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Abstract: Digital transformation has unleashed a tidal wave of data that is big data, as we like to call it, and working 
with that mountain brings real hurdles. Chief among them is the need for specialists who can speak in arcane 
query languages, which keeps everyday users at arm’s length. To break down that barrier, we introduce a 
natural-language interface (NLI) that lets users chat with a time-series database, such as InfluxDB, instead of 
writing SQL-style commands. The design follows a hybrid playbook, splitting the work into two clear tracks. 
Whenever absolute precision is essential, such that the system must craft an exact database query, it leans on 
a rules-based engine that behaves predictably every time, sidestepping the hallucinations sometimes seen in 
large language models. Once the data lands and the job shifts to drawing meaning from the numbers, the baton 
passes to Llama 3.1, whose generative skills excel at turning rows of metrics into clear insight. A working 
prototype already shows the approach can bridge everyday language and InfluxDB without missing a beat. 

1 INTRODUCTION 

The twenty-first century marks an era in which digital 
technologies have fundamentally transformed social 
and economic structures. This process of digital 
change is commonly referred to as digital 
transformation. Digital transformation is a process 
that aims to improve an organization or system by 
triggering significant changes in its characteristics 
through the convergence of information, computing, 
communication, and connectivity technologies (Vial, 
2019). This transformation involves not only the 
adoption of new technologies, but also a radical 
rethinking of business models, operational processes, 
and methods of value creation. 

As a result of digital transformation, organizations 
and individuals are faced with an unprecedented 
volume of data to support strategic and operational 
decision-making. Although this phenomenon, known 
as Big Data, appears to derive its name solely from 
the quantity of data it contains, it also encompasses a 
wide range of data diversity, speed, and complexity 
(McAfee et al., 2012). While this wealth of data 
provides a significant competitive advantage when 
analyzed correctly, unlocking this potential stored in 
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databases often requires advanced technical 
expertise. This lack of proficiency in accessing data 
creates a fundamental challenge that limits the 
dissemination and accessibility of information within 
organizations and makes the need for more intuitive 
interfaces that simplify human-computer interaction 
critical. 

In response to this need, Natural Language 
Interfaces (NLIs) have been developed which allow 
users to interact with databases through natural 
language rather than structured query languages. This 
idea has a deep-rooted history dating back to early 
computer science research, such as systems like 
LUNAR (Woods et al., 1972). Traditionally, 
accessing data required proficiency in formal 
languages like SQL or SPARQL, which  may present 
a significant barrier for domain experts without a 
technical background. Indeed, although SQL was 
initially designed for business professionals, it is a 
fact that even technically skilled users often struggle 
to assemble the right queries (Affolter et al., 2019). 
NLIs aim to shift this translation burden from the user 
to the system by translating a user question like 
“Show me the most popular movies of the last five 
years" into a complex SQL query in the background. 
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Nevertheless, the inherent complexities of human 
language mean that this NLI promise is difficult to 
achieve consistently. A key challenge is the 
ambiguity surrounding the concept. This issue may be 
seen in both lexical and structural contexts, resulting 
in an expression that has multiple potential 
interpretations (Jurafsky & Martin, 2008). Moreover, 
the necessity of correctly interpreting user inputs, 
which frequently contain orthographic errors, 
colloquialisms, or requests for complex database 
operations such as subqueries, joins, and aggregations 
and subsequently converting these inputs into valid 
structured queries, poses a substantial engineering 
challenge for NLI systems.  

In addressing these limitations, NLI technology 
has experienced a significant trajectory of 
development over several decades. Initial iterations 
utilized methodologies predicated on keyword 
matching, centering upon the correlation of user input 
terminology with the extant database schema. With 
technological progression, a subsequent evolution 
occurred towards pattern-based systems, which 
endeavored to interpret more complex queries via 
designated trigger words and grammatical constructs, 
parsing-based systems, which generated queries of 
greater accuracy and complexity through the analysis 
of syntactic sentence structure, and grammar-based 
systems, which depend upon inflexible rule-sets to 
constrain user interaction. Every architectural 
paradigm presents a distinct equilibrium among 
expressiveness, flexibility, and domain-specific 
adaptability (Affolter et al., 2019). 

In recent years, the advent of machine learning 
and deep learning techniques, exemplified by Long 
Short-Term Memory (LSTM) models, has 
precipitated a paradigm shift within the NLI domain 
(Sutskever et al., 2014). This transformation 
subsequently accelerated considerably, particularly 
following the advent of Large Language Models 
(LLMs). These models have been trained on vast 
textual corpora and utilise billions of parameters, thus 
presenting unprecedented capabilities for interpreting 
linguistic variability and discerning complex 
semantic relationships. It is hypothesised that they 
may offer more flexible and powerful resolutions for 
numerous challenges inherent in traditional NLI 
systems (Chang et al., 2024). 

The integration of LLMs expands the capabilities 
of NLIs not only for traditional relational databases 
but also for a wider variety of data models. Current 
researches have introduced innovative approaches 
such as improving semantic interpretation accuracy 
by integrating SQL grammar into neural networks 
(Cai et al., 2017), developing multilingual 

frameworks that support multiple database engines by 
generating synthetic data (Bazaga et al., 2021), and 
chatbots that translate natural language queries for 
graph databases into specialized languages such as 
Cypher (Hornsteiner et al., 2024). Similarly, LLMs 
are also used in specialized domains such as time-
series databases to simplify data querying and 
complex analyses (Jiang et al., 2024). While these 
rapid advances offer great potential, they have also 
introduced new and important research challenges, 
such as model hallucinations which is generating 
false information, output interpretability, and privacy 
concerns arising from the processing of sensitive 
data. 

To provide an alternative solution to this problem, 
this study proposes a system architecture that acts as 
an abstraction layer between users and time series 
databases, enabling interaction with natural language. 
The system's primary goal is to understand analytical 
requests expressed by end users in colloquial 
language without knowledge of a technical query 
language, translate them into valid and optimized 
Flux queries for the target database which is 
InfluxDB (InfluxData, n.d.), and present the resulting 
numerical results in a user-friendly, interpreted 
natural language format. 

The fundamentals of the system developed in this 
study consist of a hybrid approach that combines two 
distinct AI paradigms within a single architecture. In 
the Query Generation phase, this hybrid architecture 
utilizes rule-based and grammar-driven Natural 
Language Processing (NLP) techniques using SpaCy 
(Honnibal & Montani, 2017) to produce 
deterministic, reliable, and manageable results. In the 
Result Interpretation phase, it leverages the reasoning 
and text generation capabilities of LLMs to extract 
deep insights from raw data and produce human-like 
explanations. 

2 METHODOLOGY 

When designing the system architecture, a hybrid 
architectural approach was adopted that has the 
capacity to separate two different cognitive tasks, 
such as query understanding and result interpretation, 
and selecting the most suitable technology for each 
task. This approach aims to optimize the overall 
performance and reliability of the system as follows. 
 Deterministic Inference for Query Generation: 

The task of generating database queries from 
natural language input requires  high  accuracy 
and repeatability. The same input should 
always produce the same query output. This 
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requirement makes LLMs, which carry the risk 
of hallucination due to their probabilistic 
nature, risky for that kind of task. Therefore, in 
this study, the matcher component of the 
SpaCy library as a rule-based and predictable 
method for parsing the semantic and syntactic 
structure of text, was used. 

 Generative Synthesis for Response 
Interpretation: The task of generating human-
understandable insights from structured 
numerical data returned from the database 
requires contextual reasoning and semantic 
richness. This is a task which cannot be 
effectively solved with deterministic rules. 
Therefore, known and open-source LLM 
Llama 3.1 (Dubey et al., 2024) that is capable 
of ingesting data summaries and transforming 
them into a coherent narrative was used in this 
phase. 

 
This hybrid methodology encourages the use of the 

most appropriate cognitive tool for each sub-problem, 
making the system both reliable and intelligent. When 
examined in terms of its cycle, this system can be 
divided into three parts: 
 Proof of Concept: In this first cycle, the 

system's core data flow pipeline, which turns 
API requests into InfluxDB response, was 
tested with a static query. The primary goal was 
to verify the interoperability of the 
infrastructure components which are Docker, 
InfluxDB, FastAPI and the data serialization 
processes from CSV to a DataFrame. 

 Deterministic Translation Capability: In the 
second iteration, the NLP layer SpaCy was 
integrated, providing entity recognition 
capabilities based on predefined rules. At the 
end of this phase, the system was able to 
dynamically generate Flux queries from simple 
natural language input. 

 Generative Interpretation Capability: In the 
final iteration, the native LLM service Ollama 
(Ollama, n.d.) which enables the use of Llama 
was integrated. The process of statistically 
summarizing the DataFrame returned from the 
database and sending this summary to LLM via 
a command line to obtain a qualitative 
interpretation is completed in this manner. 

 
At the end of each iteration, the developed 

prototype was evaluated using specific test scenarios 
such as cURL requests, and its functionality was 
verified before proceeding to the next step. The 
detailed layered architecture of the system, that is 

designed according to this methodology and 
principles, is presented in the System Architecture 
section. 

3 SYSTEM ARCHITECTURE 

The system developed in this study is based on a 
design model similar to the Layered Pipeline 
Architecture. This architecture comprises 
autonomous components, each with a particular and 
delineated responsibility, where data is processed 
sequentially and unidirectionally to accomplish a 
task. The architecture of the system has been designed 
in such a way as to ensure the security of data by 
having all components run on the local host machine. 

3.1 Architectural Overview 

 
Figure 1: Architectural Overview. 

The system takes natural language input from the 
user and follows a data flow through four main 
components until it produces natural language output. 
Each component passes a standard data structure to 
the next. Figure 1 visualizes the conceptual 
architecture of the proposed system and the end-to-
end data flow of a user request within the system. This 
architecture follows a sequential pipeline structure 
that takes natural language input, processes it through 
a series of transformations, and produces natural 
language output. 

The process begins with the end user by providing 
text-based input. This unstructured, free-form text is 
fed to the Natural Language Parser, as the first core 
component of the system. The component performs 
linguistic analysis on the text as extracting the user's 
intent and critical entities for the query, such as 
measurement, area, time period, etc. The output of the 
analysis is a JSON object, which converted into a 
machine-readable, structured format. This resulting 
semantic representation is provided as input to the 
next stage, which is the Flux Query Generation 
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component. This component synthesizes the abstract 
semantic contract created in the previous stage into a 
concrete and syntactically valid Flux Query that the 
target database, InfluxDB understands. 

In the second half of the data processing pipeline, 
first the query is executed on InfluxDB, then the 
result is returned as raw data. In Figure 1, this raw 
data is represented as a CSV file. In practical 
application, this stage involves taking the CSV data 
and converting it into a structured Pandas DataFrame 
for analysis and statistical calculations. 

As the final stage, this structured data is provided 
as input to Llama 3.1 LLM, that is the system's 
interpretation and synthesis engine. The LLM 
analyzes this quantitative data within the context of 
the user's original query and produces the final 
Natural Language Response to be presented to the 
user. With this step, the cycle that began with natural 
language is completed with understandable and 
interpreted natural language output. 

3.2 Components of the Architecture 

3.2.1 Natural Language Parser 

The Natural Language Parser is responsible for 
transforming the raw text input into a syntactically 
and semantically structured representation. It 
analyzes the input text string using the SpaCy 
library's rule-based Matcher mechanism. This 
deterministic approach recognizes terms defined in 
the system's metadata, such as measurement, field, 
and label names, with high accuracy. The output of 
this process is a structured JSON object containing 
the user's intent and query entities, which serves as a 
"semantic contract" for subsequent layers. The 
fundamental design philosophy of this layer is to 
provide absolute reliability and repeatability in a 
delicate task like database queries, rather than the 
uncertainty that probabilistic models can introduce. 

3.2.2 Flux Query Generator 

The Flux Query Generator functions as a translation 
engine, translating the semantic representation from 
the NLP Parser into a technical command that the 
target database can execute. It processes the input 
JSON object using parametric templating. Predefined 
keywords that exist in the database act as Flux query 
skeletons for each query intent are securely populated 
only with entities validated in the NLP layer. This 
methodology provides a natural layer of protection 
against potential security vulnerabilities like Flux 
Injection by preventing user input from altering the 

structural integrity of the query. The final output of 
this layer is a syntactically valid Flux query in text 
format for transmission to the next layer. 

3.2.3 Data Access and Preprocessing 

This component handles the actual communication 
between the application logic and the database. Its 
role is to take the Flux query text generated in the 
previous layer and execute it on the InfluxDB API. 
The raw CSV data returned from the database as a 
result of an authenticated HTTP POST request is 
processed in this layer. In this process, incoming text-
based data is converted into a DataFrame that is 
essential to provide a consistent, structured, and 
analysis-ready data table for the subsequent 
interpretation layer to work with. 

3.2.4 Response Interpreter 

The final component of the pipeline, which is the 
bridge of system to the user, is responsible for 
synthesizing numerical data into qualitative insights 
and a human-readable narrative. It takes as input the 
DataFrame from the previous layer and the user's 
original query text to provide context. This layer uses 
a hybrid methodology combining statistical analysis 
and generative AI. First, descriptive statistics like 
mean and maximum are calculated from the 
DataFrame using Pandas. This numerical summary is 
then structured into a prompt and transmitted via an 
API call to the locally running Ollama/Llama 3.1 
LLM service. The LLM's task is to interpret these 
statistics within the given context and produce 
coherent text. The final output of the system is the 
natural language response generated by this LLM and 
presented to the user. 

4 SYSTEM OPERATIONAL 
FLOW AND DATA 
PROCESSING 

The present section elucidates the operational 
principles of the architecture by delineating the 
lifecycle of a user request as it traverses the system. 
The process can be conceptualised as a data 
processing pipeline, where each system component 
sequentially activates the next by transforming data 
from one representation to another. The baseline 
scenario for this analysis involves the processing of a 
natural language query that requests the average value 
for a designated metric and field. 
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4.1 Receiving and Verifying the 
Request 

The system's operational flow begins with an external 
client sending an HTTP POST request to the system's 
query API endpoint. This request carries a JSON 
payload, identified by the Content-Type: 
application/json header, containing the user's raw 
query text. The FastAPI web framework (Ramírez, 
2018) serves as the system's gateway to this request. 
During this phase, automatic type checking and data 
validation are performed on the incoming payload. 
This validation step ensures that the system only 
accepts input in the expected format and with a valid 
data type, creating the first layer of security and 
robustness. After successful validation, the raw query 
text is passed to the next processing component. 

4.2 Semantic Parsing and Structural 
Representation 

Natural language input is directed to the NLP 
component, the principal objective of which is the 
conversion of unstructured text into a computationally 
tractable intermediate representation (IR) employing 
deterministic rules. This transformation leverages the 
rule-based Matcher mechanism provided by the 
SpaCy library. The mechanism in question performs 
an inference operation through the application of 
predefined lexical patterns against the input text. The 
resultant artefact of this operation is a JSON object 
encapsulating the core semantic constituents of the 
intended Flux query (e.g. {"measurement": "...", 
"field": "..."}). Subsequently, the object functions as a 
standardized input contract for downstream 
components. 

4.3 Deterministic Query Synthesis 

The semantic representation formulated during the 
preceding stage serves as input for the Flux Query 
Generator component. The function of this 
component is to translate the abstract semantic 
representation into a concrete syntactic structure that 
is compatible with the execution engine of InfluxDB. 
The translation process is facilitated by the utilisation 
of parametric templating. This approach maintains 
the query's immutable structural framework, 
permitting only those entities validated by the NLP 
layer to be assigned to variables therein. 
Consequently, this design methodology ensures 
system reliability and predictability, upholding 
structural integrity while simultaneously mitigating 
vulnerabilities such as flux injection. 

4.4 Database Execution and Data 
Transformation 

The synthesised Flux query is then passed to the Data 
Access and Preprocessing component. This 
component initiates an authenticated HTTP POST 
request to the InfluxDB API via the InfluxDB service 
address, utilising the Docker internal network and 
DNS resolution mechanism. The query result, when 
executed by the database engine, is returned in a 
serialised text format as CSV. As this raw data is not 
suitable for subsequent qualitative analysis steps, it 
undergoes a critical transformation at this layer. The 
pivot function within the query facilitates the 
conversion of the incoming data into a wide-format 
structure, which is then represented in memory as a 
DataFrame object, a standard data analysis structure 
within the Python ecosystem. 

In the final stage of the data processing pipeline, 
the structured DataFrame is routed to the Response 
Interpreter component, whose purpose is to 
synthesize a qualitative narrative from the 
quantitative data. To this end, descriptive statistics are 
first calculated. Then, this statistical summary is 
combined with the original user query to preserve 
context, creating a contextual prompt for the native 
LLM. This prompt is sent via an API request to the 
Ollama service, also via the Docker network. Using 
this structured data and context, the LLM synthesizes 
text that summarizes and interprets the results. 
Finally, the main application combines the 
intermediate outputs from each stage of the pipeline, 
that are the recognized entities, the generated query, 
the raw data table, and the LLM-interpreted response 
into a single JSON composition. This completes a 
query's lifecycle within the system. 

4.5 Experimental Setup 

To develop and test the prototype presented in this 
study, a container-based development environment 
was established that ensures the isolated, portable, 
and repeatable operation of all components. The 
installation process involves systematically 
configuring the infrastructure services and the 
application environment. 
 Environment containerization with Docker is 

used to prevent configuration differences and 
conflicts that could arise from directly 
installing the InfluxDB database and Ollama 
LLM service on the local machine. 

 Runtime and dependencies are isolated within 
the application's Python library by creating a 
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virtual environment, to ensure packages are 
seperated from system wide installation. 

5 CASE STUDY 

The pipeline structure of the architecture shows how 
the user's natural language input goes through a series 
of transformation and enrichment stages to reach the 
final interpreted response. The operational flow of the 
proposed system and the interactions between 
components are visualized in detail in Figure 2 using 
a reference query. 

 
Figure 2: Operational Flow of the System. 

The process begins with the end user expressing 
an analytical request in natural language, for instance 
with a question like "What is the average of the 
counter field for the boltdb_reads_total metric?" This 
textual input is transmitted via an HTTP request to the 
FastAPI Server, which operates at localhost, acting as 
the system's main gateway. The first processing unit 
hosted within the server is the NLP Parser SpaCy. 
This component performs deterministic linguistic 
parsing of incoming unstructured text. SpaCy's rule-
based Matcher mechanism recognizes predefined 
entities like boltdb_reads_total and counter within the 
text with high accuracy. The output of this process is 
a structured JSON object, denoted as { 
"recognized_entities": {...} }, that contains the 
semantic essence of the query. 

This resulting semantic representation is fed into 
the Query Generator, the next logical unit of the 
system. This component synthesizes the received 
structured JSON object into a valid Flux Query that 
conforms to the syntax of the target database. This is 
a critical translation step, where an abstract user intent 
is translated into a concrete command that can be 
executed by the machine. 

The generated Flux query is transmitted to the 
InfluxDB server running also on localhost  via the 
Data Access Service, which is responsible for the 
system's communication with the database. InfluxDB 
executes the query on its own time series data and 

returns the results in raw data format that is 
represented as a CSV file in the diagram. 

In the final phase of the data processing pipeline, 
this structured data table is provided as input to the 
Llama 3.1 model, the system's interpretation engine. 
While the diagram conceptually depicts a 
straightforward flow, in practice, the application layer 
extracts a statistical summary from this data and 
passes it to Llama 3.1 along with a contextual prompt 
that includes the user's original question. By 
analyzing this quantitative data and context, LLM 
produces a user-understandable, qualitative NLP, 
such as "We see that the average value is 
approximately 173.07." This response is returned to 
the end user via the FastAPI server, completing the 
query lifecycle. 

6 RESULTS 

With the intention of comprehensively define the 
functionality of the prototype, the system's 
performance was evaluated under successful 
operational scenarios, while also assessing capability 
thresholds that could cause failures. This analysis 
underlines the distinct advantages and inherent 
limitations associated with the current rule-based 
NLP methodology.  

Since the system's NLP uses the SpaCy library's 
Matcher component, it operates according to 
predefined lexical (word-based) rules, such as 
measurement pattern and field pattern. Thus, the 
design has two important outcomes.  

The first is semantic flexibility in successful 
cases. The system successfully processes queries that 
contain entities found within the vocabulary but 
which have not previously been encountered in terms 
of grammar or sentence structure. For instance, 
requests with different expressions such as the 
following were all correctly converted by the NLP 
layer to the same semantic representation: 
 Query A:"Tell me the last value of 

boltdb_reads_total" 
 Query B:"Is there a value field for the 

boltdb_reads_total metrics?" 
 Query C:"Bring data for go_info metrics 

about gauge” 
This demonstrates that, rather than performing a 

simple text match, the matcher mechanism breaks the 
text down into its linguistic components (tokens) and 
recognises defined keywords regardless of their 
position in the sentence. 

The second is the lexical limitation which ends up 
with a Failure Case. When a query containing an 
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entity not in the system's lexicon was encountered, the 
system failed as expected. As an illustration, the 
following query containing the word "temperature", 
which is not defined in the parser file, was tested: 
 Query D: "Show temperature sensor data for 

the last 15 minutes” 
In this case, the parser function returned an empty 

dictionary, because it found no matches to the 
Matcher rules. The control mechanism identified this 
empty result, and the system responded to the user 
with an HTTP 400 Bad Request error: “Could not 
extract both the measure and field names from your 
query”.  

7 CONCLUSION 

The evaluation of the prototype's rule-based NLP 
methodology reveals both distinct advantages and 
inherent limitations. This analysis reveals a 
fundamental trade-off between semantic flexibility 
and a strictly constrained vocabulary. This result is a 
natural consequence of the system's current rule-
based and closed-vocabulary design. While the 
system is robust to grammatical variations in the 
terms it is taught, it lacks the ability to understand or 
predict concepts outside its knowledge base. This is a 
price to pay for reliability and predictability. The 
system clearly prefers to fail rather than hallucinate 
an unfamiliar topic and generate an incorrect query. 
This behavior is particularly desirable for critical 
monitoring systems. 

Future work will target enhanced semantic 
understanding and analytical depth. The extant rule-
based Matcher is planned for augmentation with 
enhancing flexibility for synonyms and extra-
vocabulary expressions. Concurrently, the Query 
Builder layer will be developed to support advanced 
Flux functions, such as aggregation, to enable cross-
source correlation analyses. A dialogue management 
module is envisioned to preserve context across 
sequential requests, extending interaction beyond 
discrete queries. 
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APPENDIX 

The source code can be downloaded at 
https://github.com/kayalaboratory/NLQ-Flux   
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