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Abstract: Wearable electroencephalogram (EEG)-based neurofeedback has emerged as a promising non-
pharmacological approach for improving attention and managing core symptoms of attention-
deficit/hyperactivity disorder (ADHD). By providing immediate visual or auditory cues tied to neural 
activity, individuals can learn to self-regulate specific brain rhythms associated with focus, impulsivity, and 
hyperactivity. Recent technological advances in electrode design and artifact mitigation now allow for 
practical, user-friendly solutions in everyday settings, including home and school environments. 
Furthermore, integrating real-time motion tracking with EEG recording enhances data reliability, 
particularly for children who tend to be restless during training. Personalized protocols that tailor the 
intervention to individual EEG profiles have shown potential in increasing the proportion of successful 
learners. In addition, combining EEG neurofeedback with other modalities and complementary behavioral 
strategies may further strengthen therapeutic outcomes. This review explores the current state, challenges, 
and prospects of wearable EEG neurofeedback for ADHD.

1 INTRODUCTION 

Attention-deficit/hyperactivity disorder (ADHD) is 
a common neurodevelopmental disorder, affecting 
approximately 5% of children worldwide, often 
leading to decreased academic performance, 
impaired social interactions, and reduced quality 
of life (Lansbergen et al. 2011). Traditional 
therapeutic methods, such as pharmacological 
treatment and behavioral interventions, have 
demonstrated efficacy to some extent, yet 
frequently come with adverse side effects and 
inconsistent long-term effectiveness (Enriquez-
Geppert et al. 2019). Thus, exploring safe, non-
invasive, and sustainable alternative interventions 
is of critical importance. In recent years, the rapid 
advancement of wearable EEG technology has 
opened new avenues for neurofeedback therapy. 
Neurofeedback techniques collect real-time EEG 
signals and translate specific frequency-band 
activity into intuitive feedback, enabling 
individuals to conduct self-regulation training in 
natural environments and thereby improve their 
attentional state (Flanagan & Saikia 2023). This 

brain–computer interface-based intervention, 
utilizing affordable and portable EEG devices, 
overcomes traditional laboratory constraints and 
can enhance patient engagement and adherence in 
real-world settings such as home and school 
(Zamora Blandón et al. 2016). Current studies 
indicate that targeted modulation of EEG 
parameters—for example, reducing theta-wave 
power while enhancing beta-wave activity—can 
improve attention control in patients with ADHD 
(van Doren et al. 2019). Moreover, several 
systematic reviews and meta-analyses have 
demonstrated additive therapeutic effects when 
EEG neurofeedback is combined with 
pharmacological treatments, particularly in 
improving core symptoms of ADHD (Lin et al. 
2022). This non-invasive intervention not only 
offers novel therapeutic approaches in clinical 
practice but also lays the groundwork for 
personalized and remote-monitoring strategies in 
future treatment paradigms (Emish & Young 
2024). Furthermore, individualized neurofeedback 
programs guided by quantitative EEG (QEEG) 
techniques allow tailored training strategies based 
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on each patient’s unique EEG characteristics, 
potentially leading to more targeted improvements 
in attention deficits and paving the way for 
personalized medical care (Arns et al. 2012). This 
review systematically examines the latest 
advancements in wearable EEG-based 
neurofeedback for ADHD treatment, emphasizing 
its safety, efficacy, and long-term sustainability in 
enhancing attention while reducing hyperactive 
and impulsive symptoms. By integrating findings 
from randomized controlled trials, meta-analyses, 
and open-label studies, this paper not only 
evaluates the clinical potential of EEG 
neurofeedback in treating ADHD but also provides 
theoretical guidance for designing future 
individualized intervention strategies. 

2 CURRENT RESEARCH 
METHODS: COMPARATIVE 
ANALYSES AND 
IMPROVEMENT 
RECOMMENDATIONS 

Recent EEG-neurofeedback research on ADHD has 
employed a diverse range of study designs, spanning 
rigorous randomized controlled trials (RCTs) with 
double-blind placebo or sham-feedback conditions 
to more flexible open-label investigations 
(Lansbergen et al. 2011, Enriquez-Geppert et al. 
2019, Garcia Pimenta et al. 2021). While the 
stringent RCT, double-blind approach can minimize 
expectancy bias, its implementation often requires 
considerable logistical resources and is not without 
ethical implications. Consequently, several studies 
use single-blind or open-label frameworks, 
acknowledging that open-label designs, though less 
cumbersome, remain prone to heightened placebo 
effects (Zamora Blandón et al. 2016, Arns et al. 
2012, Barth et al. 2021). Participant selection and 
randomization strategies also vary: some 
investigations focus solely on school-aged children, 
whereas others enroll adolescents or adults. Notably, 
these choices influence outcomes because factors 
such as medication status, ADHD subtypes, and co-
occurring conditions can moderate training efficacy 
(Zamora Blandón et al. 2016, Arns et al. 2012). 
These divergences further complicate subsequent 
meta-analyses, given the heterogeneous methods 
that mix different age groups and symptom profiles 
(Barth et al. 2021). Moreover, sample sizes in EEG-
neurofeedback trials for ADHD are typically 
modest, undermining statistical power when 

evaluating group-level changes (van Doren et al. 
2019). Many researchers thus advocate multi-center 
collaborations or data-sharing initiatives to enlarge 
pooled datasets and enhance result generalizability. 
In terms of analysis, repeated-measures ANOVAs 
and paired t-tests are commonly employed to 
compare baseline and post-training improvements. 
However, machine learning algorithms are 
increasingly being utilized to classify subtle EEG 
patterns associated with ADHD (Chauhan & Choi 
2023, Yaacob et al. 2023). Such approaches are 
well-suited for capturing individualized response 
trajectories and detecting potentially overlooked 
brain-signal nuances. By moving beyond mere 
group-level comparisons, these emerging methods 
allow clinicians to account for personal brain 
signatures, thereby advancing the prospects for 
precision medicine in ADHD. Overall, while 
research methodology is strengthening, further 
standardization of both design and analysis is crucial 
to firmly establish neurofeedback’s clinical 
effectiveness and ensure cross-study comparability. 

Reported findings indicate that EEG 
neurofeedback can reduce core ADHD symptoms—
particularly inattention and impulsivity—across 
multiple investigations (Lansbergen et al. 2011, 
Garcia Pimenta et al. 2021). Nonetheless, these 
apparent benefits should be interpreted judiciously. 
A persistent issue involves participant 
generalizability: although some individuals 
(“learners”) readily acquire and maintain targeted 
EEG modulation, others (“non-learners”) show 
negligible training effects (Garcia Pimenta et al. 
2021, Barth et al. 2021). Such disparities can distort 
group-level assessments of neurofeedback outcomes 
and may reflect differences in reward sensitivity, 
baseline brain patterns, or motivation. Further 
complicating the landscape, EEG signals are 
notoriously vulnerable to artifacts arising from 
muscle tension, eye blinks, or body movement, 
especially among children whose restlessness may 
substantially degrade signal quality (Zamora 
Blandón et al. 2016, Pei et al. 2022). These artifacts 
can mask meaningful neuronal patterns, diminishing 
the reliability of real-time feedback. Differences in 
control conditions also matter. Some studies employ 
sham feedback or placebo interventions; others rely 
on waiting-list controls or established cognitive 
training regimens; and a few compare 
neurofeedback directly with stimulant medications. 
Because each control condition invokes distinct 
nonspecific influences—from expectancy to 
coaching—synthesizing results remains challenging. 
Indeed, comparing data across heterogeneous 
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designs demands considerable caution and 
underscores the pressing need for consensus 
protocols. In response, scholars have proposed 
expanding sample sizes and enhancing 
methodological uniformity to minimize random 
variation and mitigate nonspecific confounds (van 
Doren et al. 2019, Barth et al. 2021). Additionally, 
advanced data-processing pipelines featuring robust 
artifact rejection can better isolate genuine brain-
signal changes. Another recommended strategy 
involves personalizing neurofeedback to each 
participant’s QEEG profile (Garcia Pimenta et al. 
2021, Barth et al. 2021). For instance, individuals 
with abnormal theta/beta ratios might benefit from 
frequency-specific training, whereas those 
displaying atypical slow cortical potentials could 
pursue alternative protocols. This tailored approach 
aims to address the “non-learner” challenge by 
aligning the feedback strategy with each child’s 
neurophysiological profile, potentially increasing the 
likelihood of consistent brain-signal modulation and 
clinically meaningful outcomes. 

3 EQUIPMENT TECHNOLOGY 
AND SIGNAL ACQUISITION: 
INNOVATIONS AND 
OPTIMIZATIONS 

Rising demand for at-home ADHD neurofeedback 
protocols has accelerated the development of 
convenient, user-friendly EEG headsets (Flanagan & 
Saikia 2023). Typically, these consumer-grade 
devices incorporate fewer electrodes, simplified 
signal amplifiers, and faster setup procedures. 
Because families can administer sessions 
independently, children can receive more frequent 
and potentially more ecologically valid training. 
However, such portable gear may be especially 
susceptible to electromagnetic noise and head-
motion artifacts if a child fidgets during lengthy 
sessions. Consequently, stable electrode contact and 
low impedance remain crucial. Conventional “wet” 
electrodes using conductive gel offer strong 
coupling and low resistive noise, but require 
extensive preparation time and post-session cleanup, 
potentially hindering daily home use. By contrast, 
“dry” electrodes promise near-instant application yet 
often exhibit higher contact impedance, risking 
signal attenuation or drift over repeated movements 
(Zamora Blandón et al. 2016, Pei et al. 2022). A 
practical compromise has emerged in “semi-dry” or 
“half-wet” electrodes that partially maintain 

moisture via a minimal reservoir of saline or 
hydrogel. These designs can markedly reduce setup 
time while avoiding the dryness-induced noise 
typical of conventional dry electrodes. Notably, pre-
gelled (PreG) electrodes—packaged with a stable 
hydrogel—have gained attention for their quick 
application and robust signal fidelity comparable to 
standard wet electrodes (Pei et al. 2022). Because 
ADHD training sessions may exceed 20–30 minutes, 
consistent user comfort is also critical. If electrode 
pressure or scalp friction causes irritation, data 
quality and participant compliance can deteriorate. 
Among pediatric populations, discomfort or time-
consuming routines may undermine adherence. 
Consequently, hardware researchers emphasize 
ergonomics, ensuring that headbands or caps apply 
minimal scalp pressure while maintaining adequate 
electrode-skin contact. Although most consumer 
EEG solutions feature lower electrode density than 
their laboratory-grade counterparts, they show 
promise for cost-effectively scaling neurofeedback 
interventions to larger ADHD cohorts in realistic 
environments. 

Beyond hardware innovations, advanced EEG 
preprocessing is vital for maximizing data reliability, 
particularly in dynamic or home-based settings. 
Conventional methods include band-pass filtering 
(e.g. 1–45 Hz) to remove low-frequency drifts and 
line noise, followed by artifact correction. 
Techniques such as independent component analysis 
(ICA) excel at isolating ocular or muscle artifacts 
from genuine neural oscillations, yet they typically 
rely on offline post-processing and cannot fully 
safeguard real-time feedback loops from abrupt 
signal contamination. Accordingly, recent research 
prioritizes integrated artifact detection that operates 
continuously, enabling immediate suppression of 
spurious signals (Zamora Blandón et al. 2016, Pei et 
al. 2022, Yaacob et al. 2023). One promising 
strategy involves merging inertial measurement unit 
(IMU) sensors with EEG data: headsets equipped 
with accelerometers or gyroscopes can track head 
motion and automatically discount intervals of 
abrupt movement, helping preserve feedback 
fidelity. Given that ADHD participants often exhibit 
restlessness, such automated artifact removal 
contributes to more reliable training. In addition, the 
field increasingly advocates standardization in 
hardware design and data formatting. Drawing on 
precedents in MRI and fNIRS research, many EEG 
practitioners endorse Brain Imaging Data Structure 
(BIDS)-like guidelines that outline consistent 
naming conventions, metadata files, and directory 
architectures. Aligning with these protocols reduces 
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confusion when merging datasets from multiple sites 
and bolsters large-scale meta-analyses. For example, 
if certain PreG electrode setups or real-time motion 
filters become widespread, researchers relying on 
BIDS-based references can compare data more 
systematically. In essence, the intersection of refined 
electrode technology, continuous artifact mitigation, 
and standardized data practices underpins a more 
robust, scalable, and clinically viable framework for 
EEG-based neurofeedback—bridging the gap 
between controlled lab studies and everyday ADHD 
interventions in schools or homes. 

4 CROSS-DISCIPLINARY 
INTEGRATION AND 
MULTIMODAL DATA FUSION 
IN NEUROFEEDBACK 
APPLICATIONS 

Traditional ADHD assessments have predominantly 
relied on behavior rating inventories (e.g. parent- or 
teacher-report scales) and the continuous 
performance test (CPT). Although instrumental for 
diagnostic screening and follow-up, these measures 
can suffer from subjective biases and limited 
ecological validity (Wiebe et al. 2023). 
Consequently, there is growing interest in 
augmenting standard assessments with objective 
neurophysiological markers, especially EEG. For 
example, a VR-based CPT can situate participants in 
a quasi-realistic environment replete with distractors, 
while simultaneously recording EEG data to detect 
cortical oscillation deviations at moments of 
inattention or impulsivity (Wiebe et al. 2023). Such 
integrated methods can better identify ADHD 
subgroups that fail to filter out irrelevant stimuli, 
thereby enhancing diagnostic precision. When self-
reports yield conflicting or unclear outcomes, 
corresponding EEG signatures may clarify the 
underlying attentional deficits. In both clinical and 
research applications, integrating EEG into ADHD 
assessment confers dual benefits: it provides 
continuous, real-time neural activity to supplement 
subjective rating scales, and it enables objective 
tracking of therapy responsiveness—whether from 
medication, behavioral interventions, or 
neurofeedback. Researchers have noted that stable 
shifts in fronto-central EEG rhythms frequently 
accompany improvements in daily functioning. 
Conversely, if post-treatment rating scales suggest 
progress but EEG metrics remain largely unchanged, 
clinicians might investigate whether external biases 

inflated subjective judgments. Thus, combining 
qualitative and quantitative insights can yield a more 
comprehensive and trustworthy view of patient 
progress. Early results from integrated protocols 
show that repeated self-regulation of specific EEG 
rhythms—guided by continuous neural feedback—
may help participants sustain improvements beyond 
training sessions. Observing these gains in more 
naturalistic tasks, such as VR-based or real-world 
scenarios, reinforces confidence in the potential 
generalizability of EEG-based interventions. 
However, broader clinical adoption will require 
greater uniformity in VR task designs, outcome 
metrics, and data-analytics pipelines. 

From a human–computer interaction (HCI) 
perspective, neurofeedback systems must provide 
feedback that meaningfully engages users with 
ADHD without overloading their cognitive capacity. 
Virtual reality (VR) offers a promising solution: 
immediate visual and auditory cues in an immersive 
environment can promote active participation. 
Preliminary studies suggest that integrating VR into 
EEG neurofeedback training can boost user 
motivation and sustain interest, potentially reducing 
dropout rates (Cho et al. 2004). Designing such 
systems demands attention to interface clarity, 
adjustable task difficulty, and minimal latency to 
ensure tight coupling between neural events and on-
screen feedback. On a broader scale, multimodal 
approaches that combine EEG with functional near-
infrared spectroscopy (fNIRS), eye-tracking, or 
peripheral physiological measures (e.g. heart rate) are 
becoming increasingly prevalent (Emish & Young 
2024, Chen et al. 2024). Each modality contributes 
distinct information—fNIRS reveals cerebral 
hemodynamics in the prefrontal cortex, eye-tracking 
uncovers gaze shifts to irrelevant stimuli, and heart-
rate variability indicates arousal or stress levels. 
Collectively, these signals yield a more holistic 
understanding of ADHD’s diverse manifestations. 
Nonetheless, researchers must address 
synchronization issues due to varying sampling rates 
or temporal resolutions, highlighting the need for 
unified triggers, shared reference frames, and 
integrated software frameworks. Another obstacle 
lies in the absence of consistent standards for 
multimodal setups, including recommended electrode 
or emitter placements and validated data fusion 
algorithms. Following the BIDS initiative, experts 
are championing universal protocols specifying 
metadata formats, data-collection timing, and file 
structures for combined EEG–fNIRS–eye-tracking 
recordings (Pernet et al. 2019, Chen et al. 2024). 
Once established, such guidelines can strengthen data 
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quality, reproducibility, and cross-laboratory 
collaboration. Ultimately, refining these multimodal 
neurofeedback systems will depend on 
interdisciplinary partnerships among neuroscientists, 
engineers, clinicians, and HCI specialists. Future 
platforms that seamlessly integrate multiple 
biometrics, adapt training dynamically in real time, 
and maximize ecological validity may prove 
instrumental in optimizing ADHD interventions and 
expanding their clinical impact. 

5 CONCLUSION 

Advances in wearable EEG neurofeedback for 
ADHD have offered new avenues for improving 
attentional regulation and addressing core symptoms 
such as inattention, hyperactivity, and impulsivity. 
Across various studies, advancements in device 
design—ranging from PreG and semi-dry electrodes 
to sophisticated artifact-rejection algorithms—have 
led to greater convenience and reliability in data 
acquisition. By reducing setup time and enhancing 
comfort, these developments aid consistent user 
adherence, a critical requirement given the need for 
repeated neurofeedback sessions. Furthermore, 
home-friendly EEG systems are increasingly 
recognized for their ecological validity, as children 
and adolescents often respond more naturally in 
familiar day-to-day environments than they would in 
clinical laboratories. While many trials report 
encouraging outcomes—particularly reductions in 
inattention and impulsivity—findings must be 
viewed with caution due to methodological 
disparities and limited sample sizes. Notably, a 
recent meta-analysis focusing on self-reported 
outcomes found no significant advantage of 
neurofeedback over control interventions on core 
ADHD symptom ratings (Fan et al. 2022). The 
heterogeneity of control conditions further 
complicates the extraction of firm conclusions. 
Additionally, the phenomenon of “learners” versus 
“non-learners” underscores substantial inter-
individual variability. Some participants master EEG 
self-regulation with relative ease, whereas others 
show negligible change in their cortical rhythms or 
behavioral measures. For researchers, pinpointing 
why some individuals respond more favorably than 
others remains a key challenge. One potential 
answer lies in tailoring training protocols according 
to each participant’s QEEG profile. Although these 
personalized approaches have demonstrated 
promise, larger-scale and multi-center studies are 
needed to systematically assess their superiority over 

“one-size-fits-all” methods. 
On the technical side, real-time artifact detection 

has emerged as a vital component for ensuring robust 
feedback loops. By incorporating IMUs into 
wearable headsets, clinicians can swiftly filter out 
data segments compromised by motion or muscle 
activity. This integration of additional sensors not 
only preserves data quality but also aligns well with 
modern trends in multimodal neuroscience research. 
Synchronizing these signals, however, requires 
carefully harmonized hardware/software solutions as 
well as shared standards, analogous to the BIDS 
initiative. Although efforts toward such 
standardization are ongoing, more concerted cross-
disciplinary collaborations—spanning neuroscience, 
engineering, data science, and clinical practice—
could rapidly accelerate the refinement of 
multimodal neurofeedback frameworks. From a 
clinical standpoint, combining EEG neurofeedback 
with psychosocial or behavioral therapies may 
bolster overall treatment outcomes, particularly if 
parents and teachers remain engaged and supportive. 
Early evidence suggests that such integrated 
interventions can yield improvements not only in 
core ADHD symptoms but also in related behavioral 
or cognitive domains (Luo et al. 2023). Nonetheless, 
further validation via randomized, multi-center trials 
is crucial to solidify claims of lasting therapeutic 
benefit. Another avenue involves bridging 
neurofeedback with psychopharmacology. 
Preliminary meta-analyses indicate that 
neurofeedback may act synergistically with stimulant 
medications by either lowering the required dosage 
or complementing existing regimens (Lin et al. 
2022). More extensive comparative-effectiveness 
studies should clarify the longevity and relative 
efficacy of these combination strategies. 

In sum, wearable EEG neurofeedback for ADHD 
has reached a notable inflection point: hardware 
miniaturization, improved electrodes, and advanced 
machine learning techniques have converged to 
create systems that may soon become routine in both 
clinical and home settings. Still, critical challenges 
loom. Researchers must resolve inconsistencies in 
outcome measures and refine best-practice protocols 
for open-label and blinded studies alike. 
Concurrently, the field should prioritize larger 
sample sizes, standard data formats, and real-time 
noise mitigation to ensure replicable, high-quality 
findings. Ultimately, by combining technical 
ingenuity with robust methodological design, EEG 
neurofeedback stands poised to advance from an 
emerging adjunctive therapy to a mainstay 
intervention for ADHD—one that can be flexibly 
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adapted to individual neurophysiological profiles and 
seamlessly integrated into daily life. 
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