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Abstract: EEG-Based emotion recognition is a key area in affective computing and brain-computer interfaces (BCI), 
offering real-time insights into human emotional states. Unlike facial expressions or speech, EEG provides 
direct neural activity data, making it a robust tool for emotion decoding. However, several challenges hinder 
its effectiveness, including low signal-to-noise ratio (SNR), individual variability, and dataset inconsistencies. 
These issues affect model generalizability and classification accuracy, limiting real-world applications. This 
review is about the preprocessed EEG, machine as well as deep models, as well as cross-dataset generalization 
challenges. Comparative evaluation with traditional models such as SVM as well as the PCA is given with 
the implementation of the deep models such as the CNNs, LSTMs, as well as the implementation of the 
Transformer. Cross-subject variance reduction as well as standardization of databases is necessary for the 
advancement of emotional decoding with the use of the EEG. Future research should be targeted toward light 
models of AI, as well as the implementation of multiple modes as well as the domain adaptation. 

1 INTRODUCTION 

Human emotion perception as well as interpretation 
is a significant area in BCI, as well as affective 
computing. Of the numerous forms of the kinds of 
body’s physiological signals, electroencephalography 
is a highly promising method toward the recognition 
of emotions due to the close correspondence with the 
processes at the level of the neurons. Compared with 
expressions or voice, electroencephalography 
measures inherent emotional states with less 
likelihood of being masked, thus being a credible 
measure for use in affective computing. EEG signals 
have the preference due to their high temporal 
resolution as well as the presence of portable as well 
as low-cost devices. EEG has been forwarded as a 
more effective method toward the recognition of 
emotions compared with other forms of the body's 
physiological signals due to the close correspondence 
with the activities at the level of the neurons as well 
as the resistance toward being masked through 
voluntary expressions (Rahman et al., 2021). These 
attributes coupled with the portability of 
electroencephalography as well as the provision of 
real-time details have made it a preferable candidate 
for use in affective computing systems. 

Despite its potential, EEG-based emotion 
recognition faces several challenges. Firstly, the EEG 
signal is characterized by a low signal-to-noise ratio 
(SNR), making it susceptible to various artifacts from 
muscle movements and environmental interference. 
Improper preprocessing can significantly impact 
classification accuracy in EEG-based emotion 
recognition (Liu et al., 2011). Secondly, individual 
differences remain a significant issue, as emotional 
responses differ across individuals due to personal 
experiences, cultural influences, and 
neurophysiological variations. The need to identify 
more fundamental and universal emotion patterns has 
been emphasized, requiring the use of convolutional 
layers or attention mechanisms, as well as a deeper 
understanding of human emotions (Abibullaev et al., 
2023). Additionally, the limited availability of 
standardized EEG emotion datasets hinders the 
development and validation of generalized models. 
Existing datasets have inconsistencies in stimulus 
types and labeling methodologies (Wang & Wang, 
2021). Finally, existing machine learning and deep 
learning models struggle with generalization across 
different datasets, limiting their real-world 
applicability. Challenges in cross-dataset adaptation 
and transfer learning in EEG-based emotion 
recognition have been extensively discussed (Jafari et 

46
Yang, J.
Advances in EEG-Based Emotion Recognition: Methods and Challenges.
DOI: 10.5220/0014386500004933
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Biomedical Engineering and Food Science (BEFS 2025), pages 46-52
ISBN: 978-989-758-789-4
Proceedings Copyright © 2026 by SCITEPRESS – Science and Technology Publications, Lda.



al., 2023). 
 This review is purposed as a broad overview 

of the varied signal processing techniques utilized in 
emotional recognition using EEG, the signals 
processed in the frequency as well as the time 
domains. A brief introduction is given to the emotions 
theories before proceeding. It also compares the 
performance of machine learning (ML) as well as 
deep learning (DL) techniques with their limits. 
Further, the current EEG emotional databases as well 
as the cross-dataset learning challenges are explored. 
Finally, the current applications of emotional 
recognition using EEG in the fields of monitoring of 
mental health, adaptive learning systems as well as 
experience-based immersive situations using virtual 
experience is explored. 

2 EMOTION THEORIES 

Emotion is the essential ingredient of cognition as 
well as behavior in humans, influencing decision-
making, perception, as well as social interaction. 
Emotion is characterized in the multiple theories of 
emotion in psychology as well as neuroscience. 

One of the more popular models is the Discrete 
Emotion Model, which acknowledges the presence of 
the core emotions of happiness, sadness, anger, fear, 
surprise, and disgust. These have been characterized 
as being present in all societies and being 
accompanied by certain facial expressions as well as 
certain bodily reactions. This model, originally 
advanced in 1992 by Ekman, is also being explored 
with regard to cognitive as well as bodily significance 
(Lench et al., 2011). Nevertheless, despite the 
categorical framework of this model being quite 
unique, the model cannot adequately capture the 
diversity as well as the complexity of emotional 
experience. 

An alternative is the Dimensional Emotion Model, 
the Valence-Arousal model specifically, originally 
proposed by Russell in 1980 and later extended 
(Harmon-Jones et al., 2017). It locates emotions in a 
dimensional plane: valence, from positive through to 
negative emotions, and arousal, the intensity of the 
emotional state. For example, joy is at the point of 
high valence and high arousal, but sadness is at low 
valence and low arousal. It is widely applied in the 
area of EEG-based emotional recognition because it 
is a flexible as well as scalable method of representing 
emotional states. 

In addition to these models, the Component 
Process Theory emphasizes that emotions are not 

discrete categories but rather dynamic processes that 
are determined by cognitive appraisals, physiological 
reactions, and situational contexts (Scherer, 2001). 
This theory is well compatible with EEG-based 
emotion decoding since EEG records the real-time 
dynamics of brain activity related to emotional 
reactions. 

In EEG-based emotional recognition, the V-A 
model is utilized in the tagging of emotional states in 
multiple databases like SEED, DREAMER, and 
DEAP, thereby cementing its use in computational 
models. EEG's ability to capture discrete patterns of 
the brain for different valences as well as arousal 
levels makes the method highly suited for the 
examination of affective states. Understanding these 
models is required for the creation of EEG-based 
emotional recognition models because these models 
control the process of feature extraction, 
classification method, as well as model evaluation 
procedures. 

3 EEG SIGNAL 
CHARACTERISTICS & 
PREPROCESSING 
TECHNIQUES 

3.1 EEG Signals and Emotional 
Correlation 

Electroencephalography (EEG) is widely utilized for 
the identification of emotions due to the precision 
with which the activity of the brain can be measured. 
Brain oscillations as represented through the signals 
of EEG correspond with distinct frequency bands, 
each with specific cognitive as well as emotional 
processes. Frequency bands also serve as vital signals 
for the decoding of emotional states (Wang & Wang, 
2021). 

Delta (0.5–4 Hz) is largely associated with 
unconsciousness and deep sleep but is also linked 
with emotional regulation and stress. Similarly, Theta 
(4–8 Hz) is associated with emotional arousal and 
processing of the memory, with increased theta 
activity observed with the processing of emotional 
stimuli. Alpha (8–13 Hz), on the other hand, is linked 
with relaxation as well as inhibitory control, with 
alpha asymmetry in the front highly correlated with 
the state of emotions. Beta (13–30 Hz) is involved in 
cognitive processing as well as elevated emotional 
states with increased activity observed with tasks of 
emotional intensity. Subsequently, Gamma (>30 Hz) 
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is involved with higher-level cognition, emotional 
perception, as well as integrative processing. 
Emotional processing is not uniform in the 
distribution across the brain but is localized in 
specific regions. For instance, the prefrontal cortex of 
the frontal lobe is responsible for the regulation of 
emotional responses as well as the process of 
decision-making (Val-Calvo et al., 2020). 
Meanwhile, the temporal lobe, the amygdala, as well 
as the hippocampus, is involved with emotional 
recognition as well as the process of encoding the 
memory. Subsequently, the parietal lobe processes 
sensory as well as emotional input, with the process 
being integral in emotional perception as well as 
regulation. 

3.2 Signal Processing Techniques 

EEG signals are very prone to noise from different 
sources such as muscle activity, eye movement, and 
environmental interference. Preprocessing is 
necessary to enhance signal quality and increase 
classification accuracy. Typical preprocessing 
methods are filtering, artifact removal, and signal 
transformation. 

3.2.1 Filtering Techniques 

Independent Component Analysis (ICA) separates 
EEG sources into statistically independent 
components, thereby aiding in the removal of artifacts 
(Dadebayev et al., 2022). Similarly, Principal 
Component Analysis (PCA) reduces dimensionality 
and retains the most informative EEG components, 
which is particularly useful for classification tasks 
(Wang & Wang, 2021). In addition, Wavelet 
Transform (WT) decomposes EEG signals into 
different frequency bands, effectively enhancing 
signal denoising and further improving signal 
processing (Dadebayev et al., 2022). 

3.2.2 Time-Domain vs. Frequency-Domain 
Approaches 

Time-domain features, such as entropy, variance, and 
statistical properties, are commonly used to describe 
EEG amplitude fluctuations related to emotions 
(Dadebayev et al., 2022). Furthermore, frequency-
domain features, including Fast Fourier Transform 
(FFT) and Discrete Wavelet Transform (DWT), 
decompose EEG signals into different frequency 
bands, providing deeper insights into affective states 
(Luo et al., 2020). However, a primary challenge in 
EEG emotion recognition is inter-subject variability, 

where differences between individuals lead to 
inconsistent EEG patterns. Cross-subject adaptation 
methods, such as domain adaptation and transfer 
learning, aim to mitigate these inconsistencies 
(Dadebayev et al., 2022). 

3.2.3 Experiment: Comparison of EEG 
Preprocessing Methods 

The objective of this study is to evaluate the 
effectiveness of Bandpass Filtering, Independent 
Component Analysis (ICA), Principal Component 
Analysis (PCA), and Wavelet Transform in 
improving EEG signal quality. To achieve this, the 
DEAP, SEED, and DREAMER datasets will be 
utilized. The methodology involves comparing 
signal-to-noise ratio (SNR) variations before and 
after preprocessing, using EEG visualization 
techniques to assess the effects of filtering, and 
training SVM and CNN classifiers to evaluate 
emotion classification accuracy. The results will 
include a comparison of SNR values (numerical 
data), a table summarizing classification accuracy, 
and figures illustrating EEG signals before and after 
preprocessing. The expected conclusion is that ICA 
will be highly effective for artifact removal, while 
Wavelet Transform will provide superior denoising 
capabilities. 

Traditional feature extraction methods, such as 
FFT and PCA, remain widely used. However, deep 
learning-based methods, particularly CNNs and 
Transformers, are demonstrating promising results in 
automatically extracting relevant EEG features for 
emotion recognition. 

4 MACHINE LEARNING VS. 
DEEP LEARNING FOR EEG 
EMOTION DECODING 

4.1 Traditional Machine Learning 
Approaches 

Traditional machine learning (ML) approaches have 
been widely used for the recognition of emotions 
from EEG since they possess the advantage of being 
low computational cost as well as being interpretable. 
Most traditional ML approaches leverage hand-
engineered characteristics from the EEG signals such 
as PSD, Hjorth parameters, as well as other statistical 
metrics. 

BEFS 2025 - International Conference on Biomedical Engineering and Food Science

48



Support Vector Machines (SVMs), k-Nearest 
Neighbors (KNN), Linear Discriminant Analysis 
(LDA), and Random Forest (RF) classifiers have 
been extensively applied in the field of EEG emotion 
decoding. SVMs have been seen as a strong classifier 
for the recognition of emotions from EEG, as also 
other models such as Decision Trees and Random 
Forests (Dadebayev et al., 2022). Decision-level 
fusion-based random forest classifiers, when applied, 
also support the enhancement of the recognition of 
emotions from EEG under noisy conditions (Wang et 
al., 2022). However, the greatest limitation of these 
models is their inability to capture the temporal 
dependencies in the EEG signals effectively. 

Though limited, traditional ML models are still a 
suitable choice for applications where interpretability 
is essential. Feature selection is critical to enhance 
EEG-based emotion classification accuracy, 
especially to counteract limited feature availability 
and excessive signal noise (Luo et al., 2020). As EEG 
datasets increase in complexity and size, however, 
traditional ML methods are confronted with 
mounting difficulties in generalization and 
scalability. 

4.2 Deep Learning Models 

Deep learning (DL) revolutionized the use of EEG-
based emotional recognition through the automatic 
acquisition of hierarchical representations from the 
EEG signals. Compared with traditional ML models 
that rely upon hand-coded features, DL models learn 
the spatial and temporal dependencies from the raw 
EEG signals. 

4.2.1 CNN for Spatial Feature Extraction 

Convolutional Neural Networks have been 
extensively utilized in the modeling of EEG signals 
as patterned spatial data, considering the placements 
of the electrodes as image-like topographic 
representations. CNNs have been utilized for the 
extraction of spatial features with notable accuracy 
improvements in the classification of emotions 
compared with the use of traditional ML methods 
(Jafari et al., 2023). The use of CNNs in the analysis 
of EEG signals has been widely explored, specifically 
their processing of the spatial features (Dadebayev et 
al., 2022). 

 
 
 

4.2.2 RNN/LSTM for Sequential EEG 
Modeling 

Though CNNs can effectively capture spatial 
characteristics, RNNs and LSTM networks are more 
suited for representing temporal dependencies in the 
case of EEG. LSTM networks have been effectively 
utilized in the pipelines of EEG emotion recognition, 
demonstrating their capabilities for representing 
long-range dependencies in the sequences of EEG as 
well as improving the accuracy of classification 
(Hassouneh et al., 2020). 

4.2.3 Transformer-Based EEG Emotion 
Decoding 

Recent advances in the area of deep learning have 
seen the use of Transformer-based models applied in 
the recognition of emotions from EEG. In contrast 
with RNNs, the use of self-attention mechanisms 
ensures long-term dependencies without vanishing 
gradients. Transformer models have been found to 
have enhanced classification accuracy (Abibullaev et 
al., 2023). Some of the benefits of self-attention have 
been found in the analysis of EEG, specifically the 
capture of long-term dependencies more effectively 
compared with RNNs and LSTMs (Dadebayev et al., 
2022)). 

4.2.4 Experiment: Traditional vs. Deep 
Learning Feature Extraction 

The objective of this study is to compare the 
performance of hand-crafted features, such as Power 
Spectral Density (PSD) and Hjorth parameters, 
against deep learning-based features derived from 
models like CNN and Transformer in emotion 
classification. To achieve this, the DEAP and SEED 
datasets will be utilized. The traditional approach 
involves extracting features like PSD and Hjorth 
parameters, while the deep learning approach focuses 
on training CNN and LSTM models for automated 
feature extraction. For classification, both SVM and 
CNN will be trained and their performance evaluated. 
The results will include a comparison of classification 
accuracy between traditional and deep learning 
methods (presented in a table) and a visualization of 
CNN-extracted features using t-SNE. The expected 
conclusion is that CNN-extracted features will 
outperform hand-crafted features, with Transformers 
potentially further enhancing classification 
performance. 
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4.3 Hybrid & Advanced Deep Learning 
Models 

To leverage the strengths of different architectures, 
hybrid models have been proposed to enhance EEG-
based emotion recognition. One such approach 
involves CNN-LSTM fusion models, which combine 
the spatial feature extraction capabilities of CNNs 
with the sequential modeling capabilities of LSTMs. 
This hybrid architecture has been shown to 
significantly improve EEG emotion classification 
accuracy (Wang et al., 2022). Another emerging 
approach is the use of Spiking Neural Networks 
(SNNs), which mimic biological neural mechanisms 
for energy-efficient processing. SNNs have 
demonstrated superior performance compared to 
traditional FFT-DWT processing in EEG-based 
emotion recognition by preserving more 
neurophysiological information (Luo et al., 2020). 

5 CHALLENGES AND FUTURE 
RESEARCH DIRECTIONS 

5.1 Open Challenges 

Despite significant research in the area of EEG-based 
emotional recognition, there have been numerous 
essential challenges. A significant problem is the low 
signal-to-noise ratio of the EEG signals, which makes 
the extraction of meaningful emotional 
characteristics problematic. Noise from eye 
movements, eye blinks, as well as other electronic 
interferences, also compromise the quality of the 
signals, with the resultant classification accuracy 
being low (Zeng et al., 2024). 

Another persistent challenge is inter-subject 
variability, where differences in brain activity across 
individuals result in inconsistent model performance. 
Inter-subject variability poses a significant challenge 
in EEG-based emotion recognition, as individual 
differences in EEG signals affect model 
generalizability, making subject-independent models 
perform worse than subject-dependent models 
(Dadebayev et al., 2022). 

Existing EEG emotional databases, SEED and 
DEAP, have discrepancies in the method of recording 
signals, recording conditions, as well as the 
population under investigation, introducing variance 
in research results as well as cross-dataset 
generalization difficulties (Yang et al., 2024). A 
unified experiment set with standardized protocols is 

necessary for improved model comparability. 
Constraints of processing in real-time also hinder the 
use of emotion decoding models in actual systems. 
Most of the present recognition models have been 
created for offline processing due to the 
computational overhead of feature extraction and 
classification, which makes their implementation in 
real-time impossible (Liu et al., 2011). 

5.2 Promising Future Directions 

To address these challenges, several promising 
research directions have emerged. Hybrid deep 
learning models, such as CNN-LSTM and Spiking 
Neural Networks (SNNs), offer potential solutions by 
combining spatial and temporal feature extraction, 
improving generalization and efficiency (Luo et al., 
2020). 

Another promising method is multimodal fusion, 
wherein the EEG signals can be coupled with other 
body signals such as the galvanic skin response 
(GSR) and facial expressions. Research has proved 
the use of multiple modalities can be more robust with 
enhanced classification accuracy in the recognition of 
emotions (Yang et al., 2024). 

The development of light AI models for 
implementation in real-time BCI is also receiving 
attention. Low power-efficient models are being 
proposed and being low power-optimized for low 
power devices, enabling the implementation of real-
time EEG emotional recognition in wearable devices. 
To mitigate dataset bias and improve model 
generalization, researchers are exploring techniques 
for better cross-dataset learning. Strategies such as 
optimizing multimodal datasets and improving 
emotion classification models contribute to more 
robust and generalizable approaches in EEG-based 
emotion recognition (Yang et al., 2024). Future EEG 
emotion decoding research must focus on mitigating 
cross-subject variability and dataset biases. 
Multimodal fusion and domain adaptation hold 
promise for improving accuracy, while lightweight 
AI models will be essential for real-time BCI 
applications. 

6 CONCLUSION 

EEG-based emotion recognition has become an 
essential part of affective computing and brain-
computer interfaces. In the last decade, there has been 
considerable advancement in feature extraction, 
machine learning models, and deep learning methods 
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to allow more precise emotion classification from 
EEG signals. 

Traditional machine learning models like SVM 
and Random Forest have been the basis for 
classification using EEG but have been limited in 
their capabilities in extracting intricate temporal 
patterns, which have given birth to the use of deep 
models. LSTMs, Transformer models, as well as 
CNNs, have been found to perform much better in 
extracting significant features as well as classification 
accuracy. But these models use large databases as 
well as require large computational power, which 
makes them non-practicable in the context of real-
time. 

Despite advancements, there continue to be 
significant challenges with the use of EEG-based 
emotional decoding due to the low signal-to-noise 
ratio, the large inter-subject variance, as well as the 
non-availability of a standard EEG dataset. Cross-
dataset adaptation techniques, multimodal fusion, as 
well as the implementation of hybrid deep networks, 
can be utilized in countering these challenges. 

Future research would be directed toward real-time 
BCI implementation, wherein the light models of AI, 
being highly efficient, can be utilized with portable 
and wearable EEG devices. Also, incorporating 
multimodal paradigms through the combination of 
EEG with facial expressions, voice, and body signals 
like GSR can be used to boost the accuracy of 
recognizing emotions. Domain adaptation and 
transfer learning will play a crucial role in creating 
models that generalize well across different EEG 
datasets and recording conditions. 

In summary, though EEG-based emotion 
recognition is progressing, making it practical to 
deploy in real-world scenarios is still a persisting 
challenge. Standardized datasets, refined deep 
learning models, and real-time inference 
optimizations are the key to moving the field forward 
and enabling EEG-based emotion decoding as a 
practical approach for affective computing and BCI 
applications. 
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