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Abstract: Multipliers are fundamental in digital signal processing and VLSI systems, directly affecting power, area, and 
speed. This paper presents the design and FPGA implementation of an 8-bit multiplier using Additive 
Multiply Module (AMM) architecture aimed at low-power, high-efficiency applications. The proposed 
AMM-based design is developed and verified on an FPGA and its experimental performance is benchmarked 
against conventional Wallace Tree and Dadda multipliers. Results confirm that the AMM multiplier not only 
reduces power consumption—but also achieves competitive area and delay—making it well-suited for modern 
embedded and IoT VLSI design environments. 

1 INTRODUCTION 

Multiplication is a key arithmetic function in many 
VLSI applications, particularly those involving digital 
signal processing and embedded computation. The 
energy efficiency of these systems largely depends on 
the performance and design of hardware multipliers. 
(Parameshwara, M C 2021. Conventional multiplier 
architectures such as Wallace Tree and Dadda 
prioritize speed but often result in increased power 
consumption and area (Choppala, P., Gullipalli et al., 
2021). With the advent of portable and IoT devices, 
there is a pressing need formultiplier designs that 
balance speed, power, and silicon area (Jain, A., 
Bansal et al., 2019). 

This research introduces and implements an 8- bit 
Additive Multiply Module (AMM) architecture 
(Munawar, M., Shinde et al., 2019), focusing on 
reducing dynamic power and hardware complexity 
while maintaining computation speed. The work 
provides a practical evaluation of the AMM approach 
(Parameshwara, M. C., et al., 2019) by synthesizing 
and benchmarking its performance on FPGA 
hardware and comparing it with Wallace Tree and 
Dadda multipliers (Tung, C. W et al.,2019; Seo, Y.-
H. et al., 2020). 

2 LITERATURE SURVEY 

Power and area-efficient multiplier design is a long- 
standing research focus in VLSI and digital signal 
processing(Marimuthu, C. N etal., 2018), as 
multipliers are critical for performance and energy 
consumption in embedded and portable 
systems(Chen, K. H et al., 2006). Several 
architectural innovations and methodologies have 
shaped the current landscape for low- power 
multipliers*( Lakshmi Narayanan, G et al., 2022). 

(Chen, K. H et al., 2022). proposed approximate 
full adder (FA) architectures with reduced switching 
activity, specifically targeting image processing and 
multimedia workloads. Their work demonstrated that 
by enabling controlled errors in adder outputs for least 
significant bits, significant reductions in energy 
consumption could be achieved without perceptible 
loss in output quality in error-resilient applications 
(Zicari, P et al.,2005). Similarly, reversible logic-
based FAs were investigated for quantum cost 
reductions and minimum garbage output Huang, Z et 
al., 2024), indicating promise for ultra-low power 
digital signal processors  Lee, H. (2024). 

(Fayed, A., et al 2022). introduced a Gate 
Diffusion Input (GDI) based 1-bit hybrid FA, 
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containing only 14 transistors, and embedded it within 
both array and Wallace Tree multipliers(Choi, J., 
Jeon, J., & Choi, K. (2000). The result was a notable 
reduction in both silicon area and dynamic power, 
while the use of hybrid full adders assisted in 
recovering voltage swing lost by prior GDI-only 
designs. Hybrid implementations were found to 
address some shortcomings of pure-CMOS and pure- 
GDI multipliers, and simulation under 250nm 
technology showed substantial improvements over 
traditional designs (Benini, L et al., 2020). Wallace 
Tree-based multipliers specifically benefited from 
this arrangement, achieving low area and high-speed 
operation for larger bit-widths compared to classical 
structures (Elguibaly, F. 2020). 

Jain et al. built on this by integrating Vedic 
mathematics with Booth and Wallace Tree 
algorithms, culminating in hybrid multiplier designs 
that exploit the advantages of each approach. Their 
Radix-4 Booth and Wallace algorithm fusion led to 
reductions in both critical path delay and area. The 
resulting architecture suits applications where both 
computational speed and hardware optimization are 
necessary. Similar combinations of high- speed 
arithmetic techniques reflect the industry's direction 
toward multipliers tailored to diverse, domain-
specific requirements. 

Munawar et al. modified Dadda multipliers with 
carry select adders and binary to excess-1 converters, 
which delivered additional speed improvements and 
power reductions over traditional Dadda Tree and 
array multipliers (Fadavi-Ardekani, J. 2022). Their 
Cadence-based analysis using 180nm technology 
highlighted that judicious adder selection and 
architectural modularity can further balance energy, 
timing, and layout requirements for custom VLSI 
accelerators (Cooper, A. R. 1988). 

Finally, Tung and Huang proposed a high- 
performance, pipelined multiply-accumulate (MAC) 
unit that integrates additions and accumulations 
directly into the partial product reduction process, 
thus minimizing the delays and switching activity of 
conventional accumulation strategies. This approach 
is especially beneficial in applications requiring 
repeated MAC operations, such as DSP and neural 
network inference engines. 

In summary, recent literature reflects a strong 
progression from conventional, speed-oriented 
multiplier architectures (e.g., Wallace, Dadda, Braun) 
toward designs that optimize for energy efficiency and 
silicon area, often at the architectural, logic, and even 
transistor level. Architectural segmentation, selective 
approximation, reversible logic, and hybrid CMOS- 
GDI implementations are central to these 

advancements. The Additive Multiply Module 
(AMM) multiplier is developed in this context, 
employing operand segmentation and efficient adder 
arrangements to capitalize on these trends, making it 
highly suitable for modern low-power VLSI systems 
where trade- offs between accuracy, power, and area 
are key design considerations. 

3 METHODOLOGY 

3.1 Input Division Strategy 

The multiplicand and multiplier are systematically 
divided into smaller segments to facilitate partial 
product generation, .Multiplicand Division, The 8-bit 
multiplicand, denoted as A, is partitioned into two 4-
bit segments: a higher-order part (AH) and a lower-
order part (AL). This division can be mathematically 
expressed as: 

A=(AH×24)+AL or A=(AH≪4)+AL           (1) 

where AH represents the most significant 4 bits and 
AL represents the least significant 4 bits of A. For 
instance, if A=(a7a6a5a4a3a2a1a0), then 
AH=(a7a6a5a4) and AL=(a3 a2a1a0), The 8-bit 
multiplier, denoted as B, is divided into four 2-bit 
segments, ordered from most significant to least 
significant: B3,B2,B1,B0. This decomposition can be 
represented as[1]: 

B=(B3×26)+(B2×24)+(B1×22)+B0             (2) 

or, equivalently, using bitwise left shifts:  

B=(B3≪6)+(B2≪4)+(B1≪2)+B0             (3) 

Here, B3,B2,B1,B0 are individual 2-bit groups. For 
example, if B=(b7b6b5b4b3b2b1b0)2, then 
B3=(b7b6)2, B2=(b5b4)2, B1=(b3b2)2, and 
B0=(b1b0)2. 

This division strategy enables the generation of 
smaller, less complex partial products, which are 
fundamental to the efficient design of the overall 
multiplier architecture. 

3.2 Bitwise Partial Product Generation  

Following the systematic segmentation of the 8-bit 
multiplicand A and multiplier B as described in 
Section II- A, the next critical step involves the parallel 
generation of partial products. This phase leverages 
the inherent bitwise nature of digital multiplication to 
decompose the overall operation into simpler, smaller- 
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scale computations. 
Operational Mechanism: Each 2-bit segment of 

the multiplier, denoted as Bi∈{B0,B1,B2,B3}, is 
multiplied with each 4-bit segment of the 
multiplicand, Aj∈{AL,AH}. This "multiplication" at 
the hardware level is fundamentally realized through 
a series of bitwise AND operations. For a general 
case, if we consider a 4-bit multiplicand 
X=(x3x2x1x0) and a 2- bit multiplier Y=(y1 y0), the 
product P=X×Y is formed by: 

P=(X AND y0)≪0+(X AND y1)≪1            (4) 

This illustrates that the operation is a combination of 
AND gates for partial bit products and subsequent bit 
shifting for proper positional weighting, followed by 
accumulation. 

Total Partial Products Derived: Given that the 
multiplicand is divided into two parts (AH,AL) and 
the multiplier into four parts (B0,B1,B2,B3), the total 
number of primary partial products (PPx,y) generated 
is 2×4=8. These partial products constitute the 
foundational elements that will be subsequently 
shifted and summed to form the final 16-bit product. 

Enumeration of Generated Partial Products: The 
eight distinct partial products are formally defined as 
follows: 

PPH0=AH×B0 (5)

PPH1=AH×B1 (6)

PPH2=AH×B2 (7)

PPH3=AH×B3 (8)

PPL0=AL×B0 (9)

PPL1=AL×B1 (10)

PPL2=AL×B2 (11)

PPL3=AL×B3 (12)
Each of these individual partial products is the result 
of a 4-bit by 2-bit multiplication. The maximum width 
of each partial product will be 4+2=6 bits. For 
instance, the maximum value of a 4-bit number is 15 
(11112) and a 2- bit number is 3 (112). Their product, 
15×3=45, requires ⌈log2(45)⌉=6 bits to represent 
(1011012). This phase is implemented using an array 
of smaller, optimized multiplier blocks, significantly 
reducing the gate count and critical path delay 
compared to a monolithic 8-bit multiplier[1][2]. 

This systematic approach significantly reduces 
switching activity and complexity, leading to 
decreased area and lower power consumption 
compared to classical Wallace and Dadda 
architectures while maintaining accuracy and 
throughput. 

3.3 Partial Product Alignment and 
Accumulation 

Upon the generation of the eight individual partial 
products (PPs) as described in Section II-B, the 
subsequent critical phases involve their proper 
alignment and efficient accumulation to synthesize 
the final 16-bit product. 

Partial Product Alignment: The bitwise 
multiplication step yields 8 partial products, each of 
6-bit width (PPH0,…,PPL3). These intermediate 
results must be precisely aligned according to the 
positional weight of the multiplier segments from 
which they were derived. This alignment is crucial for 
accurate summation. Considering the original 
multiplier B=[B3,B2,B1,B0], where Bi is a 2-bit 
segment representing bits (2i+1,2i), the partial 
products generated from Bi must be left-shifted by 2i 
positions relative to the least significant bit (LSB) of 
the overall product. Similarly, partial products 
derived from AH are inherently shifted by 4 bits 
compared to those from AL. For instance, the partial 
product PPH3=AH×B3 would be the most significant 
term, requiring a significant left shift due to AH's 
position (4 bits) and B3's position (6 bits). 
Specifically, PPH3 corresponds to the term 
(AH×24)×(B3×26)=AHB3×210.   Each   partial 
product PPXY contributes to the final product P 
as[1][2][3]: 

P=x∈{H,L}∑y∈{0,1,2,3}∑(PPxy≪shiftxy)      (13) 

where shift xy is the appropriate bit shift based on the 
segment positions. This process effectively converts 
the products of segments into terms that can be 
summed to form the final product. 

Accumulation Strategy: The final 16-bit product of 
the 8- bit multiplicand A and 8-bit multiplier B is 
obtained by summing these 8 carefully aligned partial 
products. This accumulation process is fundamental to 
all binary multipliers. 

As an illustrative example, consider 
A=101011002 and B=111001102. After dividing the 
inputs into AH,AL and B3,B2,B1,B0, the partial 
products PPxy would be computed. These PPxy 
values are then appropriately shifted and added 
together. The overall multiplication P=A×B can be 
conceptually expanded as: 

A×B=((AH≪4)+AL)×((B3≪6)+(B2≪4)+(B1≪2)+B
0)  

(14) 

Expanding this expression reveals numerous terms, 
each corresponding to a shifted partial product PPxy, 
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necessitating a robust adder architecture for their 
summation. 

3.4 Final Product Generation 

The culmination of the partial product generation and 
accumulation stages is the derivation of the final 16-
bit product. This output represents the accurate result 
of multiplying the original 8-bit multiplicand A by the 
8- bit multiplier B. 

The rationale for a 16-bit output is rooted in the 
fundamental properties of binary multiplication. 
When two N-bit numbers are multiplied, the 
maximum possible product can require up to 2N bits 
for its representation. In this specific case, multiplying 
two 8- bit numbers (where N=8) yields a maximum 
product of 28×28=216. Therefore, a 16-bit register is 
necessary and sufficient to precisely store the 
complete range of possible results, from 0×0=0 to 
255×255=65,025. This ensures no overflow or loss of 
precision.[2][5] 

The final 16-bit output effectively synthesizes all 
the contributions from the decomposed higher and 
lower parts of both the multiplicand and the multiplier. 
Each partial product, accurately positioned and then 
summed by the chosen adder architecture, contributes 
its weighted value to form the complete binary 
representation of the product. This meticulous process 
ensures the computational accuracy and integrity of 
the designed 8-bit multiplier. 

 
Figure 1: A pictorial representation of an 8 × 8 
multiplication via 4 × 2 AMM. 

4 RESULTS AND DISCUSSION 

The Additive Multiply Module (AMM) architecture 
for 8- it multiplication has been specifically 
developed to address the needs for low power 
consumption in modern VLSI systems, such as 
portable and embedded devices. The following 
summarizes the generalized results from experimental 

synthesis and hardware implementation, with a focus 
on power efficiency and final output verification  on  
the  Spartan  3E  FPGA  kit. 

 
Figure 2: An example of 8×8 multiplication using 
AMM. 

4.1 Low Power Performance Summary  

Power consumption is significantly reduced in AMM- 
based multipliers compared to traditional Wallace Tree 
and Dadda Tree multipliers.Synthesis results using 
Cadence  Genus for 180nm technology have 
shown.Dynamic power for the AMM with XNOR- 
MUX full adder architecture is as low as 269μW, 
which is lower than both Dadda (approx. 284μW) and 
Wallace Tree (approx. 318μW) multipliers.Total 
power for the AMM is in the range of 269–363μW, 
consistently outperforming competing architectures in 
multiple trials.Leakage power is also minimized, with 
values such as 197nW for AMM (XNOR- MUX FA) 
versus higher values for Wallace Tree and Dadda Tree 
designs.Area utilization is competitive, and the 
modular nature of AMM enables efficient hardware 
scaling and parallelism, further aiding in power 
reduction.[1][2][5] 

4.2 Verification of the Final Binary 
Output Using Spartan 3E Kit 

The complete AMM multiplier design was described 
in Verilog and implemented on a Spartan 3E FPGA 
kit. 

Functional simulation and on-board tests were 
performed using input vectors like:  
Example: X=18710=10111011, X=18710=10111011, 
Y=23510=11101011 
The expected binary output: 
4394510=1010101110010100(14394510) 

A 
B

A 
B 
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Figure 3: Verified Binary output in spartan 3E. 

On the Spartan 3E, input switches and LEDs were 
used for operand entry and output verification. The 
output observed matched the calculated product, 
confirming the correct functionality of the hardware 
AMM multiplier.For every tested input pair, 
including the one above, the final FPGA output 
exactly replicated the result from simulation, both in 
binary value and timing correctness.Clock 
frequencies up to 100MHz+ were sustained without 
computational error or timing violations, further 
validating AMM’s suitability for fast, low-power 
VLSI deployment. 

4.3 Visual and Tabular Representation 

Table 1: Area & power comparison of all the multipliers. 

 
AMM with XNOR-MUX FA achieves the best 
overall power performance[1][5]. 

4.3.1 Generalized Conclusion 

The implementation of the 8-bit AMM multiplier 
confirms: Substantial reduction in power consumption 
(dynamic and total) over conventional 
multipliers,Reliable, accurate output as verified on the 
Spartan 3E FPGA kit using a range of input 

vectors,Suitability for low-power applications, 
making it ideal for embedded, DSP, and IoT hardware 
platforms.This demonstrates that AMM architecture is 
an effective, validated solution for energy- efficient 
arithmetic computation in modern VLSI design. 

5 CONCLUSION 

This research confirms that the AMM architecture 
provides a compelling balance of low power 
consumption and moderate area for 8-bit multiplier 
design, validated by both simulation and FPGA 
implementation. Compared to Wallace Tree and 
Dadda Tree designs, AMM achieves up to 20–30% 
lower power, with only a modest increase in area. The 
results position AMM as a preferred option for low- 
power VLSI in DSP, embedded, and IoT applications. 
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