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Abstract: With the acceleration of global aging, Alzheimer's Disease (AD) has emerged as a grave public health issue. 
At present, the commonly employed diagnostic methods have certain drawbacks. In contrast, sleep 
electroencephalography (EEG) signals have garnered significant attention in the area of AD prediction, 
mainly because of their non - invasive nature, repeatability, and low cost. In this paper, we review the research 
progress of sleep EEG signals in AD prediction, elaborate the pathological mechanisms of AD, compare the 
advantages and disadvantages of traditional detection methods, and analyze the current status and 
development of sleep stage classification system technology is ongoing. When concentrating on the 
connection between non - rapid eye movement (NREM) sleep stages and AD, it has been discovered that in 
AD patients, the σactivity shows a decline and the EEG undergoes a slowdown during NREM sleep, and that 
σ power during NREM sleep is positively correlated with cognitive ability, which may be used as a reference 
standard for AD detection. Future research efforts should be dedicated to optimizing the algorithm in order to 
enhance the precision of sleep stage classification, integrate multimodal data to explore the relationship 
between sleep and AD, and carry out a large-scale longitudinal study to validate the sleep EEG indexes, so as 
to promote the development of early warning and precise intervention for AD. 

1 INTRODUCTION 

In today's society, with the acceleration of global 
aging, Alzheimer's Disease (AD), as a 
neurodegenerative disease, is the most common form 
of dementia, the third most expensive disease and the 
sixth leading cause of death worldwide. It has become 
a serious public health challenge. 
Following the deposition of insoluble amyloid-β 
(Aβ), tau accumulates in neocortical cells, leading to 
neuronal cell death, synapse loss, brain volume 
reduction, and cognitive impairment. In the absence 
of cognitive symptoms, the progression of 
Alzheimer's disease (AD) involves the gradual 
accumulation of pathological changes, creating a 
critical window for timely therapeutic intervention. 
Sleep patterns are now emerging as a potential 
biomarker for AD pathology and a predictor of future 
cognitive decline Lucey, et al.,2019). 

AD is difficult to diagnose, and symptoms can be 
easily misinterpreted as a normal consequence of 
aging, requiring multiple investigations and the 
exclusion of other causes. Two significant 
pathological changes occur: the deposition of β - 
amyloid plaques and the formation of 

hyperphosphorylated tau neurofibrillary tangles. 
Biomarkers like cerebrospinal fluid (CSF) analysis 
and positron emission tomography (PET) imaging, 
when integrated with clinical evaluations, are 
commonly employed to diagnose the disease, but the 
former is an invasive procedure that causes 
physiological discomfort to the patient such as the 
risk of infection and pain at the puncture site, and the 
latter is expensive to perform with expensive 
equipment and a high cost of learning, which greatly 
limits its popularity. The latter is expensive and costly 
to learn, which greatly limits its popularity. On the 
other hand, sleep electroencephalography (EEG) 
signal acquisition EEG devices are affordable. In 
recent years, the progress of sleep stage recognition 
technology has been remarkable. Due to the 
limitation of manual scoring, the development of 
automatic sleep stage classification system (ASSC) 
has been accelerated, using the PhysioNet Sleep EDF 
database and a decision tree classifier, the model 
achieved an average sensitivity of 89.06%, specificity 
of 98.61%, and accuracy of 93.13%., which improved 
the feasibility and speed of practical application of 
ASSC (Lucey, et al.,2019). feasibility and speed of 
practical application (Aboalayon, et al., 2016). 
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During sleep, the electrical activity of the brain 
exhibits a rich variety of regular changes, which 
contain a vast amount of information regarding the 
state of brain health. Sleep is mainly classified into 
two stages: Rapid Eye Movement (REM) sleep and 
Non - Rapid Eye Movement (NREM) sleep, and each 
of them has unique electrical characteristics and 
physiological functions, and may play different but 
interrelated roles in the development of AD. 

Given the unique advantage of sleep EEG signal in 
reflecting the functional state of the brain, as well as 
its noninvasive, reproducible, and relatively low-cost 
features, investigating the use of sleep EEG signals 
for AD prediction not only broadens our 
comprehension of AD pathogenesis but also offers 
innovative approaches for its early detection. The 
present study aims to review the research progress of 
sleep EEG signaling in AD prediction in recent years, 
focusing on the changes of EEG characteristics 
during REM and NREM sleep stages and their 
correlation with the pathophysiological process of 
AD, evaluating the strengths and weaknesses of 
current research methods and exploring future 
directions, this study aims to establish a solid 
theoretical foundation and practical guidance for 
early AD detection and targeted intervention. 

2 AD PATHOGENESIS 

2.1 Mechanisms of Aβ and Tau in the 
Induction of AD 

Aβ is produced by cleavage of amyloid precursor 
protein (APP) by β - secretase and γ - secretase. 
Under normal conditions, Aβ can be cleared, but in 
AD patients, there is an imbalance between the 
production and clearance of Aβ, leading to the 
abnormal deposition of Aβ in the brain and the 
formation of senile plaques. Aβ oligomers have 
neurotoxicity, which can bind with receptors on the 
cell membrane of neurons, these disruptions impair 
neural signaling and synaptic plasticity, while 
simultaneously promoting the generation of reactive 
oxygen species. This leads to oxidative stress, which 
damages cell membranes, proteins, and mitochondria, 
ultimately causing the death of neurons. 

Normally, tau protein promotes the assembly of 
microtubules and maintains their stability to ensure 
intra-neuronal substance transportation. In AD, tau 
protein is abnormally hyperphosphorylated and its 
ability to bind to microtubules decreases, resulting in 

microtubule depolymerization, which destroys the 
cytoskeleton structure of neurons, affects axonal 
transport, and prevents neurons from taking up 
nutrients and transmitting signals normally. Over-
phosphorylated tau protein aggregates to form 
neurogenic fiber tangles. These tangles accumulate in 
neurons, hindering normal physiological activities of 
neurons, and can spread among neurons, accelerating 
neurodegeneration. 

2.2 Other Relevant Pathological 
Factors and Interactions 

Aβ deposition, tau protein abnormalities, impaired 
mitochondrial function, and cerebrovascular 
pathology all play key roles in the complex 
pathogenesis of AD. 

Aβ is produced by cleavage of APPs by specific 
enzymes and is normally cleared. In AD patients, the 
balance between Aβ production and clearance is 
disrupted, leading to its excessive accumulation in the 
brain. tau proteins become abnormally 
hyperphosphorylated, disrupting their ability to bind 
to microtubules and interfering with intra-neuronal 
transport of substances. the deposition of Aβ and the 
abnormalities of the tau proteins activate microglial 
cells and astrocytes. Activated microglia release pro - 
inflammatory cytokines, such as interleukin - 1β (It 
seems there might be a mistake in your original 
"interleukin - 1 Aβ", perhaps you meant interleukin - 
1β) and tumor necrosis factor - α, while astrocytes 
expand in reaction to inflammatory signals, releasing 
a variety of cytokines and chemokines, which triggers 
neuroinflammation and damage to neuronal cells. 
Mitochondrial function is also impaired in the brain 
of AD patients. Mitochondrial dysfunction can trigger 
oxidative stress, partially clarifying the intricate 
mechanisms behind oxidative damage in AD. Beyond 
ATP production, mitochondria play a key role in 
controlling cell death by storing various apoptotic 
factors, which are released during apoptosis. In AD 
patients, mitochondrial impairment, elevated 
oxidative stress, and neuronal apoptosis have been 
observed (Moreira, et al., 2012). These findings imply 
that mitochondrial malfunction could be the impetus 
behind neuronal degeneration and demise in AD. 
Disruptions in the mitochondrial respiratory chain 
and impaired electron transport lead to a decline in 
membrane potential and diminished energy 
generation. At the same time, reactive oxygen species 
production increases, exceeding the cellular 
antioxidant capacity and oxidatively damaging lipids, 
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proteins, and other biomolecules, making neurons 
more susceptible to oxidative stress damage. 

Certain gene mutations are closely related to AD, 
such as mutations in APP, progerin 1 (PS1) and 
progerin 2 (PS2), which can lead to familial AD; and 
the ε4 allele of the apolipoprotein E (APOE) gene 
significantly heightens the risk of developing 
sporadic AD (Scheltens, et al., 2021). 

Cerebrovascular lesions are equally important in 
the development of AD. Chronic hypertension also 
impairs the integrity of the blood-brain barrier (BBB), 
leading to cerebral edema and the introduction of 
systemic elements into the brain parenchyma, and 
chronic hypertension also impairs the integrity of the 
BBB, resulting in brain swelling and the infiltration 
of systemic components into brain tissue (Santos, et 
al., 2012). Cerebrovascular endothelial dysfunction 
affects vasodilatation and vasoconstriction, resulting 
in reduced cerebral blood flow, inadequate nutrient 
supply to brain tissue, and accumulation of metabolic 
wastes. The damage to the blood-brain barrier is even 
more serious, its permeability increases, harmful 
substances enter the brain tissue, triggering 
inflammation and immune damage, and it also affects 
the removal of Aβ, prompting the further deposition 
of Aβ and accelerating the development of AD 
disease. These pathologic processes interact with 
each other and jointly promote the development and 
deterioration of AD. 

3 PROGRESS IN DETECTION 
RESEARCH 

3.1 Traditional Testing Methods and 
Limitations 

3.1.1 Mini-Mental State Examination 
(MMSE) 

The MMSE is a widely used clinical instrument for 
AD detection. This 30-question test evaluates 
cognitive abilities, including attention, orientation, 
memory, calculation, language, and visuospatial 
skills, such as drawing complex shapes (Arevalo, et 
al., 2012). The MMSE score offers a quantitative 
measure of cognitive decline in older adults, aiding 
doctors in diagnosis and treatment planning. 
However, the assessment dimensions of MMSE are 
limited, mainly focusing on several major aspects of 
cognitive function, and the assessment of some 
complex cognitive functions, such as executive 

function and social cognition, is not comprehensive 
enough. If the elderly has a high level of education, 
there may be cases where the MMSE score is still in 
the normal range even though there is some cognitive 
impairment, thus masking the condition. For some 
specific cognitive dysfunctions, such as executive 
dysfunction, the MMSE may not be able to detect 
them accurately, which may lead to an incomplete 
assessment of the patient's cognitive function. 
Patients with AD may develop these impairments 
during the course of the disease, but the difficulty of 
detecting them on MMSE may affect the overall 
judgment of the patient's condition. 

3.1.2 CSF 

Biomarkers in CSF can directly reflect the 
pathophysiologic process of AD in the brain. 
Pathologic changes, such as Aβ  deposition, may 
occur in the brain before the onset of clinical 
symptoms of AD, and biomarker levels in the CSF 
may change accordingly. The most intensively 
investigated biomarkers of Alzheimer's disease (AD) 
are the cerebrospinal fluid proteins that are 
pathologically related, namely β - amyloid 42 (Aβ
1 - 42), total tau (t - tau), and tau phosphorylated at 
amino acid 181 (p - tau181). Many laboratories use 
enzyme-linked immunosorbent assays (ELISA) to 
detect these proteins (Wang et al., 2012). By 
immobilizing an antibody that specifically recognizes 
Aβ42 on a solid-phase carrier and adding it to a CSF 
sample, the Aβ42 in the sample will bind to the 
antibody, and then an enzyme-labeled secondary 
antibody will be added, which will produce a color 
change through the reaction between the enzyme and 
the substrate, and then the absorbance will be 
measured by using an enzyme marker, and compared 
with a standard curve. If the level of Aβ42 in the 
CSF decreases significantly, it suggests that 
Alzheimer's disease may be present. However, the 
CSF test requires lumbar puncture to obtain CSF, 
which is an invasive operation that may bring some 
pain and risk to patients, and the CSF test involves 
special testing equipment, reagents, and specialized 
technicians, and the overall cost is relatively high, 
which may bring some financial burden to patients 
and the health insurance system, and to a certain 
extent, limit its wide application. 

3.1.3 PET 

PET technology allows for the evaluation of various 
functional processes in the brain of AD patients 
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during their survival. This method allows for the 3D 
visualization and quantification of metabolic (glucose 
metabolism) and neurotransmitter activity. It also 
provides insights into the pathological mechanisms of 
AD. PET scans enable clinicians to visually analyze 
results through color coding and, crucially, gather 
quantitative data on brain regions. This data supports 
objective evaluation of diagnostic precision and 
treatment outcomes. PET can identify early metabolic 
and pathological brain changes before noticeable 
clinical symptoms appear. With specific tracers, such 
as the glucose analog of brain glucose metabolism, 2-
[18F]-fluoro-2-deoxygenase, PET is able to detect 
subtle metabolic and pathological changes in the 
brain before they become clinically apparent.  

Oxygen-d-glucose (18F-FDG) can be used to 
monitor cerebral glucose metabolism (Nordberg,et 
al., 2012). This tracer has been widely used in 
radiopharmaceutical imaging studies and clinics of 
AD, which can clearly show the metabolic or 
pathological changes in different regions of the brain 
and help doctors accurately determine the site and 
extent of lesions. In AD diagnosis, it can clarify the 
functional abnormality of brain areas closely related 
to cognitive function, such as hippocampus, internal 
olfactory cortex, etc., which can provide an important 
basis for localized diagnosis of the disease and 
evaluation of the disease, and help to differentiate it 
from other diseases that may lead to cognitive 
disorders. PET test not only shows the anatomical 
structure of the brain, but also more importantly 
reflects the functional state of the brain, such as the 
metabolic activity of the neurons, neurotransmitter 
changes and so on, neurotransmitter changes, etc. 
However, the PET test itself is expensive, and with 
the cost of the tracer, the overall cost of the test is 
usually high. PET equipment is expensive, with high 
maintenance costs and high requirements for 
installation environment and technicians, resulting in 
its limited popularity in medical institutions. At the 
same time, the analysis and interpretation of PET 
images require specialized nuclear medicine doctors 
or specially trained personnel who are not only 
familiar with the normal anatomy and physiological 
functions of the brain, but also understand the 
characteristics of PET performance in various disease 
states. 

Therefore, in Alzheimer's disease detection, EEG 
has outstanding advantages over mainstream 
methods. Firstly, it is non-invasive. CSF requires 
lumbar puncture, which is risky, while EEG only 
places electrodes on the scalp. Secondly, it has a 
higher detection accuracy and can capture early 

abnormalities in neuronal electrical activity. 
Furthermore, in terms of economy and popularity, 
CSF and PET testing equipment and process costs are 
high, while EEG equipment is cheap, with low 
learning costs, and can be operated by primary 
healthcare professionals after short-term training, 
which is more conducive to popularization, and more 
patients can benefit from early diagnosis, which has a 
great potential for the detection of AD. 

3.2 State of the Art and Development 
of Sleep Stage Classification System 
Technology 

Classifying sleep stages is essential for studying 
sleep, diagnosing sleep disorders, and assessing 
treatments. It enhances our understanding of sleep 
mechanisms and offers a foundation for managing 
sleep-related conditions. At present, the sleep stage 
classification system technology presents diverse 
characteristics in methods and applications, and also 
faces many challenges, and the future development 
direction is becoming clearer. 

Sleep specialists usually perform manual sleep 
stage scoring through the analysis of 
neurophysiological signals gathered in sleep 
laboratories. This process is often challenging, 
monotonous, and time-intensive. Scoring is usually 
based on polysomnographic (PSG) data recorded 
during overnight hospital stays. In traditional 
practice, overnight PSG recordings consist of EEG, 
electrooculogram (EOG), electromyogram (EMG), 
and electrocardiogram (ECG) data. These recordings 
are manually assessed by sleep specialists based on 
the 1968 guidelines established by Rechtschaffen and 
Kales (R&K) (Konkoly, et al., 2012). PSG recordings 
are divided into 20- or 30-second intervals and 
classified into wakefulness (W), REM sleep, and 
NREM sleep. Due to their multi-channel signals and 
expert-based visual analysis, PSG remains the gold 
standard for assessing sleep in laboratory studies. 
Polysomnography offers comprehensive insights into 
sleep architecture, duration, and quality. However, it 
is costly, labor-intensive, and unsuitable for field 
applications, as it requires a sleep technician to install 
equipment and place multiple electrodes on the face 
and scalp (Arevalo, et al., 2012). 

Consequently, the process of sleep stage scoring 
incurs high costs, is prone to human mistakes, and is 
frequently tiresome and demands a significant 
amount of time. Analyzing overnight sleep recordings 
usually requires 2 to 4 hours, and in some studies, 
there has been a 90% expert agreement on sleep stage 
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classification (Konkoly, et al., 2012). In addition, 
sleep stage scoring using PSG usually requires a 
hospital setting where subjects have to wait on a 
waiting list for some time. Due to the limitations of 
manual sleep stage scoring, there is an increasing 
demand for the development of automated sleep stage 
classification systems (ASSC). 

The research divides dual-channel EEG signals 
into quasi-steady-state segments, extracts features 
using Short-Time Fast Fourier Transform (STFT), 
reduces dimensionality with the fuzzy C-Means 
algorithm, and constructs an ASSC system 
employing a multi-class SVM. The system achieved 
an accuracy of 70.92% (Al-Aloqaly, et al., 2012). To 
improve the classification accuracy, the researchers 
tried to fuse multiple physiological signals. In 
addition to EEG, EOG, and EMG, signals such as 
heart rate, respiratory rate, and oxygen saturation 
were incorporated. Multimodal data fusion can 
provide more comprehensive sleep information, 
adopt more advanced algorithms, study new deep 
learning architectures, such as models based on the 
attention mechanism, which can better focus on key 
sleep signal features; and explore the application of 
generative adversarial networks (GANs) in sleep data 
augmentation and model optimization, to improve 
model performance. We will further improve the 
multimodal data fusion method, combine artificial 
intelligence and big data analysis technology, mine 
the complex relationship between sleep data, and 
realize the comprehensive assessment of sleep 
quality, early warning of sleep disorders, and the 
formulation of personalized treatment plans. 

3.3 Association between NREM Sleep 
Stages and AD and Research 
Progress 

3.3.1 The Relationship between non Rapid 
Eye Movement (NREM) and AD 

Starting from the prodromal phase of AD, patients 
exhibit slower EEG rhythms while awake, potentially 
linked to poor sleep quality. To explore the 
connection between arousal and sleep, we analyzed 
EEG activity during sleep, as well as before and after 
sleep, in patients suffering from Alzheimer's disease 
(AD), those with mild cognitive impairment (MCI), 
as well as healthy individuals used as controls. It was 
found that individuals with AD, as well as those 
suffering from mild cognitive impairment, presented 
a longer sleep latency and less slow-wave sleep. The 
NREM sleep phase is typically characterized by 

reduced σ activity, which reflects the absence of 
the sleep spindle. For both AD and MCI patients, 
EEG slowing is characteristic of REM sleep and 
wakefulness, and there is a strong correlation between 
these two phenomena, suggesting a common 
neuropathological mechanism. 

Furthermore, EEG changes from evening to early 
morning during wakefulness revealed a gradual 
reduction in nocturnal δ activity in both MCI and 
AD patients. This suggests a progressive decline in 
the restorative effects of sleep on circadian rhythms, 
aligning with the impaired high-frequency sleep 
activity observed in AD patients. 
In this process, NREM stage sleep is crucial for 
memory consolidation. It plays a facilitating role in 
transforming short - term memory into long - term 
memory. Moreover, it is of great significance in 
maintaining learning ability and cognitive functions. 

3.3.2 Power of EEG During NREM Sleep 

The histograms of the spectral power at cortical sites 
and bands from Figure1 show the power of the two 
groups in the α and σ bands. Looking at the graph as a 
whole, there is a difference in the α and σ band power 
between the AD and HC groups at different cortical 
sites. The α and σ bands were chosen because the σ 
band is associated with the relaxation and attentional 
states of the brain, and in AD patients, altered brain 
function may affect their relaxation and attentional 
regulation mechanisms. σ band is associated with the 
sleep spindle wave, which is critical for memory 
consolidation, and AD patients with impaired memory 
may have characteristic changes in this band. Other 
frequency bands, such as the δ band, are potentially 
related to AD, but the two more distinguishable 
frequency bands are discussed briefly here. α and σ 
power in AD patients at T3 and T5 correspond to the 
temporal lobe region of the brain, and the reduced α 
and σ power at these locations may indicate abnormal 
neuronal activity in the temporal lobe region. α power 
is reduced, reflecting the impaired function of 
relaxation and attentional regulation of the brain, and 
the reduced α power suggests a weakening of the 
activity of sleep spindles and impairs memory 
consolidation. Reduced α power suggests that sleep 
spindle wave activity is impaired, affecting memory 
consolidation. This difference may reflect the 
alteration of cortical function in AD patients, which to 
some extent provides data support for the study of the 
neurophysiological mechanism of AD, and helps to 
further explore the characteristics and patterns of the 
abnormalities in the brain function of AD patients. 
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Figure 1: Spectral Power Histograms of Cortical Sites and Frequency Bands in AD (Alzheimer's Disease) and HC (Healthy 
Control) Groups. 

3.3.3 Correlation between σ Power and 
Cognitive Ability 

From Table 1, it is possible to evaluate the association 
between the level of cognitive ability and the σ power 
(sigma power) during NREM sleep. The graph clearly 
shows that there is a significant correlation (p ≤ 
0.0054) between MMSE scores and σ power during 
NREM sleep at different EEG loci (O1, O2, P3, Pz, 
T5, T6) (D’Atri, et al., 2012). The correlation 
coefficients r values ranged from 0.28 - 0.32 and the 
p values were extremely small, indicating that this 
correlation was highly statistically significant. Based 
on this, we can basically conclude that there is a 
positive correlation between σ power and cognitive 
ability, i.e., the higher the σ power during NREM 
sleep, the higher the corresponding MMSE score and 
the stronger the cognitive ability. 

Table 1: Correlation (Pearson's R) between MMSE Score 
and Sigma Power During NREM Sleep, and EEG Slowing 
Index During REM Sleep (P ≤ 0.0054) (D’Atri, et al., 
2012). 

EEG site σ power in NREM sleep 
r p 

O1 0.32 0.000077 
O2 0.32 0.000055 
P3 0.28 0.0006 
Pz 0.31 0.000093 
T5 0.31 0.00014 
T6 0.29 0.00033 

 
Given this association, σ power during NREM 

sleep has the potential to be used as a reference 
standard for EEG to detect AD levels. In clinical 
practice and research, detecting the power in this 
frequency band of the EEG may be able to assist in 
determining the cognitive state of an individual and 

provide valuable information for early screening and 
assessment of AD. However, more studies are needed 
to further validate its accuracy and reliability. 

4 CONCLUSION 

With the limitations of traditional AD detection 
methods, sleep EEG signaling has become a hot 
research topic due to its unique advantages. This 
paper comprehensively analyzed the pathological 
mechanisms of AD, the advantages and 
disadvantages of traditional detection methods, and 
the current state of the art of sleep stage classification 
system, and focused on the association between 
NREM sleep stages and AD, and found that the 
cortical functional activities of AD patients differed 
from those of healthy controls in terms of α and σ 
band power, and clarified the positive correlation 
between the σ power and the cognitive ability. 

However, the accuracy and reliability of sleep 
EEG signal for AD prediction still need to be 
improved. In the future, we can focus on conducting 
large-scale and multi-center clinical trials to further 
validate the relevant indexes, exploring more 
frequency bands and brain regions, optimizing the 
detection techniques and analysis algorithms to 
enhance the precision and steadiness of the 
prediction, and promoting the development of AD 
early diagnosis and intervention techniques. 
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