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Abstract: In this study, the land cover of an agricultural region was classified at a field level using multispectral satellite 
imagery. The primary objective of the study was to evaluate different classification methods in terms of data 
complexity, computational complexity, and information complexity. The data labelling process was 
performed using hierarchical clustering, making the groups in the data more meaningful. A separate clustering 
tree structure was created for each feature, and data complexity was analysed using parameters such as level, 
number of families, and number of children. Object-oriented approaches were adopted in the classification 
phase, employing Deep Neural Networks, Random Forest, and Support Vector Machines. The performance 
of these methods was examined not only in terms of accuracy but also in terms of evaluation metrics such as 
F1-score, recall, and precision. The results demonstrate the classification capabilities of the methods in a 
comprehensive manner and provide important clues about which approach is more suitable in different 
scenarios. Furthermore, the methods were compared in terms of computational costs and processing times, 
and a comprehensive evaluation was conducted regarding the classification of agricultural regions using 
remotely sensed data.

1 INTRODUCTION 

Multispectral remote sensing images are widely used 
to classify vegetation types and estimate crop yields 
in agricultural regions (Thyagharajan and Vignesh, 
2019; Modica et al., 2021). This approach has 
emerged as a key resource in contemporary precision 
agriculture, allowing extensive assessment of crop 
conditions, vegetation patterns, and soil 
characteristics (Sishodia et al., 2020; Guanter et al., 
2013). These images capture data across multiple 
spectral bands, providing information that is not 
visible to the human eye, which is crucial for accurate 
assessment of crop status and yield prediction 
(Thenkabail, Lyon, & Huete, 2016).  

Over the years, various approaches have been 
proposed to improve classification accuracy using 
multispectral images. For example, Erol and Akdeniz 
employed mixture distribution models for land cover 
classification, achieving an accuracy of 94% (Erol & 
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Akdeniz, 2005). Sehgal applied preprocessing 
techniques and different classification algorithms to 
multispectral satellite images, reaching a maximum 
accuracy of 87% using a Backpropagation Neural 
Network (BPNN) (Sehgal, 2012). Similarly, Çalış 
and Erol (2012) applied mixture discriminant 
analysis, while Crnojević et al. (2014) integrated 
Landsat-8 and RapidEye images for pixel-based 
classification in northern Serbia. Gogebakan and Erol 
(2018) developed a semi-supervised approach for 
classifying multispectral data, which utilizes 
clustering based on mixture models. Sicre et al. 
(2020) analyzed the contribution of microwave and 
optical data for land type classification in 
southwestern France, achieving up to 85% accuracy 
using Support Vector Machines and Random Forests. 

Selecting an appropriate classification method for 
multispectral satellite imagery of agricultural regions 
containing diverse crop types remains a critical task. 
To address this challenge, numerous machine 
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learning and deep learning algorithms have been 
developed to improve land use and vegetation 
classification accuracy. In Dash et al. (2023) study, 
LandSat image data was used to increase the accuracy 
of land use and vegetation classification in 
agricultural regions. In this study, Support Vector 
Machines (SVM) (Kadavi & Lee, 2018; Singh, 
Gayathri, & Chaudhuri, 2022), Random Forest 
Classifier (RFC) (Pal, 2005; Zhang et al., 2017), and 
Deep Neural Networks (DNN) (Singh et al., 2025) 
were used. The objectives of this study are as follows: 
First, the complexity of remotely sensed multi-
spectral satellite imagery will be calculated and data 
labeling will be performed. Then, we will classify 
remotely sensed multi-spectral satellite imagery of 
agricultural regions using object-based SVM, RFC, 
and DNN classification methods and compare the 
classification performance of these three methods. 
Finally, the obtained results will be evaluated and 
discussed. 

2 MATERIALS AND METHOD 

In this section, we provide a comprehensive 
description of the study workflow. Specifically, we 
discuss (i) the remotely sensed multispectral images 
of the agricultural region under study, (ii) the 
complexity of these data, (iii) the data labelling 
process, (iv) the classification methods applied to 
these datasets, and (v) the performance evaluation 
metrics used to assess the models.  

2.1 Remotely Sensed Multispectral 
Image of Agricultural Region 

The multispectral imagery employed in this research 
was obtained using the Landsat Thematic Mapper and 
depicts an agricultural region situated in the Seyhan 
Plain (approximately 37° N, 36° E) in Adana, Turkey. 
The image spans an area of 198 × 200 pixels, resulting 
in a total of 39,600 pixels, and was acquired on 27 
March 1992 (Path 175–Row 34). For analysis, bands 
3, 4, and 5 were selected, as they are effective in 
differentiating healthy vegetation, open water, and 
soil surfaces, respectively. Figure 1 presents the 
Landsat Thematic Mapper image of the study area 
without incorporating prior field information. 
  

  
Figure 1: Landsat Thematic Mapper image, without a prior 
information, of the agricultural region studied.  

The study area consists of 269 individual fields, 
labeled with codes from F001 to F269 on the 
parcelization map prepared by the Government 
Irrigation Department (DSI). Five major land cover 
classes—wheat, potato, vegetable garden, citrus, and 
bare soil—are present in the region, with a total of 24 
subcategories. Based on this classification, 24 control 
fields have been defined within the area.  

  
Figure 2: Landsat Thematic Mapper image of the study 
area, incorporating the previously collected parcel 
information. 

Based on a land cover survey, the control plots 
were designated with identifiers CF001 to CF024 on 
the parcel map provided by the Government Irrigation 
Department. The remaining 245 plots, serving as test 
sites, were labeled TF001 through TF245 on the same 
map. Figure 2 shows a Landsat Thematic Mapper 
image of the study area, incorporating the previously 
collected parcel information. 

2.2 Data Complexity Analysis of 
Multispectral Remote Sensing 
Image in Agricultural Regions 

The multispectral image data analysed in this study 
were acquired using the Landsat Thematic Mapper 
sensor. Let’s bands 3, 4 and 5 values denoted by 
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variables X1, X2 and X3 respectively. There are 39600 
instances (observations) surrounding 198x200 data 
matrix for each variable (feature). 

The method for determining the degree of data 
complexity is based on hierarchical structure of all 
groups and all clusters in data (Erol & Erol, 2018). 
The assessment of data complexity is conducted by 
utilizing the hierarchical tree structure of groups and 
clusters based on the features of the data. The tree 
structures are obtained by finding all groups for each 
feature in data. The hierarchical tree structures of all 
groups in each feature for obtaining remotely sensed 
multispectral image data complexity were shown in 
Fig. 3 – Fig. 5 respectively. 

  
Figure 3: The hierarchical tree structures of all groups in the 
first feature X1 for remotely sensed multispectral image 
data complexity.   

The number of levels is 4, the number of parent 
nodes (npn1) is 5 and the number of child nodes (ncn1) 
is 7 in hierarchical tree structures of all groups in 
feature X1 for remotely sensed multispectral image 
data as shown in Fig 3 (Erol & Erol, 2018).   

  
Figure 4: The hierarchical tree structures of all groups in the 
second feature X2 for remotely sensed multispectral image 
data complexity.   

The number of levels is 4, the number of parent 
nodes (npn2) is 8 and the number of child nodes (ncn2) 

is 12 in hierarchical tree structures of all groups in 
feature X2 for remotely sensed multispectral image 
data as shown in Fig 4 (Erol & Erol, 2018).   

  
Figure 5: The hierarchical tree structures of all groups in the 
third feature X3 for remotely sensed multispectral image 
data complexity.  

The number of levels is 4, the number of parent 
nodes (npn3) is 14 and the number of child nodes 
(ncn3) is 19 in hierarchical tree structures of all groups 
in feature X3 for remotely sensed multispectral image 
data as shown in Fig 5 [18]. 

Let ncni and npni denote the number of child 
nodes and parent nodes for feature Xi respectively. 
Let DCXi denote data complexity for feature Xi. Then 
the data complexity for each feature Xi is defined as   

  DCXi = ncni - npni    for i=1,2,3 (1)

So DCX1 = 2, DCX2 = 4 and DCX3 = 5 for i=1,2,3 
respectively. Let DC denote the data complexity for 
entire data. Thus for all features. Then DC is defined 
as: 

  DC = ∏ DCXଷ௜ୀଵ i   (2)

DCX1 = 2, DCX2 = 4 and DCX3 = 5 for feature 
X1, X2 and X3 are 2, 4 and 5 respectively. Then the 
data complexity for entire data DC = DCX1 * DCX2 
* DCX3 = 2 * 4 * 5 = 40. In the rest of this study, with 
this DC = 40 for entire data which classification 
method among three methods give the best 
classification performance will be determined. Thus, 
which method? Machine learning methods versus 
deep learning method.   
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2.3 Data Labelling of Remotely 
Acquired Images for Agricultural 
Lands 

Two types of data are considered in this study: 
incomplete data, which lack class labels, and 
complete data, which include class labels. Class 
labels (or class codes) are essential for the 
classification of vector data. For the remotely sensed 
multispectral image data of the agricultural area, data 
labelling was performed based on the field (parcel) 
structure within the region. A total of 245 test fields 
and 24 control fields were identified in the 
multispectral imagery using an edge detection 
algorithm in conjunction with the parcelization map 
of the agricultural area. The field types and 
corresponding class codes are listed in Table 1.    

Table 1: Control field codes and data labels (class codes). 

Field Types Data Labels 
Wheat1 1 
Wheat2 2 
Wheat3 3 
Wheat4 4 
Wheat5 5 
Wheat6 6 
Potato1 7 
Potato2 8 
Potato3 9 
Potato4 10 

Vegetable garden1 11 
Vegetable garden2 12 
Vegetable garden3 13 
Vegetable garden4 14 
Vegetable garden5 15 
Vegetable garden6 16 

Citrus1 17 
Citrus2 18 
Citrus3 19 
Citrus4 20 

Bare soil1 21 
Bare soil2 22 
Bare soil3 23 
Bare soil4 24 
Bare soil5 25 

 
Data labelling is made for totally 39600 instances 

(observations) in the 245 test fields and 24 control 
fields of remotely sensed multispectral image data in 
the agricultural area. Complete data is obtained as 
comma separated values data file.    

 
 

2.4 Classification Methods 

The Support Vector Machine (SVM) is a supervised 
learning algorithm grounded in Vapnik’s statistical 
learning theory (Vapnik, 2013). Its main objective is 
to identify the optimal separation boundaries between 
classes. By using a kernel function, SVM can project 
training examples into a higher-dimensional space, 
allowing it to distinguish classes that are not linearly 
separable in the original feature space. The selection 
of the kernel function is a key design choice. Typical 
kernels include linear, polynomial, radial basis 
function (RBF), and sigmoid. In this study, the RBF 
kernel is chosen because of its effectiveness in 
managing non-linear separation tasks (Kadavi & Lee, 
2018).   

The Random Forest Classifier (RFC) is an 
ensemble learning technique that generates a 
collection of decision trees, each trained on randomly 
selected subsets of data and features. At every split 
within a tree, only a randomly chosen portion of the 
available attributes is considered for determining the 
division (Breiman, 1999). Each tree produces its own 
prediction for a given input, and the final 
classification outcome is obtained through majority 
voting across the ensemble. This approach improves 
model stability and helps mitigate overfitting. For the 
induction of individual decision trees, a feature 
selection criterion and a pruning strategy must be 
specified. Among the available criteria, the Gini 
index is widely used to select the most informative 
feature at each split. The aggregation of predictions 
from the N randomly constructed trees forms the 
foundation of the Random Forest algorithm. 
Subsequently, the trained forest is used to predict the 
labels of samples in the test dataset, and the class with 
the most votes across the trees is assigned as the final 
prediction (Pal, 2005).  

A Deep Neural Network (DNN) is an advanced 
type of artificial neural network designed to capture 
complex relationships in data through multiple layers 
of interconnected neurons. Inspired by the 
information processing mechanisms of the human 
brain, DNNs consist of several hidden layers, where 
each layer transforms the output of the previous layer 
into increasingly abstract representations. Training 
typically involves the backpropagation algorithm, 
which adjusts network weights by propagating 
prediction errors backward, allowing the network to 
improve its performance iteratively. The 
effectiveness of a DNN depends on several factors, 
including structural choices such as the number of 
layers and neurons per layer, learning parameters 
such as activation functions, learning rate, number of 
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epochs, batch size, and the use of regularization 
methods. These factors collectively influence how 
well the network learns patterns, generalizes unseen 
data, and avoids overfitting. DNNs are particularly 
suitable for handling large-scale and high-
dimensional datasets due to their capacity for 
hierarchical feature extraction (Schmidhuber, 2014).  

2.5 Performance Measures 

Evaluating classification models requires not only the 
correct implementation of algorithms but also the 
selection of appropriate performance metrics. These 
metrics quantify how well a model predicts class 
labels and help identify which aspects of performance 
are most relevant for a given application. For 
balanced datasets, accuracy may provide a sufficient 
measure, whereas for imbalanced datasets, precision, 
recall, and F1-score offer more informative 
assessments. Therefore, multiple metrics are typically 
reported rather than relying on a single measure. 

In classification tasks, the performance of a model 
is commonly evaluated by comparing its predicted 
labels with the actual labels. These results can be 
summarized in a confusion matrix, which presents the 
counts of correctly and incorrectly classified samples. 
Instances that are correctly predicted as positive are 
referred to as True Positives (TP), whereas correctly 
predicted negative instances are True Negatives (TN). 
False Positives (FP) indicate negative cases that were 
mistakenly classified as positive, and False Negatives 
(FN) represent positive cases incorrectly identified as 
negative. These counts serve as the basis for 
computing various performance metrics.  

Accuracy, for example, quantifies the ratio of 
correctly classified samples to the total number of 
observations. (see Eq. 3)   

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ୘୔ା୘୒୘୔ା୘୒ା୊୔ା୊୒ (3)

Precision indicates the fraction of predicted 
positive instances that are actually positive, reflecting 
the model’s reliability in its positive predictions. (see 
Eq. 4)   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = TPTP + FP (4)

Recall, also referred to as sensitivity, measures the 
fraction of actual positive instances that the model 
successfully identifies, capturing its ability to detect 
positive cases. (see Eq. 5)  𝑅𝑒𝑐𝑎𝑙𝑙 = TPTP + FN (5)

The F1-score provides a balanced assessment by 
combining precision and recall through their 
harmonic mean, offering a single measure that 
considers both false positives and false negatives. 
(see Eq. 6) (Dalianis, 2018) 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ ୔୰ୣୡ୧ୱ୧୭୬∗ୖୣୡୟ୪୪୔୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪  (6)

These metrics together offer a comprehensive 
evaluation of classification performance and were 
used to assess the predictive models in this study.    

3 RESULTS 

In this section, all classification experiments were 
conducted using Python and executed on the high-
performance computing environment provided by 
Google Colab (Google Research, 2025). For each 
model, classification reports were generated to 
evaluate class-wise performance metrics such as 
accuracy, precision, recall, and F1-score. In addition, 
confusion matrices were analyzed to better 
understand misclassification patterns between 
different classes. The following subsections present 
the results obtained for each classification method 
applied to the multispectral remote sensing dataset.  

3.1 SVM-Based Classification 
Outcomes of Remotely Sensed 
Multispectral Data   

The first classification experiment was conducted 
using the Support Vector Machine (SVM) algorithm. 
The multispectral remote sensing dataset was divided 
into training (80%) and testing (20%) subsets. Class-
based evaluation metrics such as precision, recall, and 
F1-score are presented in Table 2, while the 
corresponding confusion matrix is illustrated in Fig 6. 
These results provide insights into the SVM model’s 
ability to accurately distinguish between the different 
land cover classes. 

The SVM model achieved an overall accuracy of 
95%, with weighted average precision, recall, and F1-
score also around 95%, indicating a generally 
balanced performance across the dataset. While the 
model performed well for most classes, some 
underrepresented classes showed lower recall values, 
reflecting occasional misclassifications. Very small 
classes exhibited extreme metric values, with some 
appearing perfect due to overfitting rather than 
genuine predictive capability. The confusion matrix 
(Fig.6) highlights the distribution of misclassifications 
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and provides insight into the model’s strengths and 
weaknesses.   

Table 2: Classification report for the SVM model applied to 
the image data used in the study. 

Class Precision Recall F1-score Support
1 0.95 0.97 0.96 492
2 0.93 0.99 0.96 235
3 0.99 0.96 0.97 359
4 1.00 0.47 0.64 19
5 0.93 0.94 0.94 378
6 0.94 0.84 0.89 133
7 0.95 0.95 0.95 188
8 0.92 0.90 0.91 226
9 0.98 0.93 0.96 283
10 0.95 0.99 0.97 1194
11 0.91 0.96 0.94 371
12 0.91 0.93 0.92 122
13 0.95 0.99 0.97 562
14 0.99 0.93 0.96 568
15 0.85 0.64 0.73 36
16 1.00 0.74 0.85 19
17 0.95 0.97 0.96 512
18 0.91 0.86 0.88 143
19 0.98 0.96 0.97 379
20 0.00 0.00 0.00 2
21 0.97 0.94 0.95 262
22 0.97 0.95 0.96 297
23 1.00 1.00 1.00 4
24 0.97 0.96 0.96 837
25 0.93 0.94 0.94 299

Accuracy   0.95 7920
Macro Avg 0.91 0.87 0.89 7920

Weighted Avg 0.95 0.95 0.95 7920
 

 

Figure 6: Confusion matrix of the image data used in the 
study using SVM. 

3.2 RFC-Based Classification 
Outcomes of Remotely Sensed 
Multispectral Data  

  In Next, the Random Forest (RF) method was 
applied to the dataset to evaluate its classification 
performance. The multispectral remote sensing 
dataset was divided into training (80%) and testing 
(20%) subsets. Class-wise metrics are summarized in 
Table 3, and the corresponding confusion matrix is 
shown in Figure 7. The results illustrate the RF 
algorithm’s handling of class separability and 
highlight its comparative strengths and limitations.   

Table 3: Classification report for the RFC model applied to 
the image data used in the study. 

Class Precision Recall F1-score Support
1 0.99 1.00 0.99 492
2 0.95 0.97 0.96 235
3 1.00 0.99 0.99 359
4 1.00 0.84 0.91 19
5 0.94 0.95 0.94 378
6 0.94 0.98 0.96 133
7 0.97 0.96 0.97 188
8 0.93 0.93 0.93 226
9 0.99 0.98 0.98 283

10 0.99 1.00 0.99 1194
11 0.96 0.97 0.97 371
12 0.98 0.98 0.98 122
13 0.99 1.00 0.99 562
14 0.99 1.00 0.99 568
15 0.91 0.86 0.89 36
16 1.00 0.79 0.88 19
17 0.96 0.96 0.96 512
18 0.92 0.92 0.92 143
19 0.98 0.98 0.98 379
20 0.00 0.00 0.00 2
21 1.00 0.99 0.99 262
22 0.97 0.96 0.97 297
23 1.00 1.00 1.00 4
24 1.00 0.99 0.99 837
25 0.96 0.97 0.97 299

Accuracy  0.98 7920
Macro Avg 0.93 0.92 0.92 7920

Weighted Avg 0.98 0.98 0.98 7920

The Random Forest model achieved an overall 
accuracy of 98%, with weighted average precision, 
recall, and F1-score also at 98%, demonstrating 
strong and consistent performance across the dataset. 
Although the model performed exceptionally well 
overall, lower recall values were observed for some 
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underrepresented classes, indicating occasional 
misclassifications. Very small classes again showed 
extreme metric values, which may be indicative of 
overfitting. The confusion matrix (Fig.7) illustrates 
the patterns of misclassification and highlights the 
model’s general strengths and limitations.  

 
Figure 7: Confusion matrix of the image data used in the 
study using RFC.  

3.3 DNN-Based Classification 
Outcomes of Remotely Sensed 
Multispectral Data  

Finally, a Deep Neural Network (DNN) model was 
trained and tested to assess the effectiveness of a deep 
learning-based approach. The multispectral remote 
sensing dataset was divided into training (80%) and 
testing (20%) subsets. Evaluation metrics for each 
class are presented in Table 4, while the confusion 
matrix is provided in Figure 8. These results 
demonstrate the DNN model’s capability to capture 
complex patterns in the multispectral data and serve 
as a benchmark for comparing machine learning and 
deep learning approaches.  

The DNN model achieved an overall accuracy of 
97%, with weighted average precision, recall, and F1-
score also at 97%, indicating a strong and balanced 
performance across the dataset. While the model 
performed well for most classes, some 
underrepresented classes exhibited lower recall 
values, reflecting occasional misclassifications. Very 
small classes showed extreme metric values in some 
cases, which may indicate overfitting rather than 
genuine predictive performance. The confusion 
matrix (Figure 8) illustrates the distribution of 
misclassifications and highlights the general 
strengths and limitations of the model. 

Table 4: Classification report for the DNN model applied to 
the image data used in the study. 

Class Precision Recall F1-score Support
1 0.99 0.95 0.97 492
2 0.96 0.99 0.97 235
3 0.90 1.00 0.95 359
4 0.86 1.00 0.93 19
5 0.99 0.94 0.96 378
6 0.95 0.98 0.96 133
7 0.94 0.99 0.97 188
8 0.91 0.97 0.94 226
9 0.95 0.99 0.97 283

10 0.98 0.99 0.99 1194
11 0.97 0.98 0.97 371
12 0.99 0.93 0.93 122
13 0.98 0.94 0.96 562
14 0.98 0.99 0.99 568
15 1.00 0.75 0.86 36
16 0.82 0.95 0.88 19
17 0.99 0.94 0.96 512
18 0.91 0.96 0.94 143
19 0.98 0.98 0.86 379
20 0.67 1.00 0.98 2
21 1.00 0.96 0.98 262
22 0.94 0.98 0.96 297
23 1.00 1.00 1.00 4
24 1.00 0.98 0.99 837
25 0.99 0.97 0.98 299

Accuracy  0.97 7920
Macro Avg 0.95 0.96 0.95 7920

Weighted Avg 0.97 0.97 0.97 7920
  

 
Figure 8: Confusion matrix of the image data used in the 
study using DNN.   
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4 DISCUSSION AND 
CONCLUSION 

Classification reports are presented in Tables 2, 3, and 
4, respectively, and confusion matrices are presented 
in Figs. 6, 7, and 8, respectively, obtained from the 
three classification methods: SVM, RFC, and DNN. 
Accuracy, precision, recall, and f1 score are 
calculated from the confusion matrix results.  

The overall accuracies of the SVM, RFC, and 
DNN are 0.96, 0.99, and 0.95 in Table 2, Table 3, and 
Table 4, respectively. As explained in Section 2, the 
best classification accuracy result calculated from the 
DNNs is 0.95 due to data complexity. Based on the 
results in the precision and/or recall columns, the f1-
score columns of SVM and RFC cannot distinguish 
or classify some classes, as can be seen in Tables 2 
and 3. However, based on the results in the precision 
and recall columns, the f1-score column of DNN can 
distinguish or classify all classes, as can be seen in 
Table 4. Due to the greater number of processing 
layer steps, the processing time is the longest for 
DNN. 

The findings of this study indicate that when the 
data complexity is low, classification can be 
effectively performed using machine learning 
techniques, whereas high data complexity may 
require the utilization of deep learning approaches. 
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