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EEG-Based emotion recognition is a key area in affective computing and brain-computer interfaces (BCI),

offering real-time insights into human emotional states. Unlike facial expressions or speech, EEG provides
direct neural activity data, making it a robust tool for emotion decoding. However, several challenges hinder
its effectiveness, including low signal-to-noise ratio (SNR), individual variability, and dataset inconsistencies.
These issues affect model generalizability and classification accuracy, limiting real-world applications. This
review is about the preprocessed EEG, machine as well as deep models, as well as cross-dataset generalization
challenges. Comparative evaluation with traditional models such as SVM as well as the PCA is given with
the implementation of the deep models such as the CNNs, LSTMs, as well as the implementation of the
Transformer. Cross-subject variance reduction as well as standardization of databases is necessary for the
advancement of emotional decoding with the use of the EEG. Future research should be targeted toward light
models of Al, as well as the implementation of multiple modes as well as the domain adaptation.

1 INTRODUCTION

Human emotion perception as well as interpretation
is a significant area in BCI, as well as affective
computing. Of the numerous forms of the kinds of
body’s physiological signals, electroencephalography
is a highly promising method toward the recognition
of emotions due to the close correspondence with the
processes at the level of the neurons. Compared with
expressions or voice, electroencephalography
measures inherent emotional states with less
likelihood of being masked, thus being a credible
measure for use in affective computing. EEG signals
have the preference due to their high temporal
resolution as well as the presence of portable as well
as low-cost devices. EEG has been forwarded as a
more effective method toward the recognition of
emotions compared with other forms of the body's
physiological signals due to the close correspondence
with the activities at the level of the neurons as well
as the resistance toward being masked through
voluntary expressions (Rahman et al., 2021). These
attributes coupled with the portability of
electroencephalography as well as the provision of
real-time details have made it a preferable candidate
for use in affective computing systems.
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Despite its potential, EEG-based emotion
recognition faces several challenges. Firstly, the EEG
signal is characterized by a low signal-to-noise ratio
(SNR), making it susceptible to various artifacts from
muscle movements and environmental interference.
Improper preprocessing can significantly impact
classification accuracy in EEG-based emotion
recognition (Liu et al., 2011). Secondly, individual
differences remain a significant issue, as emotional
responses differ across individuals due to personal
experiences, cultural influences, and
neurophysiological variations. The need to identify
more fundamental and universal emotion patterns has
been emphasized, requiring the use of convolutional
layers or attention mechanisms, as well as a deeper
understanding of human emotions (Abibullaev et al.,
2023). Additionally, the limited availability of
standardized EEG emotion datasets hinders the
development and validation of generalized models.
Existing datasets have inconsistencies in stimulus
types and labeling methodologies (Wang & Wang,
2021). Finally, existing machine learning and deep
learning models struggle with generalization across
different datasets, limiting their real-world
applicability. Challenges in cross-dataset adaptation
and transfer learning in EEG-based emotion
recognition have been extensively discussed (Jafari et
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al., 2023).

This review is purposed as a broad overview
of the varied signal processing techniques utilized in
emotional recognition using EEG, the signals
processed in the frequency as well as the time
domains. A brief introduction is given to the emotions
theories before proceeding. It also compares the
performance of machine learning (ML) as well as
deep learning (DL) techniques with their limits.
Further, the current EEG emotional databases as well
as the cross-dataset learning challenges are explored.
Finally, the current applications of emotional
recognition using EEG in the fields of monitoring of
mental health, adaptive learning systems as well as
experience-based immersive situations using virtual
experience is explored.

2 EMOTION THEORIES

Emotion is the essential ingredient of cognition as
well as behavior in humans, influencing decision-
making, perception, as well as social interaction.
Emotion is characterized in the multiple theories of
emotion in psychology as well as neuroscience.

One of the more popular models is the Discrete
Emotion Model, which acknowledges the presence of
the core emotions of happiness, sadness, anger, fear,
surprise, and disgust. These have been characterized
as being present in all societies and being
accompanied by certain facial expressions as well as
certain bodily reactions. This model, originally
advanced in 1992 by Ekman, is also being explored
with regard to cognitive as well as bodily significance
(Lench et al., 2011). Nevertheless, despite the
categorical framework of this model being quite
unique, the model cannot adequately capture the
diversity as well as the complexity of emotional
experience.

An alternative is the Dimensional Emotion Model,
the Valence-Arousal model specifically, originally
proposed by Russell in 1980 and later extended
(Harmon-Jones et al., 2017). It locates emotions in a
dimensional plane: valence, from positive through to
negative emotions, and arousal, the intensity of the
emotional state. For example, joy is at the point of
high valence and high arousal, but sadness is at low
valence and low arousal. It is widely applied in the
area of EEG-based emotional recognition because it
is a flexible as well as scalable method of representing
emotional states.

In addition to these models, the Component
Process Theory emphasizes that emotions are not
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discrete categories but rather dynamic processes that
are determined by cognitive appraisals, physiological
reactions, and situational contexts (Scherer, 2001).
This theory is well compatible with EEG-based
emotion decoding since EEG records the real-time
dynamics of brain activity related to emotional
reactions.

In EEG-based emotional recognition, the V-A
model is utilized in the tagging of emotional states in
multiple databases like SEED, DREAMER, and
DEAP, thereby cementing its use in computational
models. EEG's ability to capture discrete patterns of
the brain for different valences as well as arousal
levels makes the method highly suited for the
examination of affective states. Understanding these
models is required for the creation of EEG-based
emotional recognition models because these models
control the process of feature extraction,
classification method, as well as model evaluation
procedures.

3 EEG SIGNAL
CHARACTERISTICS &
PREPROCESSING
TECHNIQUES

3.1 EEG Signals and Emotional
Correlation

Electroencephalography (EEG) is widely utilized for
the identification of emotions due to the precision
with which the activity of the brain can be measured.
Brain oscillations as represented through the signals
of EEG correspond with distinct frequency bands,
each with specific cognitive as well as emotional
processes. Frequency bands also serve as vital signals
for the decoding of emotional states (Wang & Wang,
2021).

Delta (0.5-4 Hz) is largely associated with
unconsciousness and deep sleep but is also linked
with emotional regulation and stress. Similarly, Theta
(4-8 Hz) is associated with emotional arousal and
processing of the memory, with increased theta
activity observed with the processing of emotional
stimuli. Alpha (8—13 Hz), on the other hand, is linked
with relaxation as well as inhibitory control, with
alpha asymmetry in the front highly correlated with
the state of emotions. Beta (13-30 Hz) is involved in
cognitive processing as well as elevated emotional
states with increased activity observed with tasks of
emotional intensity. Subsequently, Gamma (>30 Hz)
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is involved with higher-level cognition, emotional
perception, as well as integrative processing.
Emotional processing is not uniform in the
distribution across the brain but is localized in
specific regions. For instance, the prefrontal cortex of
the frontal lobe is responsible for the regulation of
emotional responses as well as the process of
decision-making (Val-Calvo et al., 2020).
Meanwhile, the temporal lobe, the amygdala, as well
as the hippocampus, is involved with emotional
recognition as well as the process of encoding the
memory. Subsequently, the parietal lobe processes
sensory as well as emotional input, with the process
being integral in emotional perception as well as
regulation.

3.2 Signal Processing Techniques

EEG signals are very prone to noise from different
sources such as muscle activity, eye movement, and
environmental interference.  Preprocessing s
necessary to enhance signal quality and increase
classification accuracy. Typical preprocessing
methods are filtering, artifact removal, and signal
transformation.

3.2.1 Filtering Techniques

Independent Component Analysis (ICA) separates
EEG sources into statistically independent
components, thereby aiding in the removal of artifacts
(Dadebayev et al., 2022). Similarly, Principal
Component Analysis (PCA) reduces dimensionality
and retains the most informative EEG components,
which is particularly useful for classification tasks
(Wang & Wang, 2021). In addition, Wavelet
Transform (WT) decomposes EEG signals into
different frequency bands, effectively enhancing
signal denoising and further improving signal
processing (Dadebayev et al., 2022).

3.2.2 Time-Domain vs. Frequency-Domain
Approaches

Time-domain features, such as entropy, variance, and
statistical properties, are commonly used to describe
EEG amplitude fluctuations related to emotions
(Dadebayev et al., 2022). Furthermore, frequency-
domain features, including Fast Fourier Transform
(FFT) and Discrete Wavelet Transform (DWT),
decompose EEG signals into different frequency
bands, providing deeper insights into affective states
(Luo et al., 2020). However, a primary challenge in
EEG emotion recognition is inter-subject variability,
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where differences between individuals lead to
inconsistent EEG patterns. Cross-subject adaptation
methods, such as domain adaptation and transfer
learning, aim to mitigate these inconsistencies
(Dadebayeyv et al., 2022).

3.2.3 Experiment: Comparison of EEG
Preprocessing Methods

The objective of this study is to evaluate the
effectiveness of Bandpass Filtering, Independent
Component Analysis (ICA), Principal Component
Analysis (PCA), and Wavelet Transform in
improving EEG signal quality. To achieve this, the
DEAP, SEED, and DREAMER datasets will be
utilized. The methodology involves comparing
signal-to-noise ratio (SNR) variations before and
after preprocessing, using EEG visualization
techniques to assess the effects of filtering, and
training SVM and CNN classifiers to evaluate
emotion classification accuracy. The results will
include a comparison of SNR values (numerical
data), a table summarizing classification accuracy,
and figures illustrating EEG signals before and after
preprocessing. The expected conclusion is that I[CA
will be highly effective for artifact removal, while
Wavelet Transform will provide superior denoising
capabilities.

Traditional feature extraction methods, such as
FFT and PCA, remain widely used. However, deep
learning-based methods, particularly CNNs and
Transformers, are demonstrating promising results in
automatically extracting relevant EEG features for
emotion recognition.

4 MACHINE LEARNING VS.
DEEP LEARNING FOR EEG
EMOTION DECODING

4.1 Traditional Machine Learning
Approaches

Traditional machine learning (ML) approaches have
been widely used for the recognition of emotions
from EEG since they possess the advantage of being
low computational cost as well as being interpretable.
Most traditional ML approaches leverage hand-
engineered characteristics from the EEG signals such
as PSD, Hjorth parameters, as well as other statistical
metrics.



Support Vector Machines (SVMs), k-Nearest
Neighbors (KNN), Linear Discriminant Analysis
(LDA), and Random Forest (RF) classifiers have
been extensively applied in the field of EEG emotion
decoding. SVMs have been seen as a strong classifier
for the recognition of emotions from EEG, as also
other models such as Decision Trees and Random
Forests (Dadebayev et al., 2022). Decision-level
fusion-based random forest classifiers, when applied,
also support the enhancement of the recognition of
emotions from EEG under noisy conditions (Wang et
al., 2022). However, the greatest limitation of these
models is their inability to capture the temporal
dependencies in the EEG signals effectively.

Though limited, traditional ML models are still a
suitable choice for applications where interpretability
is essential. Feature selection is critical to enhance
EEG-based emotion classification accuracy,
especially to counteract limited feature availability
and excessive signal noise (Luo et al., 2020). As EEG
datasets increase in complexity and size, however,
traditional ML methods are confronted with
mounting  difficulties in  generalization and
scalability.

4.2 Deep Learning Models

Deep learning (DL) revolutionized the use of EEG-
based emotional recognition through the automatic
acquisition of hierarchical representations from the
EEG signals. Compared with traditional ML models
that rely upon hand-coded features, DL models learn
the spatial and temporal dependencies from the raw
EEG signals.

4.2.1 CNN for Spatial Feature Extraction

Convolutional Neural Networks have been
extensively utilized in the modeling of EEG signals
as patterned spatial data, considering the placements
of the electrodes as image-like topographic
representations. CNNs have been utilized for the
extraction of spatial features with notable accuracy
improvements in the classification of emotions
compared with the use of traditional ML methods
(Jafari et al., 2023). The use of CNNs in the analysis
of EEG signals has been widely explored, specifically
their processing of the spatial features (Dadebayev et
al., 2022).
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4.2.2 RNN/LSTM for Sequential EEG
Modeling

Though CNNs can effectively capture spatial
characteristics, RNNs and LSTM networks are more
suited for representing temporal dependencies in the
case of EEG. LSTM networks have been effectively
utilized in the pipelines of EEG emotion recognition,
demonstrating their capabilities for representing
long-range dependencies in the sequences of EEG as
well as improving the accuracy of classification
(Hassouneh et al., 2020).

4.2.3 Transformer-Based EEG Emotion
Decoding

Recent advances in the area of deep learning have
seen the use of Transformer-based models applied in
the recognition of emotions from EEG. In contrast
with RNNs, the use of self-attention mechanisms
ensures long-term dependencies without vanishing
gradients. Transformer models have been found to
have enhanced classification accuracy (Abibullaev et
al., 2023). Some of the benefits of self-attention have
been found in the analysis of EEG, specifically the
capture of long-term dependencies more effectively
compared with RNNs and LSTMs (Dadebayev et al.,
2022)).

4.2.4 Experiment: Traditional vs. Deep
Learning Feature Extraction

The objective of this study is to compare the
performance of hand-crafted features, such as Power
Spectral Density (PSD) and Hjorth parameters,
against deep learning-based features derived from
models like CNN and Transformer in emotion
classification. To achieve this, the DEAP and SEED
datasets will be utilized. The traditional approach
involves extracting features like PSD and Hjorth
parameters, while the deep learning approach focuses
on training CNN and LSTM models for automated
feature extraction. For classification, both SVM and
CNN will be trained and their performance evaluated.
The results will include a comparison of classification
accuracy between traditional and deep learning
methods (presented in a table) and a visualization of
CNN-extracted features using t-SNE. The expected
conclusion is that CNN-extracted features will
outperform hand-crafted features, with Transformers
potentially ~ further = enhancing  classification
performance.
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4.3 Hybrid & Advanced Deep Learning
Models

To leverage the strengths of different architectures,
hybrid models have been proposed to enhance EEG-
based emotion recognition. One such approach
involves CNN-LSTM fusion models, which combine
the spatial feature extraction capabilities of CNNs
with the sequential modeling capabilities of LSTMs.
This hybrid architecture has been shown to
significantly improve EEG emotion classification
accuracy (Wang et al., 2022). Another emerging
approach is the use of Spiking Neural Networks
(SNNs), which mimic biological neural mechanisms
for energy-efficient processing. SNNs have
demonstrated superior performance compared to
traditional FFT-DWT processing in EEG-based
emotion  recognition by  preserving more
neurophysiological information (Luo et al., 2020).

S CHALLENGES AND FUTURE
RESEARCH DIRECTIONS

5.1 Open Challenges

Despite significant research in the area of EEG-based
emotional recognition, there have been numerous
essential challenges. A significant problem is the low
signal-to-noise ratio of the EEG signals, which makes
the  extraction of  meaningful  emotional
characteristics  problematic. Noise from eye
movements, eye blinks, as well as other electronic
interferences, also compromise the quality of the
signals, with the resultant classification accuracy
being low (Zeng et al., 2024).

Another persistent challenge is inter-subject
variability, where differences in brain activity across
individuals result in inconsistent model performance.
Inter-subject variability poses a significant challenge
in EEG-based emotion recognition, as individual
differences in EEG signals affect model
generalizability, making subject-independent models
perform worse than subject-dependent models
(Dadebayev et al., 2022).

Existing EEG emotional databases, SEED and
DEAP, have discrepancies in the method of recording
signals, recording conditions, as well as the
population under investigation, introducing variance
in research results as well as cross-dataset
generalization difficulties (Yang et al., 2024). A
unified experiment set with standardized protocols is
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necessary for improved model comparability.
Constraints of processing in real-time also hinder the
use of emotion decoding models in actual systems.
Most of the present recognition models have been
created for offline processing due to the
computational overhead of feature extraction and
classification, which makes their implementation in
real-time impossible (Liu et al., 2011).

5.2 Promising Future Directions

To address these challenges, several promising
research directions have emerged. Hybrid deep
learning models, such as CNN-LSTM and Spiking
Neural Networks (SNNs), offer potential solutions by
combining spatial and temporal feature extraction,
improving generalization and efficiency (Luo et al.,
2020).

Another promising method is multimodal fusion,
wherein the EEG signals can be coupled with other
body signals such as the galvanic skin response
(GSR) and facial expressions. Research has proved
the use of multiple modalities can be more robust with
enhanced classification accuracy in the recognition of
emotions (Yang et al., 2024).

The development of light AI models for
implementation in real-time BCI is also receiving
attention. Low power-efficient models are being
proposed and being low power-optimized for low
power devices, enabling the implementation of real-
time EEG emotional recognition in wearable devices.
To mitigate dataset bias and improve model
generalization, researchers are exploring techniques
for better cross-dataset learning. Strategies such as
optimizing multimodal datasets and improving
emotion classification models contribute to more
robust and generalizable approaches in EEG-based
emotion recognition (Yang et al., 2024). Future EEG
emotion decoding research must focus on mitigating
cross-subject variability and dataset biases.
Multimodal fusion and domain adaptation hold
promise for improving accuracy, while lightweight
Al models will be essential for real-time BCI
applications.

6 CONCLUSION

EEG-based emotion recognition has become an
essential part of affective computing and brain-
computer interfaces. In the last decade, there has been
considerable advancement in feature extraction,
machine learning models, and deep learning methods



to allow more precise emotion classification from
EEG signals.

Traditional machine learning models like SVM
and Random Forest have been the basis for
classification using EEG but have been limited in
their capabilities in extracting intricate temporal
patterns, which have given birth to the use of deep
models. LSTMs, Transformer models, as well as
CNNs, have been found to perform much better in
extracting significant features as well as classification
accuracy. But these models use large databases as
well as require large computational power, which
makes them non-practicable in the context of real-
time.

Despite advancements, there continue to be
significant challenges with the use of EEG-based
emotional decoding due to the low signal-to-noise
ratio, the large inter-subject variance, as well as the
non-availability of a standard EEG dataset. Cross-
dataset adaptation techniques, multimodal fusion, as
well as the implementation of hybrid deep networks,
can be utilized in countering these challenges.

Future research would be directed toward real-time
BCI implementation, wherein the light models of Al,
being highly efficient, can be utilized with portable
and wearable EEG devices. Also, incorporating
multimodal paradigms through the combination of
EEG with facial expressions, voice, and body signals
like GSR can be used to boost the accuracy of
recognizing emotions. Domain adaptation and
transfer learning will play a crucial role in creating
models that generalize well across different EEG
datasets and recording conditions.

In summary, though EEG-based emotion
recognition is progressing, making it practical to
deploy in real-world scenarios is still a persisting
challenge. Standardized datasets, refined deep
learning  models, and real-time inference
optimizations are the key to moving the field forward
and enabling EEG-based emotion decoding as a
practical approach for affective computing and BCI
applications.
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