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Abstract: This paper presents a comparative performance evaluation of four distinct path planning algorithms A*, 
Rapidly-exploring Random Tree Star (RRT*), Genetic Algorithm (GA), and Ant Colony Optimization (ACO) 
for autonomous navigation in static, grid-based environments. We assessed each algorithm's efficacy based 
on path optimality, computational efficiency, and success rate across maps with varying obstacle densities. 
Empirical results show that the A* algorithm provides optimal paths with the lowest computation time in low-
to-moderate complexity environments. RRT* demonstrates superior flexibility in more complex topologies, 
while the metaheuristic GA and ACO approaches can solve highly complex problems but at a significant 
computational cost and with high sensitivity to parameter tuning. These findings establish an environment-
contingent framework for algorithm selection, underscoring the trade-off between path optimality and 
computational resources.

1 INTRODUCTION 

Path planning remains a cornerstone of autonomous 
robotics and intelligent systems, with extensive 
research spanning from medical applications to 
mobile robotics and autonomous driving. A 
comprehensive survey in (Zhang et al., 2025) reviews 
algorithms for steerable flexible needles (SFNs) in 
minimally invasive surgery, classifying them into 
mathematical, inverse kinematics, sampling, and 
intelligence-based approaches, while (Ugwoke et al., 
2025) presents a simulation-driven review of classical, 
heuristic, and metaheuristic algorithms for 
autonomous robots, outlining their principles, 
applications, and challenges. Similarly, (Reda et al., 
2024) analyzes 275 papers on autonomous driving 
systems, with particular attention to 162 works on 
path planning, and categorizes methods into 
traditional, learning-based, and metaheuristic 
techniques, highlighting their advantages and 
limitations. General overviews, such as (Sánchez-
Ibáñez et al., 2021) and (L. Liu et al., 2023), provide 
broad classifications of global and local planning 
strategies ranging from cell decomposition and 

roadmaps to intelligent methods like fuzzy logic, 
neural networks, and evolutionary algorithms—while 
also pointing to emerging trends and future prospects. 

Beyond reviews, several studies offer comparative 
analyses and methodological innovations. The work in 
(Noreen et al., 2016) evaluates RRT variants (RRT, 
RRT*, RRT*-Smart) under different performance 
criteria, while (Aksoy et al., 2024) compares A*, 
Dijkstra, RRT*, and PRM in multi-level indoor 
environments using metrics such as computation time, 
memory, and path length. To standardize evaluation, 
(Hsueh et al., 2022) introduces PathBench, a 
benchmarking framework enabling systematic 
integration and comparison of algorithms. Hybrid and 
improved approaches have also been proposed: (Li et 
al., 2025) combines Dijkstra with the Timed Elastic 
Band (TEB) algorithm to generate smoother and safer 
paths, [(Elshamli et al., 2004) applies genetic 
algorithms for adaptive planning in dynamic 
environments, and (J. Liu et al., 2016) enhances ant 
colony optimization with pheromone diffusion and 
geometric local optimization for faster convergence 
and better path quality. Collectively, these works 
underscore the diversity of path planning approaches, 
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the importance of benchmarking, and the ongoing 
shift toward intelligent and hybrid solutions for 
increasingly complex environments. 

In this study, one representative algorithm was 
selected from each of the first two categories, while 
an additional collective-intelligence-based method 
(ACO) was also included, resulting in four algorithms 
being evaluated in detail. The algorithms were 
applied on fixed-size grid environments and analyzed 
across five map scenarios with different levels of 
structural complexity. This enabled the assessment of 
their respective advantages, disadvantages, and 
overall performance under specific environmental 
conditions. Throughout the study, the structure, 
working principles, and results of the algorithms are 
supported by visualizations and comparative graphics, 
providing not only theoretical insights but also 
practical guidance for algorithm selection in 
engineering applications. 

2 PRELIMINARIES 

The core challenge in autonomous robot navigation is 
determining an optimal or feasible trajectory from a 
start point to a goal within an environment 
constrained by obstacles. The selection of a path 
planning algorithm is a critical design decision, 
heavily influenced by the nature of the environment, 
the required solution quality, and the available 
computational resources. This study provides a 
rigorous comparative analysis of four distinct 
algorithmic paradigms: the deterministic A* search, 
the probabilistic sampling-based RRT*, and the 
metaheuristic approaches of GA and ACO. This 
section delineates the foundational principles, 
mathematical formalisms, and critical operational 
parameters of each algorithm, establishing the 
theoretical basis for their subsequent empirical 
evaluation in complex, obstacle-dense environments. 

2.1 A* Algorithm 

The A* algorithm is a cornerstone of deterministic 
graph search path planning. It efficiently combines 
the systematic completeness of Dijkstra's algorithm 
with the directed search of a Best-First Search 
through a heuristic function, guaranteeing an optimal 
path provided one exists. 

The algorithm's core mechanism involves the 
minimization of a cost function for each node, 
expressed in Eq.1. 

        𝑓(𝑛)  =  𝑔(𝑛)  +  ℎ(𝑛)                              (1) 

where g(n) represents the exact cumulative cost 
from the start node to the current node n, and h(n) 
denotes a heuristic estimate of the cost from n to the 
goal. For the solution to be optimal, the heuristic 
function must be admissible, meaning it never 
overestimates the true cost, and consistent, ensuring 
monotonicity. The Euclidean distance is a common 
choice for a consistent heuristic in continuous spaces. 

The performance of A* is heavily influenced by 
several key parameters. The selection of the heuristic 
function, such as Euclidean or Manhattan distance, 
directly impacts search efficiency. A common tuning 
technique involves using a weighted heuristic, 
formulated as f(n) = g(n) + ε · h(n) with ε > 1, which 
can significantly expedite the search at the expense of 
optimality, transforming the algorithm into a 
suboptimal but highly efficient variant. Furthermore, 
strategies for breaking ties between nodes with 
identical f(n) values can affect the number of node 
expansions; favoring nodes with a higher g(n) value 
often leads to expansions closer to the goal, 
potentially improving overall efficiency. The 
underlying graph representation, whether a 4-
connected or 8-connected grid, also influences the 
algorithm's branching factor and the smoothness of 
the resulting path. 

2.2 RRT* Algorithm 

The RRT* algorithm addresses the scalability 
limitations of graph-based search in high-
dimensional continuous spaces. As an extension of 
the Rapidly-exploring Random Tree (RRT), RRT is 
probabilistically complete, meaning the probability of 
finding a feasible path approaches one as the number 
of iterations increases (Noreen et al., 2016). 
Crucially, it is also asymptotically optimal, 
guaranteeing that its solution will converge to the true 
optimum as computational time approaches infinity. 
RRT* differs from the classical RRT algorithm in that 
it rewires the tree after each new node is added to 
minimize the path cost, thereby asymptotically 
converging toward an optimal (shortest or least-cost) 
solution. 

The algorithm operates by incrementally building 
a tree structure rooted at the start configuration. For 
each randomly sampled point in the configuration 
space, the algorithm executes a series of steps.  It then 
generates a new node by moving from this nearest 
node towards the random sample by a predefined step 
size. The central innovation of RRT* over RRT lies 
in the subsequent steps: it identifies a set of neighbor 
nodes within a certain radius of the new node and then 
connects the new node to the neighbor that provides 
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the lowest cumulative cost from the start according to 
the cost-minimization criterion. The expression 𝑥௠௜௡ shown in Eq.2 determines the most suitable 
parent for the newly generated node 𝑥௡௘௪. This 
selection is made by choosing the node among the 
neighbors that minimizes the total path cost from the 
starting point. 𝑥௠௜௡ = arg 𝑚𝑖𝑛௫೙೐ೌೝ∈ே௘௔௥(௫೙೐ೢ)ሾ𝑐(𝑥௡௘௔௥, 𝑥௡௘௪) + 𝐶𝑜𝑠𝑡(𝑥௡௘௔௥)ሿ   

        (2) 

Finally, it rewires the tree, checking if the new 
node can serve as a better parent for any of its 
neighbors, thereby continuously optimizing the tree 
structure and reducing path costs over time. The 
RRT* algorithm rewires the tree to determine 
whether the newly added node can serve as a better 
parent for its neighbors, continuously optimizing the 
structure and reducing path costs. Its performance 
depends on key parameters such as step size, 
neighborhood radius, and goal bias. The step size 
balances exploration speed and precision, while the 
neighborhood radius decreases with node density to 
ensure asymptotic convergence and computational 
efficiency. The goal bias allows occasional direct 
sampling of the goal to accelerate convergence but 
must be used carefully to avoid local minima in 
complex environments. 

2.3 Genetic Algorithm (GA)  

Genetic Algorithms (GA) belong to a class of 
stochastic, population-based metaheuristic methods 
inspired by the principles of Darwinian evolution. 
These algorithms operate on a population of 
candidate solutions, referred to as “chromosomes.” 
The population evolves over successive generations 
through processes such as selection, crossover, and 
mutation(Elshamli et al., 2004). In this evolutionary 
process, each new generation aims to produce better 
solutions those with higher fitness values than the 
previous one. 

In the context of path planning, a chromosome 
typically represents a potential route encoded as a 
sequence of waypoints or actions. Each chromosome 
corresponds to a possible trajectory that enables the 
robot to move from its starting position to the goal. 
The driving force of evolution, known as the fitness 
function, quantitatively evaluates how good each path 
is. This evaluation may consider factors such as path 
length, the number of obstacle collisions, energy 
consumption, or the smoothness of motion. 

As shown in Eq. (3) a standard fitness function in 
genetic algorithms can be defined to evaluate and 
guide the optimization process. 

𝑂𝑏𝑗(𝑝) = ଵ௪భ ௉௔௧௛(௣)ା௪మை௕௦௧௔௖௟௘(௣)                    (3) 𝑃𝑎𝑡ℎ(𝑃) represents the total length of the path, 
while 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒(𝑃)  is a penalty term calculated 
based on the degree of collision between the path and 
obstacles. The coefficients 𝑤₁ and 𝑤₂ are weighting 
factors that determine the relative importance of these 
two components in the optimization process. A higher 
w₂ value prioritizes obstacle avoidance, whereas 
increasing w₁ emphasizes the selection of shorter 
paths. Consequently, the genetic algorithm is guided 
to generate paths that are both short and safe. 

2.4 Ant Colony Optimization(ACO) 

Ant Colony Optimization (ACO) is a swarm 
intelligence–based metaheuristic inspired by the 
collective foraging behavior of real ant colonies. In 
nature, ants find the shortest path between their nest 
and a food source by depositing and sensing chemical 
pheromones along their routes (J. Liu et al., 2016). 
This decentralized communication mechanism, 
known as stigmergy, enables the colony to 
collectively adapt and optimize its behavior over 
time. In computational analogues, artificial ants 
cooperatively construct solutions, with each ant 
representing a potential path. The colony then 
reinforces high-quality solutions through pheromone 
updates, allowing the algorithm to converge toward 
near-optimal routes. 

The probability that an artificial ant located at 
node i will move to node j at time t depends on two 
main factors: (1) the pheromone intensity 𝑇௜௝(𝑡) on 
the edge connecting nodes i and j, and (2) the heuristic 
desirability 𝜂௜௝ which typically represents the inverse 
of the distance between the nodes 𝜂௜௝ = ଵௗ೔ೕ . This 

probability is given in Eq.4 𝑃௜௝ = ൣ்೔ೕ൧ഀൣఎ೔ೕ൧ഁ∑ ሾ்೔ೖ(௧)ഀሿሾఎ೔ೖሿഁೖ∈ಿ೔                          (4) 

where 𝛼 and β are weighting parameters controlling 
the influence of pheromone and heuristic information, 
and 𝑁௜ is the set of feasible neighboring nodes. This 
rule ensures that paths with higher pheromone 
intensity and shorter distance are more likely to be 
selected. After all ants complete their tours, 
pheromone trails are updated in Eq. 5. 𝑇௜௝(𝑡 + 1) = (1 − 𝜌)𝑇௜௝(𝑡) + ∆𝑇௜௝                 (5) 

where 𝜌 is the pheromone evaporation rate and ∆𝑇௜௝ 
is the pheromone deposited, typically defined as 
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∆𝑇௜௝௞ = ொ௅ೖ if the k-th ant used edge (i, j), where 𝑄 is a 
constant and 𝐿௞ is the path length. 

Parameter tuning strongly influences ACO 
performance. A higher α increases dependence on 
pheromone trails (exploitation), whereas a higher β 
emphasizes heuristic guidance (exploration). A large 
evaporation rate ρ\rhoρ accelerates the search for new 
paths but may slow convergence. The number of ants 
determines the number of solutions generated per 
iteration, balancing search diversity and computation 
time. 

Through this dynamic balance of pheromone 
reinforcement, heuristic influence, and evaporation, 
ACO efficiently discovers near-optimal paths in 
complex environments. 

3 PERFORMANCE ANALYSIS OF 
THE METHODS 

In this section, four algorithms A*, RRT*, GA, and 
ACO were tested on five grid environments of 
varying difficulty levels. Each algorithm was 
executed under identical experimental conditions, 
with the same start and goal positions, and with 
specific parameter settings to ensure fairness. For 
each grid, the results were compared in terms of 
several metrics, including path length, execution 
time, success rate, visual quality of the generated 
path, and algorithmic stability. Screenshots and visual 
outputs were also provided for each test, and the 
analyses were supported by numerical data. 

The experiments were conducted on a computer 
with the following specifications: Intel 12th Gen 
Core™ i5-12500H 3.10 GHz processor, 8 GB DDR4 
RAM, and an NVIDIA GeForce RTX 3050 Ti GPU. 
All algorithms were implemented in Python and 
executed within the same operating system and 
programming environment to ensure consistency in 
comparison. 

To allow a comprehensive performance 
evaluation, all four algorithms were tested on the 
same set of grid maps under identical conditions. The 
test scenarios were designed with different structural 
complexities, enabling detailed analysis of algorithm 
performance across multiple environments. In this 
study, the paths obtained from deterministic and 
probabilistic methods are analyzed and compared 
across Map 1, Map 2, Map 3, and Map 4. 

 
 
 
 

3.1 Map 1: Medium-Density Obstacle 
Structure and Performance 
Analysis 

In this scenario, the performance of four algorithms 
was evaluated within a grid environment containing 
medium-density obstacles. The workspace was 
defined as a 25×50 grid, with the start point set at 
(0,0) and the goal point at (6,31). Obstacles were 
strategically positioned along the horizontal and 
vertical axes to partially block the direct line toward 
the goal. This configuration was designed to assess 
the algorithms’ capabilities in obstacle detection, 
environmental awareness, and alternative path 
generation. 

Each algorithm was configured according to its 
methodological principles. The A* algorithm 
employed the Manhattan distance heuristic and four-
directional movement, generating fast and optimal 
paths. The RRT* algorithm was executed with 800 
iterations, a step size of 1 unit, and a neighborhood 
radius of 4 units, enabling rapid exploration of the 
environment through random sampling. The Genetic 
Algorithm (GA) utilized a population of 300 
individuals, a maximum path length of 80 steps, 500 
generations, and a mutation rate of 10%, ensuring 
population diversity and guiding the search toward 
near-optimal solutions. The Ant Colony Optimization 
(ACO) algorithm was run with 60 artificial ants over 
200 iterations, applying a 60% pheromone 
evaporation rate and parameters of α = 1 and β = 2, 
thereby integrating pheromone-based reinforcement 
with heuristic guidance. 

The results revealed clear differences among the 
four methods. The A* algorithm consistently 
produced the shortest and smoothest paths with the 
lowest execution time, achieving a 100% success rate 
across all trials. The RRT* algorithm also reached the 
goal in every run; however, due to its sampling-based 
nature, its paths were more irregular and 
computationally more expensive compared to A*. 
The Genetic Algorithm achieved a similarly high 
success rate but required significantly longer 
computation times. The ACO algorithm successfully 
generated feasible paths in all tests, though its routes 
occasionally included indirect detours, and its 
execution time was higher than that of the other 
methods. 

Overall, the results for Map 1 indicate that the A* 
algorithm is the most efficient and stable method for 
environments with medium obstacle density. 
Although RRT* achieved a comparable success rate, 
it exhibited lower efficiency in terms of path 
smoothness and computation time. Both GA and 
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ACO successfully reached the goal but, due to their 
population-based and pheromone-based nature, 
tended to explore a broader solution space before 
converging. Consequently, both algorithms incurred 
higher computational costs and longer convergence 
times. Figure 1 shows the path planning of the 
compared algorithms on Grid 1. A* algorithm 
provided the fastest, most stable, and shortest path 
solutions in this environment, whereas RRT*, GA, 
and ACO demonstrated greater flexibility and 
adaptability but were limited by their computational 
overhead. A comparative summary of algorithmic 
performance on Map 1 is presented in Table 1. 

Table 1: Performance Analysis on Grid 1 

Algorithm 
Path 

Length 
(steps) 

Execution 
Time (ms) 

Success 
Rate Stability 

A* 54 0.9 100% High 

RRT* 52.5 1.9 100% Medium 

Genetic 
Algorithm 57 3386 100% Medium 

Ant Colony 
Optimization 57 16553 100% Medium 

3.2 Map 2: High-Density Obstacle 
Structure and Performance 
Analysis 

In this test scenario, the performance of four path 
planning algorithms was evaluated in a complex 
environment with high obstacle density. The grid was 
designed with 25 rows and 50 columns, with the start 
point located at (1,1) and the goal at (23,48). 
Obstacles were strategically positioned to form 
narrow passages and maze-like barriers, creating 
bottlenecks and obstacle clusters that made direct 
routes impossible. This configuration was 
specifically designed to test not only the ability of the 
algorithms to find short paths but also their capacity 
to develop robust strategies in highly constrained 
environments. Each algorithm was tested under 
carefully selected parameter settings appropriate to its 
structure. The A* algorithm used four-directional 
neighborhood and the Manhattan heuristic, 
maintaining simplicity and speed while producing 
efficient routes in the cluttered space. 

RRT* was applied with a step size of 1 unit, a 
neighborhood radius of 4 units, and a maximum of 
800 iterations, expanding its branching structure to 
search for feasible solutions. The Genetic Algorithm 
was executed with an initial population of 800 
individuals, a maximum path length of 170 steps, 700 
generations, and a mutation rate of 10%, allowing a 

 
 
 
 

A) A* Algorithm 

 
B) RTT* Algorithm 

 
C) Genatic Algorithm 

D) Ant Colony Algorithm 

Figure 1: Performance Analysis on Grid 1. 

diverse exploration of more complex routes. The Ant 
Colony Optimization method was tested with 60 ants, 
200 iterations, a pheromone evaporation rate of 60%, 
and parameter values of α=1 and β=2, ensuring a 
balance between pheromone reinforcement and 
heuristic guidance. 
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The results demonstrated that all four algorithms 
achieved a 100% success rate in this high-density 
grid; however, significant differences were observed 
in computation time and path quality.  The A* 
algorithm once again produced short and stable paths, 
while RRT* found even shorter solutions but required 
noticeably longer runtimes. Figure 2 shows the path 
planning of the compared algorithms on Grid 2. The 
Genetic Algorithm successfully reached the goal but 
incurred very high computational costs and generated 
paths that were zigzagged and indirect due to the 
complexity of the environment. Similarly, Ant 
Colony Optimization produced valid solutions but at 
a considerable computational expense. 

RRT* was applied with a step size of 1 unit, a 
neighborhood radius of 4 units, and a maximum of 
800 iterations, expanding its branching structure to 
search for feasible solutions. The Genetic Algorithm 
was executed with an initial population of 800 
individuals, a maximum path length of 170 steps, 700 
generations, and a mutation rate of 10%, allowing a 
diverse exploration of more complex routes. The Ant 
Colony Optimization method was tested with 60 ants, 
200 iterations, a pheromone evaporation rate of 60%, 
and parameter values of α=1 and β=2, ensuring a 
balance between pheromone reinforcement and 
heuristic guidance. 

The results demonstrated that all four algorithms 
achieved a 100% success rate in this high-density grid; 
however, significant differences were observed in 
computation time and path quality. The A* search  for 
feasible solutions. The Genetic Algorithm was 
executed with an initial population of 800 individuals, 
a maximum path length of 170 steps, 700 generations, 
and a mutation rate of 10%, allowing a diverse 
exploration of more complex routes. The Ant Colony 
Optimization method was tested with 60 ants, 200 
iterations, a pheromone evaporation rate of 60%, 
algorithm once again produced short and stable paths, 
while RRT* found even shorter solutions but required 
noticeably longer runtimes. The Genetic Algorithm 
successfully reached the goal but incurred very high 
computational costs and generated paths that were 
zigzagged and indirect due to the complexity of the 
environment. Similarly, Ant Colony Optimization 
produced valid solutions but at a considerable 
computational expense. A comparative summary of 
the performance results on Grid 2 is presented in Table 
2. The results obtained from this test demonstrate that 
in highly cluttered environments, deterministic 
methods (particularly A*) exhibit more consistent 
performance in terms of speed and accuracy, while 
sampling-based and intelligence inspired approaches 
require significantly longer computation times and 

A) A* Algorithm 

 
B) RTT* Algorithm 

 
C) Genatic Algorithm 

 
D) Ant Colony Algorthm 

 
Figure 2: Performance Analysis on Grid 2. 

tend to generate more complex paths. Nevertheless, 
these methods can still be considered as valuable 
alternatives due to their capability to cope with highly 
complex structures. 
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Table 2. Performance Analysis on Grid 2. 

Algorithm 
Path Length 

(steps) 
Execution 
Time (ms) 

Success 
Rate 

Stability 

A* 70 2.5 100% High 
RRT* 66.3 14.2 100% Medium 

Genetic 
Algorithm 

134.9 17,551 100% Medium 

Ant Colony 
Optimization 

79 13,885 100% Medium 

3.3 Map 3: Low-Density Obstacle 
Structure and Performance 
Analysis 

In this test, the performance of four different path 
planning algorithms was evaluated on a grid with low 
obstacle density. The grid consists of 25 rows and 50 
columns, with the start point at (0, 0) and the goal 
point at (24, 49). Obstacles were sparsely placed, 
leaving wide open areas across the grid. The purpose 
of this structure is to assess the ability of the 
algorithms to generate the shortest and most accurate 
paths in free spaces. Specifically, the obstacles were 
positioned to partially block the direct route, allowing 
observation of whether the algorithms could 
effectively utilize open spaces to find efficient paths. 

Each algorithm was executed with parameters 
tailored to its principles. In A*, the Manhattan 
distance heuristic with four-directional neighborhood 
connectivity was employed. RRT* was run with a step 
size of 1 unit, a neighborhood radius of 4 units, and an 
iteration limit of 800. For the Genetic Algorithm, 
anticipating the possibility of longer paths in this 
structure, a population of 300 individuals was 
initialized, the maximum step length was increased to 
110, and evolution was performed over 500 
generations with a mutation rate of 10%. In the Ant 
Colony Optimization algorithm, 60 artificial ants and 
200 iterations were used, with a pheromone 
evaporation rate of 60%, and α = 1, β = 2 parameters. 
These values allowed the ants to balance the 
exploitation of previously successful paths with 
proximity to the goal. According to the test results, all 
algorithms achieved the target with a 100% success 
rate. The A* algorithm once again produced the 
shortest and most stable paths with high speed, while 
the RRT* algorithm, despite its randomized sampling 
nature, generated efficient paths that were even 
slightly shorter. The Genetic Algorithm successfully 
reached the goal but required significantly longer 
computation times compared to the other methods. 
Figure 3 shows the path planning of the compared 
algorithms on Grid 3. The Ant Colony Optimization 
algorithm was the slowest method in this scenario, as  

A) A* Algorithm 
 
 
 
 
 

 
 
 
 
 

B) RTT* Algorithm 
 
 
 
 
 
 
 
 
 
 

C) Genatic Algorithm 
 
 
 
 
 
 
 
 
 
 

D) Ant Colony Algorithm 

 
Figure 3: Performance Analysis on Grid 3 

wider free areas demanded more exploration and 
pheromone accumulation, resulting in higher iteration 
counts and longer execution times. A comparative 
summary of the performance results on Grid 3 is 
presented in Table 3. 

Table 3. Performance Analysis on Grid 3. 

Algorithm 
Path 
Length 

Execution 
Time (ms) 

Success 
Rate 

Stability 

A* 74 steps 3.0 ms 100% High 
RRT* 65.4 steps 3.19 ms 70% Medium 
Genetic Algorithm 74 steps 6395 ms 80% Medium 
Ant Colony 81.2 steps 11629 ms 100% Medium 
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These results indicate that in environments with 
sparse obstacles and large open spaces, deterministic 
methods (particularly A*) are capable of producing 
high-quality paths in a very short time. RRT* has 
shown a tendency to generate efficient paths in free 
regions due to its sampling-based exploration. On the 
other hand, Genetic Algorithm and Ant Colony 
Optimization required significantly longer execution 
times because of their exploration and optimization 
processes. It is clearly observed that in such spacious 
and low-obstacle environments, deterministic 
algorithms provide a direct advantage. 

3.4 Map 4: Vertical Barriers and 
Performance of Path Planning 
Algorithms 

This test scenario was conducted on an environment 
where vertical barriers were densely placed, making 
direct passage more difficult. The grid consisted of 25 
rows and 50 columns, with the start point defined as 
(2, 2) and the target point as (22, 48). Vertical 
obstacles were positioned to block large areas of the 
grid, requiring the algorithms to identify feasible 
routes through narrow corridors. This structure was 
specifically designed to evaluate the algorithms’ 
ability to navigate confined passages and optimize 
path planning under restrictive conditions. 

All algorithms were executed using fixed 
parameters suitable for their respective characteristics. 
The A* algorithm employed four-directional 
connectivity and the Manhattan heuristic to ensure fast 
and stable path generation. The RRT* algorithm was 
run with a step size of 1 unit, a neighborhood radius of 
4 units, and an iteration limit of 800, aiming to 
discover feasible paths through random sampling and 
rewiring processes. The Genetic Algorithm was tested 
with an initial population of 800 individuals, a 
maximum step limit of 500, and 500 generations, 
while maintaining solution diversity with a 10% 
mutation rate. The Ant Colony Optimization (ACO) 
method was implemented with 100 ants, 300 
iterations, a pheromone evaporation rate of 50%, α = 
1, β = 2, and a reinforcement of 200 pheromone units 
for each successful path. 

The results revealed that the A* algorithm 
consistently produced reliable, short, and fast 
solutions, even in this complex configuration. The 
RRT* algorithm achieved a 100% success rate and 
generated path lengths comparable to A*, but with 
noticeably higher computation time. The Genetic 
Algorithm successfully produced valid paths in 75% 
of the tests; however, both the path length and 
execution time remained relatively high. The Ant  

A) A* Algorithm 

 
B) RTT* Algorithm 

 
C) Genatic Algorithm 

 
D) Ant Colony Algorthm 

 
Figure 4: Performance Analysis on Grid 4. 

Colony Optimization method achieved success in all 
runs, but generated the longest and most 
computationally expensive paths. Nevertheless, the 
routes produced by ACO displayed smooth navigation 
through obstacles, albeit via indirect detours. Figure 4 
shows the path planning of the compared algorithms 
on Grid 4. 
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Table 4. Performance Analysis for Grid 4. 

Algorithm Path 
Length(steps) 

Execution 
Time (ms) 

Success 
Rate Stability 

A* 99  2.5 ms 100% High
RRT* 96.6  17.2 ms 100% Medium
Genetic 
Algorithm 171.2  26,537 ms 75% Medium 

Ant Colony 
Optimization 102.33 25,316 ms 100% Medium 

 
This test demonstrates that in complex 

environments with dense vertical obstacles, 
deterministic methods (particularly the A* algorithm) 
still provide a strong and reliable solution, while 
sampling-based and intelligence-inspired approaches 
are more costly in terms of computation time and path 
length. Nevertheless, these methods remain valuable 
alternatives due to their flexibility in generating 
feasible and alternative routes through obstacle-rich 
areas. 

4 RESULTS AND DISCUSSION 

In this study, the performance of four widely used 
path planning algorithms for autonomous robot 
navigation A*, RRT*, Genetic Algorithm, and Ant 
Colony Optimization was thoroughly compared 
across four different grid environments. The 
algorithms were evaluated based on key performance 
metrics such as path length, computation time, and 
success rate. Additionally, they were conceptually 
categorized into search-based, sampling-based, and 
intelligence-inspired methods for further 
interpretation. 

Among the search-based methods, the A* 
algorithm consistently found the shortest or near-
shortest paths across all tested grids while achieving 
the lowest computation times. Particularly in grids 
with low and medium obstacle density, A* 
demonstrated a 100% success rate, producing reliable 
and well-structured paths. However, in environments 
with higher complexity and dense vertical barriers, 
the path length and computation time increased, 
although the success rate remained high. This 
indicates that while A* benefits from its systematic 
search and heuristic-driven guidance, the 
computational cost grows with the expansion of the 
search space in complex environments. 

The RRT* algorithm, representing the sampling-
based category, exhibited flexibility in complex 
scenarios due to its random sampling and rewiring 
principles. It successfully generated feasible paths in 
all tested grids; however, the path quality and 
computation time varied significantly. In highly 

cluttered environments with narrow passages, RRT* 
produced shorter paths compared to A*, but at the 
expense of higher computation times. The 
performance of RRT* was strongly influenced by 
parameter settings such as iteration count and step 
size. 

Within the intelligence-inspired methods, the 
Genetic Algorithm demonstrated a capacity to 
explore alternative solutions, particularly in highly 
complex environments. Nevertheless, its 
performance was more sensitive to parameter tuning 
compared to the other methods. With properly set 
population size, number of generations, and mutation 
rate, feasible and reasonable paths could be obtained. 
However, in most cases, GA incurred the highest 
computational costs in terms of both path length and 
execution time. Its success rate also tended to 
decrease in complex structures, and the generated 
paths were often indirect. 

The Ant Colony Optimization algorithm, 
leveraging pheromone-based exploration and 
exploitation mechanisms, achieved near-perfect 
success rates across all grids. However, it was one of 
the most computationally expensive methods in terms 
of execution time and path quality. Although 
increasing the number of ants and iterations improved 
performance, it also significantly raised 
computational costs. ACO showed a tendency to 
generate feasible yet indirect paths, particularly in 
wider grids with multiple alternative passages. 

Overall, this study highlights the critical 
importance of algorithm selection depending on the 
application conditions. For low to moderately 
difficult environments, the A* algorithm emerges as 
the most advantageous solution in terms of both speed 
and accuracy. In contrast, RRT* and Ant Colony 
Optimization provide flexible alternatives in more 
complex structures with narrow corridors, while the 
Genetic Algorithm requires extensive parameter 
tuning and remains the most computationally 
demanding method. These findings suggest that 
instead of relying on fixed algorithms, hybrid and 
adaptive approaches may offer more effective 
solutions for future autonomous robot navigation 
tasks. Furthermore, parametric optimization and 
learning-based adaptation mechanisms represent 
promising directions for improving the performance 
of existing algorithms. 

5 CONCLUSION 

This study's empirical investigation of A*, RRT*, 
Genetic Algorithm, and Ant Colony Optimization 
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confirms that the optimal path planning algorithm is 
intrinsically linked to the operational environment's 
complexity. A fundamental trade-off exists between 
computational efficiency and solution robustness. 
The A* algorithm consistently demonstrated superior 
speed and optimality in low-to-medium complexity 
environments, establishing it as a benchmark for 
structured spaces. In contrast, RRT* offered greater 
flexibility in navigating intricate, non-convex 
topographies, while the metaheuristic GA and ACO 
approaches proved capable of solving the most 
complex scenarios, albeit at a significant 
computational cost and with high sensitivity to 
parameter tuning. 

Future research should prioritize the development 
of hybrid methodologies that synergistically combine 
the deterministic efficiency of algorithms like A* 
with the exploratory strengths of RRT* or ACO. 
Furthermore, extending this comparative analysis to 
dynamic and three-dimensional environments, 
alongside integrating machine learning for adaptive 
parameterization, remains a critical next step for 
advancing autonomous navigation systems. 
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