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Wearable electroencephalogram (EEG)-based neurofeedback has emerged as a promising non-

pharmacological approach for improving attention and managing core symptoms of attention-
deficit/hyperactivity disorder (ADHD). By providing immediate visual or auditory cues tied to neural
activity, individuals can learn to self-regulate specific brain rhythms associated with focus, impulsivity, and
hyperactivity. Recent technological advances in electrode design and artifact mitigation now allow for
practical, user-friendly solutions in everyday settings, including home and school environments.
Furthermore, integrating real-time motion tracking with EEG recording enhances data reliability,
particularly for children who tend to be restless during training. Personalized protocols that tailor the
intervention to individual EEG profiles have shown potential in increasing the proportion of successful
learners. In addition, combining EEG neurofeedback with other modalities and complementary behavioral
strategies may further strengthen therapeutic outcomes. This review explores the current state, challenges,
and prospects of wearable EEG neurofeedback for ADHD.

1 INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is
a common neurodevelopmental disorder, affecting
approximately 5% of children worldwide, often
leading to decreased academic performance,
impaired social interactions, and reduced quality
of life (Lansbergen et al. 2011). Traditional
therapeutic methods, such as pharmacological
treatment and behavioral interventions, have
demonstrated efficacy to some extent, yet
frequently come with adverse side effects and
inconsistent long-term effectiveness (Enriquez-
Geppert et al. 2019). Thus, exploring safe, non-
invasive, and sustainable alternative interventions
is of critical importance. In recent years, the rapid
advancement of wearable EEG technology has
opened new avenues for neurofeedback therapy.
Neurofeedback techniques collect real-time EEG
signals and translate specific frequency-band
activity into intuitive feedback, enabling
individuals to conduct self-regulation training in
natural environments and thereby improve their
attentional state (Flanagan & Saikia 2023). This

174

Zhu, L.

brain—computer  interface-based  intervention,
utilizing affordable and portable EEG devices,
overcomes traditional laboratory constraints and
can enhance patient engagement and adherence in
real-world settings such as home and school
(Zamora Blandén et al. 2016). Current studies
indicate that targeted modulation of EEG
parameters—for example, reducing theta-wave
power while enhancing beta-wave activity—can
improve attention control in patients with ADHD
(van Doren et al. 2019). Moreover, several
systematic reviews and meta-analyses have
demonstrated additive therapeutic effects when
EEG  neurofeedback is combined  with
pharmacological treatments, particularly in
improving core symptoms of ADHD (Lin et al.
2022). This non-invasive intervention not only
offers novel therapeutic approaches in clinical
practice but also lays the groundwork for
personalized and remote-monitoring strategies in
future treatment paradigms (Emish & Young
2024). Furthermore, individualized neurofeedback
programs guided by quantitative EEG (QEEG)
techniques allow tailored training strategies based
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on each patient’s unique EEG characteristics,
potentially leading to more targeted improvements
in attention deficits and paving the way for
personalized medical care (Arns et al. 2012). This
review systematically examines the latest
advancements in wearable EEG-based
neurofeedback for ADHD treatment, emphasizing
its safety, efficacy, and long-term sustainability in
enhancing attention while reducing hyperactive
and impulsive symptoms. By integrating findings
from randomized controlled trials, meta-analyses,
and open-label studies, this paper not only
evaluates the clinical potential of EEG
neurofeedback in treating ADHD but also provides
theoretical guidance for designing future
individualized intervention strategies.

2 CURRENT RESEARCH
METHODS: COMPARATIVE
ANALYSES AND
IMPROVEMENT
RECOMMENDATIONS

Recent EEG-neurofeedback research on ADHD has
employed a diverse range of study designs, spanning
rigorous randomized controlled trials (RCTs) with
double-blind placebo or sham-feedback conditions
to more flexible open-label investigations
(Lansbergen et al. 2011, Enriquez-Geppert et al.
2019, Garcia Pimenta et al. 2021). While the
stringent RCT, double-blind approach can minimize
expectancy bias, its implementation often requires
considerable logistical resources and is not without
ethical implications. Consequently, several studies
use single-blind or open-label frameworks,
acknowledging that open-label designs, though less
cumbersome, remain prone to heightened placebo
effects (Zamora Blandon et al. 2016, Arns et al.
2012, Barth et al. 2021). Participant selection and
randomization  strategies also  vary: some
investigations focus solely on school-aged children,
whereas others enroll adolescents or adults. Notably,
these choices influence outcomes because factors
such as medication status, ADHD subtypes, and co-
occurring conditions can moderate training efficacy
(Zamora Blandon et al. 2016, Arns et al. 2012).
These divergences further complicate subsequent
meta-analyses, given the heterogeneous methods
that mix different age groups and symptom profiles
(Barth et al. 2021). Moreover, sample sizes in EEG-
neurofeedback trials for ADHD are typically
modest, undermining statistical power when
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evaluating group-level changes (van Doren et al.
2019). Many researchers thus advocate multi-center
collaborations or data-sharing initiatives to enlarge
pooled datasets and enhance result generalizability.
In terms of analysis, repeated-measures ANOVAs
and paired t-tests are commonly employed to
compare baseline and post-training improvements.
However, machine learning algorithms are
increasingly being utilized to classify subtle EEG
patterns associated with ADHD (Chauhan & Choi
2023, Yaacob et al. 2023). Such approaches are
well-suited for capturing individualized response
trajectories and detecting potentially overlooked
brain-signal nuances. By moving beyond mere
group-level comparisons, these emerging methods
allow clinicians to account for personal brain
signatures, thereby advancing the prospects for
precision medicine in ADHD. Overall, while
research methodology is strengthening, further
standardization of both design and analysis is crucial
to firmly establish neurofeedback’s clinical
effectiveness and ensure cross-study comparability.
Reported  findings indicate that EEG
neurofeedback can reduce core ADHD symptoms—
particularly inattention and impulsivity—across
multiple investigations (Lansbergen et al. 2011,
Garcia Pimenta et al. 2021). Nonetheless, these
apparent benefits should be interpreted judiciously.
A persistent  issue  involves  participant
generalizability: ~ although  some  individuals
(“learners™) readily acquire and maintain targeted
EEG modulation, others (“non-learners”) show
negligible training effects (Garcia Pimenta et al.
2021, Barth et al. 2021). Such disparities can distort
group-level assessments of neurofeedback outcomes
and may reflect differences in reward sensitivity,
baseline brain patterns, or motivation. Further
complicating the landscape, EEG signals are
notoriously vulnerable to artifacts arising from
muscle tension, eye blinks, or body movement,
especially among children whose restlessness may
substantially degrade signal quality (Zamora
Blandon et al. 2016, Pei et al. 2022). These artifacts
can mask meaningful neuronal patterns, diminishing
the reliability of real-time feedback. Differences in
control conditions also matter. Some studies employ
sham feedback or placebo interventions; others rely
on waiting-list controls or established cognitive
training  regimens; and a few compare
neurofeedback directly with stimulant medications.
Because each control condition invokes distinct
nonspecific  influences—from  expectancy to
coaching—synthesizing results remains challenging.
Indeed, comparing data across heterogeneous
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designs demands considerable caution and
underscores the pressing need for consensus
protocols. In response, scholars have proposed
expanding  sample sizes and  enhancing
methodological uniformity to minimize random
variation and mitigate nonspecific confounds (van
Doren et al. 2019, Barth et al. 2021). Additionally,
advanced data-processing pipelines featuring robust
artifact rejection can better isolate genuine brain-
signal changes. Another recommended strategy
involves personalizing neurofeedback to each
participant’s QEEG profile (Garcia Pimenta et al.
2021, Barth et al. 2021). For instance, individuals
with abnormal theta/beta ratios might benefit from
frequency-specific ~ training, = whereas  those
displaying atypical slow cortical potentials could
pursue alternative protocols. This tailored approach
aims to address the “non-learner” challenge by
aligning the feedback strategy with each child’s
neurophysiological profile, potentially increasing the
likelihood of consistent brain-signal modulation and
clinically meaningful outcomes.

3 EQUIPMENT TECHNOLOGY
AND SIGNAL ACQUISITION:
INNOVATIONS AND
OPTIMIZATIONS

Rising demand for at-home ADHD neurofeedback
protocols has accelerated the development of
convenient, user-friendly EEG headsets (Flanagan &
Saikia 2023). Typically, these consumer-grade
devices incorporate fewer electrodes, simplified
signal amplifiers, and faster setup procedures.
Because  families can administer  sessions
independently, children can receive more frequent
and potentially more ecologically valid training.
However, such portable gear may be especially
susceptible to electromagnetic noise and head-
motion artifacts if a child fidgets during lengthy
sessions. Consequently, stable electrode contact and
low impedance remain crucial. Conventional “wet”
electrodes using conductive gel offer strong
coupling and low resistive noise, but require
extensive preparation time and post-session cleanup,
potentially hindering daily home use. By contrast,
“dry” electrodes promise near-instant application yet
often exhibit higher contact impedance, risking
signal attenuation or drift over repeated movements
(Zamora Blandon et al. 2016, Pei et al. 2022). A
practical compromise has emerged in “semi-dry” or
“half-wet” electrodes that partially maintain

176

moisture via a minimal reservoir of saline or
hydrogel. These designs can markedly reduce setup
time while avoiding the dryness-induced noise
typical of conventional dry electrodes. Notably, pre-
gelled (PreG) electrodes—packaged with a stable
hydrogel—have gained attention for their quick
application and robust signal fidelity comparable to
standard wet electrodes (Pei et al. 2022). Because
ADHD training sessions may exceed 20—30 minutes,
consistent user comfort is also critical. If electrode
pressure or scalp friction causes irritation, data
quality and participant compliance can deteriorate.
Among pediatric populations, discomfort or time-
consuming routines may undermine adherence.
Consequently, hardware researchers emphasize
ergonomics, ensuring that headbands or caps apply
minimal scalp pressure while maintaining adequate
electrode-skin contact. Although most consumer
EEG solutions feature lower electrode density than
their laboratory-grade counterparts, they show
promise for cost-effectively scaling neurofeedback
interventions to larger ADHD cohorts in realistic
environments.

Beyond hardware innovations, advanced EEG
preprocessing is vital for maximizing data reliability,
particularly in dynamic or home-based settings.
Conventional methods include band-pass filtering
(e.g. 1-45 Hz) to remove low-frequency drifts and
line noise, followed by artifact correction.
Techniques such as independent component analysis
(ICA) excel at isolating ocular or muscle artifacts
from genuine neural oscillations, yet they typically
rely on offline post-processing and cannot fully
safeguard real-time feedback loops from abrupt
signal contamination. Accordingly, recent research
prioritizes integrated artifact detection that operates
continuously, enabling immediate suppression of
spurious signals (Zamora Blandén et al. 2016, Pei et
al. 2022, Yaacob et al. 2023). One promising
strategy involves merging inertial measurement unit
(IMU) sensors with EEG data: headsets equipped
with accelerometers or gyroscopes can track head
motion and automatically discount intervals of
abrupt movement, helping preserve feedback
fidelity. Given that ADHD participants often exhibit
restlessness, such automated artifact removal
contributes to more reliable training. In addition, the
field increasingly advocates standardization in
hardware design and data formatting. Drawing on
precedents in MRI and fNIRS research, many EEG
practitioners endorse Brain Imaging Data Structure
(BIDS)-like guidelines that outline consistent
naming conventions, metadata files, and directory
architectures. Aligning with these protocols reduces
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confusion when merging datasets from multiple sites
and bolsters large-scale meta-analyses. For example,
if certain PreG electrode setups or real-time motion
filters become widespread, researchers relying on
BIDS-based references can compare data more
systematically. In essence, the intersection of refined
electrode technology, continuous artifact mitigation,
and standardized data practices underpins a more
robust, scalable, and clinically viable framework for
EEG-based neurofeedback—bridging the gap
between controlled lab studies and everyday ADHD
interventions in schools or homes.

4 CROSS-DISCIPLINARY
INTEGRATION AND
MULTIMODAL DATA FUSION
IN NEUROFEEDBACK
APPLICATIONS

Traditional ADHD assessments have predominantly
relied on behavior rating inventories (e.g. parent- or
teacher-report  scales) and the  continuous
performance test (CPT). Although instrumental for
diagnostic screening and follow-up, these measures
can suffer from subjective biases and limited
ecological  validity (Wiebe et al. 2023).
Consequently, there is growing interest in
augmenting standard assessments with objective
neurophysiological markers, especially EEG. For
example, a VR-based CPT can situate participants in
a quasi-realistic environment replete with distractors,
while simultaneously recording EEG data to detect
cortical oscillation deviations at moments of
inattention or impulsivity (Wiebe et al. 2023). Such
integrated methods can better identify ADHD
subgroups that fail to filter out irrelevant stimuli,
thereby enhancing diagnostic precision. When self-
reports yield conflicting or unclear outcomes,
corresponding EEG signatures may clarify the
underlying attentional deficits. In both clinical and
research applications, integrating EEG into ADHD
assessment confers dual benefits: it provides
continuous, real-time neural activity to supplement
subjective rating scales, and it enables objective
tracking of therapy responsiveness—whether from
medication, behavioral interventions, or
neurofeedback. Researchers have noted that stable
shifts in fronto-central EEG rhythms frequently
accompany improvements in daily functioning.
Conversely, if post-treatment rating scales suggest
progress but EEG metrics remain largely unchanged,
clinicians might investigate whether external biases
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inflated subjective judgments. Thus, combining
qualitative and quantitative insights can yield a more
comprehensive and trustworthy view of patient
progress. Early results from integrated protocols
show that repeated self-regulation of specific EEG
rhythms—guided by continuous neural feedback—
may help participants sustain improvements beyond
training sessions. Observing these gains in more
naturalistic tasks, such as VR-based or real-world
scenarios, reinforces confidence in the potential
generalizability of EEG-based interventions.
However, broader clinical adoption will require
greater uniformity in VR task designs, outcome
metrics, and data-analytics pipelines.

From a human—computer interaction (HCI)
perspective, neurofeedback systems must provide
feedback that meaningfully engages users with
ADHD without overloading their cognitive capacity.
Virtual reality (VR) offers a promising solution:
immediate visual and auditory cues in an immersive
environment can promote active participation.
Preliminary studies suggest that integrating VR into
EEG neurofeedback training can boost user
motivation and sustain interest, potentially reducing
dropout rates (Cho et al. 2004). Designing such
systems demands attention to interface clarity,
adjustable task difficulty, and minimal latency to
ensure tight coupling between neural events and on-
screen feedback. On a broader scale, multimodal
approaches that combine EEG with functional near-
infrared spectroscopy (fNIRS), eye-tracking, or
peripheral physiological measures (e.g. heart rate) are
becoming increasingly prevalent (Emish & Young
2024, Chen et al. 2024). Each modality contributes
distinct  information—fNIRS  reveals cerebral
hemodynamics in the prefrontal cortex, eye-tracking
uncovers gaze shifts to irrelevant stimuli, and heart-
rate variability indicates arousal or stress levels.
Collectively, these signals yield a more holistic
understanding of ADHD’s diverse manifestations.
Nonetheless, researchers must address
synchronization issues due to varying sampling rates
or temporal resolutions, highlighting the need for
unified triggers, shared reference frames, and
integrated software frameworks. Another obstacle
lies in the absence of consistent standards for
multimodal setups, including recommended electrode
or emitter placements and validated data fusion
algorithms. Following the BIDS initiative, experts
are championing universal protocols specifying
metadata formats, data-collection timing, and file
structures for combined EEG—fNIRS-eye-tracking
recordings (Pernet et al. 2019, Chen et al. 2024).
Once established, such guidelines can strengthen data
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quality, reproducibility, and cross-laboratory
collaboration. Ultimately, refining these multimodal
neurofeedback  systems  will depend on
interdisciplinary partnerships among neuroscientists,
engineers, clinicians, and HCI specialists. Future
platforms that seamlessly integrate multiple
biometrics, adapt training dynamically in real time,
and maximize ecological validity may prove
instrumental in optimizing ADHD interventions and
expanding their clinical impact.

5 CONCLUSION

Advances in wearable EEG neurofeedback for
ADHD have offered new avenues for improving
attentional regulation and addressing core symptoms
such as inattention, hyperactivity, and impulsivity.
Across various studies, advancements in device
design—ranging from PreG and semi-dry electrodes
to sophisticated artifact-rejection algorithms—have
led to greater convenience and reliability in data
acquisition. By reducing setup time and enhancing
comfort, these developments aid consistent user
adherence, a critical requirement given the need for
repeated neurofeedback sessions. Furthermore,
home-friendly EEG systems are increasingly
recognized for their ecological validity, as children
and adolescents often respond more naturally in
familiar day-to-day environments than they would in
clinical laboratories. While many trials report
encouraging outcomes—particularly reductions in
inattention and impulsivity—findings must be
viewed with caution due to methodological
disparities and limited sample sizes. Notably, a
recent meta-analysis focusing on self-reported
outcomes found no significant advantage of
neurofeedback over control interventions on core
ADHD symptom ratings (Fan et al. 2022). The
heterogeneity of control conditions further
complicates the extraction of firm conclusions.
Additionally, the phenomenon of “learners” versus
“non-learners”  underscores  substantial inter-
individual variability. Some participants master EEG
self-regulation with relative ease, whereas others
show negligible change in their cortical rhythms or
behavioral measures. For researchers, pinpointing
why some individuals respond more favorably than
others remains a key challenge. One potential
answer lies in tailoring training protocols according
to each participant’s QEEG profile. Although these
personalized  approaches have demonstrated
promise, larger-scale and multi-center studies are
needed to systematically assess their superiority over
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“one-size-fits-all” methods.

On the technical side, real-time artifact detection
has emerged as a vital component for ensuring robust
feedback loops. By incorporating IMUs into
wearable headsets, clinicians can swiftly filter out
data segments compromised by motion or muscle
activity. This integration of additional sensors not
only preserves data quality but also aligns well with
modern trends in multimodal neuroscience research.
Synchronizing these signals, however, requires
carefully harmonized hardware/software solutions as
well as shared standards, analogous to the BIDS
initiative.  Although  efforts toward  such
standardization are ongoing, more concerted cross-
disciplinary collaborations—spanning neuroscience,
engineering, data science, and clinical practice—
could rapidly accelerate the refinement of
multimodal neurofeedback frameworks. From a
clinical standpoint, combining EEG neurofeedback
with psychosocial or behavioral therapies may
bolster overall treatment outcomes, particularly if
parents and teachers remain engaged and supportive.
Early evidence suggests that such integrated
interventions can yield improvements not only in
core ADHD symptoms but also in related behavioral
or cognitive domains (Luo et al. 2023). Nonetheless,
further validation via randomized, multi-center trials
is crucial to solidify claims of lasting therapeutic

benefit. ~Another avenue involves bridging
neurofeedback with psychopharmacology.
Preliminary meta-analyses indicate that

neurofeedback may act synergistically with stimulant
medications by either lowering the required dosage
or complementing existing regimens (Lin et al.
2022). More extensive comparative-effectiveness
studies should clarify the longevity and relative
efficacy of these combination strategies.

In sum, wearable EEG neurofeedback for ADHD
has reached a notable inflection point: hardware
miniaturization, improved electrodes, and advanced
machine learning techniques have converged to
create systems that may soon become routine in both
clinical and home settings. Still, critical challenges
loom. Researchers must resolve inconsistencies in
outcome measures and refine best-practice protocols
for open-label and Dblinded studies alike.
Concurrently, the field should prioritize larger
sample sizes, standard data formats, and real-time
noise mitigation to ensure replicable, high-quality
findings. Ultimately, by combining technical
ingenuity with robust methodological design, EEG
neurofeedback stands poised to advance from an
emerging adjunctive therapy to a mainstay
intervention for ADHD—one that can be flexibly
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adapted to individual neurophysiological profiles and
seamlessly integrated into daily life.
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