The apprehension of the anatomic features of this ligament is cardinal to understanding the deductions of the injuries and the appropriate reclamation. This functionality is indispensable during motions such as disconnected cuts, turns, and changes in way, which often happen in sports. Moreover, the complex structure of the ACL makes it hard to plan an effectual reclamation scheme. The staleness of the genu depends on the ACL, and it is significant for the knee's mobility and overall wellness (Evans & Mabrouk, 2023).

The dynamical function of the ACL in guaranteeing knee staleness foregrounds the grandness of tailoring forcible therapy interventions. Therefore, it is significant to realize and speak the ACL's complex construction in ordering to evolve effectual and individualized reclamation programs. Such a program is vital for guaranteeing full functionality and reducing the hazard of re-hurt.

3 DIAGNOSIS

ACL is considered the most commonly injured ligament of the knee. Physical examinations, such as the anterior drawer, Lachman, and pivot-shift tests, can help most experienced clinicians accurately diagnose ACL injury (Tanaka et al, 2022). However, in the case of acute injury and a swollen knee, these tests may be challenging to perform due to the knee pain. Consequently, Magnetic Resonance Imaging (MRI) plays a vital role in supporting the clinical suspicion (Al Mohammad & Gharaibeh, 2024).

3.1 MRI in ACL Diagnosis

In some cases of acute complete ACL tear, direct signs including failure to visualize the ACL fibers on images taken in ant plane or discontinuity of the ligament. Moreover, the ACL have the presence of an abnormal morphology characterized by an irregular or wavy contour of the ACL. As such, ACL fibers are not parallel to the intercondylar notch roof or running more parallel to the tibial plateau (Brandser, Riley, Berbaum, El-Khoury & Bennett, 1996; Tung, Davis, Wiggins & Fadale, 1993).

Chronic ACL tears exhibit more variable characteristics on MRI, which can sometimes make them harder to identify. This is likely due to the reduction of certain indicators that were prominent during the acute phase, such as edema and thickening of ACL fibers, by the time of imaging. In cases of a

chronic complete ACL tear, the ligament may be absent, showing an "empty notch sign" where fluid has replaced the ACL (Chen, Shih, Tu, Chen & Shau, 2002). Occasionally, a chronic tear is substituted by fibrous scar tissue that mimics a normal ligament, appearing as a hypointense signal spanning the expected origin and insertion of the ACL. In some instances, the proximal fibers of the torn ACL may attach to the Posterior Cruciate Ligament (PCL), resulting in abnormal angulation (Kam, Chee & Phe, 2010; Vahey, Broome, Kayes & Shelbourne, 1991).

3.2 X-Ray and CT Applications

In the diagnosing of prior cruciate ligament injuries, the function of computed imaging and X-rays is of cardinal grandness despite sure restrictions of each. X-rays are typically the first imaging studies performed when an ACL injury is suspected. Although X-rays cannot visualize the ACL itself, they are essential for identifying associated bone injuries (Gruenewald et al, 2024). Computed Tomography (CT) scans proffer exceptionally elaborate images of bone structures compared to standard X-rays and are particularly useful in characterizing avulsion fractures and complex fractures: In cases where multiple fractures are present, CT provides a comprehensive view, aiding in surgical planning (Ng et al, 2011).

4 TREATMENT

The intervention of ACL injuries involves both operative and non-operative procedures. Operative intercession is often recommended for consummate ruptures of the ACL, which stabilizes the knee articulation and restores knee functions. Non-operative intervention is mostly preferred for those normally involves forcible therapy to reduce hurting, puffiness and redness, and can better mobility and posture in the knee. Surgical reconstruction is the gold standard treatment for younger and more active patients, while nonoperative treatment is mainly reserved for older and less active patients (Krause et al, 2018).

Integrated technical guarantees a more individualized reclamation tract, enabling practitioners to accommodate the reclamation exercises established on existent-clip information collected from the patient's execution and advancement (Yusof & Lin, 2022). For illustration, telehealth services and wearable engineering are progressively used to heighten reclamation results by

enabling distant monitoring and ongoing reinforcement, which stay polar to both patient conformity and advancement (Vaghasiya, Mayorga-Martinez & Pumera, 2023; Bandawar et al, 2024). There is outstanding potentiality for optimizing patient results and attachment to ACL reclamation protocols.

4.1 Surgical Treatments

Operative intervention for ACL injuries stays a cardinal focusing in both clinical pattern and scientific inquiry (Brophy & Lowry, 2023). This character of intercession is recommended for patients with temperate to terrible symptoms or those involved in demanding acrobatic activities, where knee staleness is of overring grandness. These procedures mostly dwell in the reconstruction of the ligament with grafts taken from the patient's own tissue or from a giver (Petit et al, 2023). There is a continuing demand to analyze these schemes in a circumstance that reflects the diverse patient universe they are intended to function.

The increasing usage of automatic and minimally incursive or techniques presents extra questions referring patient refuge and convalescences results. So even if operative interventions like ACL reconstruction show the hypothesis of effectual convalescence, the practical must cautiously choose the patients and consider the hazards and the benefits. A retrospective survey of the usage of automatic aid in operative procedures bespeaks that, although it may increase precision, it may also take to anticipated complications, such as malfunctioning of the tool (Alemzadeh, Raman, Leveson, Kalbarczyk & Iyer, 2016). Below is an overview of recommended exercises during various stages of ACL rehabilitation.

In the Immediate Post-Surgery Phase (Weeks 0–2), the primary focus is on reducing swelling and inflammation while restoring knee extension (Jenkins et al, 2022). Recommended exercises include ankle pumps, quadriceps sets, and heel slides (Jenkins et al, 2022).

During the Early Rehabilitation Phase (Weeks 2–6), the goal is to increase the range of motion and begin weight-bearing activities while enhancing muscle strength (Pamboris et al, 2024). Suggested exercises include closed kinetic chain exercises, stationary cycling, and balance training (Pamboris et al, 2024).

The Intermediate Rehabilitation Phase (Weeks 6–12) aims to restore full range of motion, increase muscle strength and endurance, and improve neuromuscular control (Pamboris et al, 2024).

Recommended exercises include open kinetic chain exercises and core stabilization exercises (Saki et al, 2023).

Finally, the Advanced Rehabilitation Phase (Months 3–6) focuses on achieving near-normal muscle strength, enhancing agility and functional movements, and preparing for a return to sports or daily activities (Eitzen et al, 2010). Exercises such as plyometric drills, sport-specific drills, and continued strength training are recommended for this stage (Eitzen et al, 2010).

4.2 Non-Operative Management

Non-surgical intervention of ACL injuries is indispensable for those who desire to debar operative procedures. The peak of intervention is chiefly determined by the strength of the patient's activities and the badness of the hurt. Non-surgical intervention chiefly includes a physiotherapy plan, particular exercises and veritable checks planned to heighten knee staleness and usable execution. Post operative exercises are also recommended for patients who are not willing to receive an invasive therapy.

4.3 Innovative Treatment Methods

The evolution of effectual reclamation protocols for ACL injuries has become indispensable in bettering convalescence results for patients. The modishness progress has mostly concentrated on uniting engineering and forcible therapy to increase attachment to reclamation plans (Vaghdiya et al, 2023; Bandawar et al, 2024). Notably, this has included the usage of smartphone applications and wearable devices for distant monitoring. This attack has two benefits. It promotes attachment to the therapy and lets therapists to utilize existent-clip patient information to orient single reclamation programs, thereby bettering the overall effectivity of intervention.

5 DIGITAL PHYSICAL THERAPY REHABILITATION

For illustration, telemedicine has been shown to better communicating between patients and therapists importantly, thereby facilitating reclamation procedures (Lu et al, 2020). However, the variableness of these digital tools means that comprehensive and individualized appraisals are indispensable.

Telemedicine has emerged as a polar component in the schemes of digital reclamation. It not only betters patient gratification but reduces costs and increase method to attention in distant areas (Alanazi & Al Hader, 2022). The eminent degree of patient assurance and motive for the forcible therapy exercises facilitated uninterrupted advancement monitoring.

These inventions jointly back a circumstance-specific reclamation process, guaranteeing that therapy is both approachable and adaptable. Wearable engineering further supports patients through immediate feedback, monitoring forcible action and informing therapists about patient's performance.

5.1 Telehealth and Remote Monitoring

The debut of telehealth and distant monitoring systems has outstanding potentiality for bettering forcible therapy for ACL injuries. These advanced services let patients to have reclamation from home, which is particularly advantageous to people who are not willing to receive treatment by visiting hospital frequently. The devices will supply greater flexibility and handiness for patients, letting them to retrieve in more commodious and price-effectual ways (Lee, Davenport & Randall, 2018).

Research comparing telerehabilitation to traditional rehabilitation following total knee arthroplasty revealed similar clinical and patient-reported outcomes between the two methods, suggesting that while telerehabilitation is effective, it is not necessarily superior to conventional approaches (LeBrun et al, 2022).

5.2 App-Based Programs

It is well established that the evolution of app-established programs in forcible therapy can help the reclamation of ACL injuries. For illustration, applications such as TRAK supply patients with a tailored exercising plan with videos of tight proficiency to steer them through the reclamation exercises (Park et al, 2023). The development of app-established plans can be seen as an important measure forwards in the direction of ACL injuries (Park et al, 2023). However, it is significant to observe that the effectivity of these applications may change depending on the degree of proficient literacy and single motive, which may decrease their possible benefits (Park et al, 2023).

Many patients describe convinced experiences with app-established acquisition when accompanied by professional counsel. However, the usage of apps

raises questions about the proportion between human interaction and technical aid in the curative procedure, peculiarly for patients who may confront troubles with digital literacy (Gell, Smith & Wingood, 2024). As distant forcible therapy additions land in reclamation practices, comparisons between engineering-helped and face-to-face therapies bespeak a noteworthy displacement in the landscape of post-ACL reclamation (Gardner, Podbielski & Dunphy, 2023).

5.3 Wearable Technology

Wearable devices are progressively acknowledged as playing an important function in monitoring and supporting reclamation after ACL injuries. The effectivity of these devices often changes, indicating to a possible mismatch between their proficient capabilities and the specific reclamation needs of patients. The answer lies in the integrating of these fresh technologies in the circumstance of reclamation, which necessitates exhaustive inquiry into the best ways to accomplish a better apprehension of the diverse demands of patient groups.

6 CONCLUSION

Psychological obstacles, such as fearfulness of re-hurt and engagement, often perplex the reclamation procedure. It is the undertaking of next schemes to take these obstacles, by integrating digital tools that increase patient motive and bond. Bond to reclamation protocols is significant, since it can importantly impact retentive-condition convalescence and serviceability.

The outgrowth of telehealth platforms has shown hope in increasing handiness and patient liberty, which could finally better convalescence results. Moreover, the usage of wearable engineering offers immediate feedback and monitoring that can let reclamation protocols to be adjusted in time, which could assist to make the convalescence procedure more antiphonal and effectual.

Important barriers to effectual reclamation are psychological aspects such as emphasis and anxiousness, which can impede advancement. Accordingly, fostering curative environs that sees psychological preparedness is necessary for holistic reclamation.

6.1 Rehabilitation Outcomes

An integrated exercising plan markedly betters knee structures and stabilizes muscles, which are significant aspects in preventing re-hurt. This, in bend, can trim anxiousness about the recluse procedure itself and heighten attachment and results. Conversely, psychological barriers, such as fearfulness of reinjury, can trim these benefits. These nuances specify the effectivity of reclamation in the convalescence sense of the ACL.

6.2 Limitations and Barriers

The grandness of psychological preparedness for successful reclamation results has been confirmed in several surveys that bespeak that those who endure from anxiousness or deficiency of assurance after the hurt are less deposited to cling to reclamation recommendations. The reclamation of an ACL hurt embraces several restrictions and barriers that importantly impede the convalescence. A prevailing challenge is the psychological facet; fearfulness of re-hurt is wide admitted as a major hinderance to the reclamation. This ground foregrounds the indispensable function of psychological reinforcement in the circumstance of forcible therapy. It uncovers a spread in clinical pattern where this reinforcement is often undervalued.

Inquiry shows that these factors can importantly detain convulsions and compromise joint structures. Muscles wasting resulting from immobilizing may also take a diminution in action, which further complicates convalescence. Psychological barriers such as mind, stiffness, scarring and other forcible factors also led to the reclamation troubles. To stress and speak these obstacles must be the nucleus of the reclamation plan.

While improvements in intervention protocols have been documented, the integrating of comprehensive forcible therapy that addresses psychological challenges stays under-researched. Moreover, these restrictions foreground the demand for a comprehensive reclamation plan that unites both forcible and the psychological aspects. A strengthened curative confederation between the doctor and the patient is important to the successful pilotage of these challenges and to the skill of better consequences.

6.3 Future Strategies

Integrating psychological monitoring alongside forcible appraisal could enrich reclamation models.

Leveraging digital tools for everyday monitoring could also give a price-effectual manner to comprehensively measure patient advancement. In improver to supporting the forcible convalescence of patients, it is also a psychological convalescence and thus increases the overall effectivity of reclamation.

Given the quickly changing landscape of ACL reclamation, developing advanced approaches is important to bettering convalescence results. These schemes can avoid the restrictions of traditional approaches, facilitating ongoing reinforcement and supplying contiguous feedback to patients, which finally leads to a more occupied reclamation procedure.

Indeed, the integrating of AI into reclamation programs offers an outstanding trade of potentiality for bettering ACL reclamation. In late surveys have shown that the integrating of AI in reclamation programs has the potentiality to accommodate convalescence schemes to the single needs of each jock, thus enhancing their execution and reducing the hazard of re-hurt. However, a vital psychoanalysis of these applications uncovers some challenges in footings of dependability of information and methodological cogency. This is why a balanced attack uniting AI with human supervising is necessary for the comprehensive answer of reclamation. For next schemes, forcible reclamation of the ACL injuries must be united with genial wellness reinforcement to advance comprehensive reclamation and to heighten the effectivity of reclamation.

REFERENCES

Alanazi, A. T., Al Hader, B., & Al Alkhaibari, E. (2022). Telemedicine patient satisfaction and cost: a comparative study in the COVID-19 era. *Cureus*, 14(10).

Alemzadeh, H., Raman, J., Leveson, N., Kalbarczyk, Z., & Iyer, R. K. (2016). Adverse events in robotic surgery: a retrospective study of 14 years of FDA data. *PLoS one*, 11(4), e0151470.

Al-Khalifa, F. K., Alhamam, N. M., Uddin, F. Z., Aljawder, A. A., Abubaris, R. K., & Hameed, R. (2014). Clinical outcomes following anterior cruciate ligament reconstruction utilizing hamstring tendon autografts. *Saudi Journal of Sports Medicine*, 14(2), 89-93.

Al Mohammad, B., & Gharaibeh, M. A. (2024). Magnetic Resonance Imaging of Anterior Cruciate Ligament Injury. *Orthopedic Research and Reviews*, 233-242.

Bandawar, A., Khade, A., Akulwar, A., Shawate, S., & Shende, P. (2024, December). Integration of wearables in telemedicine. In *AIP Conference Proceedings* (Vol. 3188, No. 1). AIP Publishing.

Brandser, E. A., Riley, M. A., Berbaum, K. S., El-Khoury, G. Y., & Bennett, D. L. (1996). MR imaging of anterior cruciate ligament injury: independent value of primary and secondary signs. *AJR. American journal of roentgenology*, 167(1), 121-126.

Brophy, R. H., Silverman, R. M., & Lowry, K. J. (2023). American Academy of Orthopaedic Surgeons Clinical Practice Guideline case study: management of anterior cruciate ligament injuries. *JAAOS-Journal of the American Academy of Orthopaedic Surgeons*, 31(11), 538-548.

Brunetti, C., Rabello, R., Adragna, F., Silva Zandonato, L., Zucchetti, A., Bertozi, F., ... & Sforza, C. (2024). Customized landing task for ACL injury risk assessment: Kinematic sex-related differences. *Sports Health*, 19417381241236893.

Chen, W. T., Shih, T. F., Tu, H. Y., Chen, R. C., & Shau, W. Y. (2002). Partial and complete tear of the anterior cruciate ligament: Direct and indirect MR signs. *Acta Radiologica*, 43(5), 511-516.

Chia, L., De Oliveira Silva, D., Whalan, M., McKay, M. J., Sullivan, J., Fuller, C. W., & Pappas, E. (2022). Non-contact anterior cruciate ligament injury epidemiology in team-ball sports: a systematic review with meta-analysis by sex, age, sport, participation level, and exposure type. *Sports medicine*, 52(10), 2447-2467.

Duthon, V. B., Barela, C., Abrassart, S., Fasel, J. H., Fritschy, D., & Ménétrier, J. (2006). Anatomy of the anterior cruciate ligament. *Knee surgery, sports traumatology, arthroscopy*, 14, 204-213.

Esfahlani, S., & Thompson, T. (2021). Intelligent Physiotherapy Through Procedural Content Generation. *Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment*, 12(2), 27-30.

Etzen, I., Moksnes, H., Snyder-Mackler, L., & Risberg, M. A. (2010). A progressive 5-week exercise therapy program leads to significant improvement in knee function early after anterior cruciate ligament injury. *Journal of orthopaedic & sports physical therapy*, 40(11), 705-721.

Evans, J., & Mabrouk, A. (2023). Anterior cruciate ligament knee injury. In StatPearls [Internet]. StatPearls Publishing.

Related Surgery, 29(8), 1322-1329.

Gardner, E. C., Podbielski, C., & Dunphy, E. (2024). Telerehabilitation to Address the Rehabilitation Gap in Anterior Cruciate Ligament Care: Survey of Physical Therapists/Care Providers. *Telemedicine Reports*, 5(1), 18-35.

Gell, N. M., Smith, P. A., Wingood, M., & Smith, P. (2024). Physical Therapist and Patient Perspectives on Mobile Technology to Support Home Exercise Prescription for People With Arthritis: A Qualitative Study. *Cureus*, 16(3).

Grodman, L. H., Beaulieu, M. L., Ashton-Miller, J. A., & Wojtys, E. M. (2023). Levels of ACL-straining activities increased in the six months prior to non-contact ACL injury in a retrospective survey: evidence consistent with ACL fatigue failure. *Frontiers in Physiology*, 14, 1166980.

Gruenewald, L. D., Booz, C., Martin, S. S., Mahmoudi, S., Yel, I., Eichler, K., ... & Koch, V. (2024). Diagnostic performance of modern computed tomography in cruciate ligament injury detection: a comprehensive study. *European journal of radiology*, 170, 111235.

Kam, C. K., Chee, D. W., & Peh, W. C. (2010). Magnetic resonance imaging of cruciate ligament injuries of the knee. *Canadian Association of Radiologists Journal*, 61(2), 80-89.

Krause, M., Freudenthaler, F., Frosch, K. H., Achtnich, A., Petersen, W., & Akoto, R. (2018). Operative versus conservative treatment of anterior cruciate ligament rupture: a systematic review of functional improvement in adults. *Deutsches Ärzteblatt International*, 115(51-52), 855.

LeBrun, D. G., Martino, B., Biehl, E., Fisher, C. M., Gonzalez Della Valle, A., & Ast, M. P. (2022). Telerehabilitation has similar clinical and patient-reported outcomes compared to traditional rehabilitation following total knee arthroplasty. *Knee Surgery, Sports Traumatology, Arthroscopy*, 30(12), 4098-4103.

Lu, L., Zhang, J., Xie, Y., Gao, F., Xu, S., Wu, X., & Ye, Z. (2020). Wearable health devices in health care: narrative systematic review. *JMIR mHealth and uHealth*, 8(11), e18907.

Ng, W. H. A., Griffith, J. F., Hung, E. H. Y., Paunipagar, B., Law, B. K. Y., & Yung, P. S. H. (2011). Imaging of the anterior cruciate ligament. *World journal of orthopedics*, 2(8), 75.

Pamboris, G. M., Pavlou, K., Paraskevopoulos, E., & Mohagheghi, A. A. (2024). Effect of open vs. closed kinetic chain exercises in ACL rehabilitation on knee joint pain, laxity, extensor muscles strength, and function: a systematic review with meta-analysis. *Frontiers in Sports and Active Living*, 6, 1416690.

Park, S. M., Georgiev, K., Ilyas, A., Leclerc, G., & Madry, A. (2023). Trak: Attributing model behavior at scale. *arXiv preprint arXiv:2303.14186*.

Petit, C. B., Diekfuss, J. A., Warren, S. M., Foss, K. D. B., Valencia, M., Thomas, S. M., ... & Lamplot, J. D. (2023). Allograft anterior cruciate ligament reconstruction fails at a greater rate in patients younger than 34 years. *Arthroscopy, Sports Medicine, and Rehabilitation*, 5(4), 100741.

Prince, J. S., Laor, T., & Bean, J. A. (2005). MRI of anterior cruciate ligament injuries and associated findings in the pediatric knee: changes with skeletal maturation. *American Journal of Roentgenology*, 185(3), 756-762.

Saki, F., Shafiee, H., Tahayori, B., & Ramezani, F. (2023). The effects of core stabilization exercises on the neuromuscular function of athletes with ACL reconstruction. *Scientific Reports*, 13(1), 2202.

Tanaka, S., Inoue, Y., Masuda, Y., Tian, H., Jung, H., & Tanaka, R. (2022). Diagnostic accuracy of physical examination tests for suspected acute anterior cruciate

ligament injury: a systematic review and meta-analysis. International journal of sports physical therapy, 17(5), 742.

Tung, G. A., Davis, L. M., Wiggins, M. E., & Fadale, P. D. (1993). Tears of the anterior cruciate ligament: primary and secondary signs at MR imaging. Radiology, 188(3), 661-667.

Vaghasiya, J. V., Mayorga-Martinez, C. C., & Pumera, M. (2023). Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flexible Electronics, 7(1), 26.

Vahey, T. N., Broome, D. R., Kayes, K. J., & Shelbourne, K. D. (1991). Acute and chronic tears of the anterior cruciate ligament: differential features at MR imaging. Radiology, 181(1), 251-253.

Yusof, N. F. A., & Lin, C. (2022). Routine Outcome Monitoring in Psychotherapy Treatment using Sentiment-Topic Modelling Approach. arXiv preprint arXiv:2212.08111.

