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Abstract: With a special emphasis on the potential of sophisticated classification algorithms to improve overall system 
performance, this review article offers a thorough examination of the most recent developments in brain-
computer interface (BCI) systems. The paper examines various methodologies, including adaptive learning, 
deep learning, and hybrid models, and evaluate their impact on decoding complex brain signals. Key findings 
highlight the superior efficacy of deep learning approaches such as LSTM-FCN and 1D CNN in improving 
accuracy and robustness. Transfer learning combined with advanced CSP algorithms also shows significant 
improvements in handling limited training data. Furthermore, the integration of deep learning with the 
EEG2Code method achieves remarkable information transfer rates. These advancements demonstrate 
transformative potential for BCI applications in healthcare, assistive technologies, and human-computer 
interaction. However, challenges remain in aligning algorithmic complexity with brain signal characteristics 
and ensuring practical deployment for end-users. Future research should focus on optimizing algorithms for 
real-time functionality, personalizing BCI systems, and exploring novel decoding modalities to further 
advance this transformative field. 

1 INTRODUCTION 

The emerging field of brain-computer interfaces 
(BCIs)aims to establish a direct communication link 
between the human brain and external devices. This 
innovative technology holds the promise of 
transforming human interaction with the 
environment, especially for individuals with motor 
impairments. BCIs work by decoding the electrical 
activity of the brain, often measured through 
electroencephalography (EEG), and translating it into 
control signals for various applications, such as 
assistive devices, gaming, and even complex tasks 
like continuous pursuit. 

The development of BCI systems follows a multi-
stage process, starting with data acquisition where 
raw brain signals are captured. After these signals are 
examined, significant features are extracted, and 
computers classify these traits to determine the user's 
intents. BCI systems' efficacy is dependent upon the 
accurate interpretation of brain signals which include 
functional near-infrared spectroscopy (fNIRS) 
data and electroencephalograms. Current 
developments in EEG-based Brain-Computer 
Interface technology showed enormous possibilities. 

As reviewed by Värbu et al. (Värbu et al., 2022), 
EEG-BCI systems interpret brain signals to facilitate 
interactions between the brain and external devices. 
Initially developed for medical purposes to aid 
patients in regaining independence, these systems 
have expanded into non-medical domains, enhancing 
efficiency and personal development for healthy 
individuals. Over the years, the field has seen the 
evolution of classification algorithms from traditional 
machine learning techniques, such as linear 
discriminant analysis (LDA), to more advanced deep 
learning models like convolutional neural networks 
(CNNs). 

The first step in the multi-stage process of 
developing BCI systems is data acquisition, which 
involves recording unprocessed brain signals. After 
these signals are examined, significant features are 
extracted, and computers classify these traits to 
determine the user's intents. The effectiveness of BCI 
systems has to rely upon the accurate interpretation of 
cerebral signals like electroencephalograms and 
functional near-infrared spectroscopy data. 
Classification algorithms have evolved throughout 
time in the field, progressing from more traditional 
machine learning methods such as linear discriminant 
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analysis (LDA) to more advanced deep learning 
models such as convolutional neural networks 
(CNN). CNNs are frequently used because they can 
find significant features from raw EEG data, 
eliminating the requirement for costly preprocessing 
and laborious feature engineering (Hossain et al., 
2023). Performance in a number of BCI applications, 
such as driver attention monitoring, emotion 
recognition, and motor imagery categorization, has 
increased as a result. 

2 TWO NEW DEVELOPMENTS 
IN BRAIN-COMPUTER 
INTERFACE SYSTEMS: AN 
EMPHASIS ON MACHINE 
LEARNING TECHNIQUES AND 
CLASSIFICATION 
ALGORITHMS 

2.1 Overview of Classification 
Algorithms in BCIs 

In their thorough evaluation and analysis of brain-
computer interface (BCI) systems, Mansoor et al. 
highlight the features and improvements of these 
systems utilizing a variety of classification methods 
(Mansoor et al., 2020). To improve the preciseness 
and dependability of BCI systems, the authors 
investigate the application of deep learning, transfer 
learning, adaptive classifiers, matrix and tensor 
classifiers, and other methods. They offer an 
organized summary of recent techniques for feature 
extraction, data collection, and categorization. 

The study highlights the effectiveness of adaptive 
classifiers in acquiring accurate results compared to 
static classification techniques. It also emphasizes the 
potential of deep learning techniques, particularly in 
achieving faster processing speeds and higher 
classification accuracy, for real-time BCI 
implementation. The authors compare different 
classification algorithms, noting the trade-offs 
between performance and computational 
requirements. For instance, linear discriminant 
analysis (LDA) is highlighted for its suitability in 
online BCI systems due to its low computational 
demand, despite its linearity potentially providing 
poor results on com-plex nonlinear EEG data. 

The paper concludes that while artificial neural 
networks (ANN) offer high accuracy for non-invasive 
BCI techniques, their complex architecture may not 

always align with the inherent characteristics of brain 
signals. The authors suggest that further research is 
needed to enhance accuracy for healthcare 
applications and propose that future BCI systems 
could support multiplatforms and be controlled via 
smartphones for fail-safe mechanisms. The study's 
conclusions encourage the creation of more precise 
and approachable BCI systems, which could 
completely transform how people utilize assistive 
technology and technology in general. 

2.2 Advanced Machine Learning 
Approaches 

An innovative machine-learning method for brain-
computer interfacing (BCI) was presented by Zhihan 
Lv et al. with the goal of increasing the classification 
accuracy of electroencephalogram (EEG) signals (Lv 
et al., 2021). To create a data categorization model, 
the authors integrate an enhanced Common Spatial 
Pattern (CSP) method with a transfer learning 
approach. A time-domain filter is incorporated into 
the enhanced CSP algorithm to better capture the 
temporal properties of EEG signals. The transfer 
learning algorithm is used to apply knowledge gained 
from one task to solve another related task, which is 
particularly useful in BCI where data often comes 
from different individuals with varying data 
distributions. 

The effectiveness of the proposed algorithms, 
Adaptive Composite Common Spatial Pattern 
(ACCSP) and Self Adaptive Common Spatial Pattern 
(SACSP), is verified using a public EEG dataset. The 
results demonstrate that both actual and imagined 
movements show higher classification accuracy when 
comparing left and right-hand movements at different 
speeds versus same speeds. Traditional algorithms 
achieved a baseline accuracy of 76.62%, while the 
ACCSP and SACSP algorithms improved this to 
83.58%, representing a 6.96% increase. Notably, the 
ACCSP method's classification accuracy outperforms 
the conventional CSP algorithm when the training 
sample size is modest (e.g., 10 samples). 

The work demonstrates that integrating transfer 
learning with an updated CSP algorithm could 
substantially boost the categorizing performance of 
BCI systems. This is especially important since it 
tackles the issues of lengthy training periods and poor 
classification accuracy in BCI, which are crucial for 
real-world uses including intelligent perception, 
assistive medicine, and human-computer interaction. 
The study suggests that future BCI technology may 
further improve applications in gesture tracking and 
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video gaming by utilizing these cutting-edge 
machine-learning approaches, based on the improved 
categorization accuracy shown in this study. 

2.3 Deep Learning Models for EEG 
Signal Classification 

Elsayed et al. provides a valuable deep learning 
approach for brain-computer interaction (BCI) 
systems, specifically focusing on motor execution 
(ME) electroencephalogram (EEG) signal 
classification (Elsayed et al., 2021). The authors 
propose a User-Independent Hybrid Brain-Computer 
Interface (UIHBCI) model for identifying data from 
fourteen channels of the electroencephalogram 
(EEG) which capture the brain reactions of nine 
individuals. Three steps make up the model: signal 
processing, Deep Belief Network (DBN) 
classification, and Independent Component Analysis 
with Automatic EEG artifacts Detector method (ICA-
ADJUST) feature extraction. 

The study employs two assessment models—
Audio/Video (A/V) and Male/Female (M/F)—to 
identify relevant multisensory elements of 
multichannel EEG that suggest certain mental 
behaviors. When applied independently to these two 
models, the DBN outperforms other cutting-edge 
algorithms such as Linear Discriminant Analysis 
(LDA), Support Vector Machine (SVM) and Hybrid 
Steady-State Visual Evoked Potential Rapid Serial 
Visual Presentation Brain-computer Inter-face 
(Hybrid SSVEP-RSVP BCI). Even applied with 
Brain-computer Interface Lower-Limb Motor 
Recovery (BCI LLMR), yielding overall 
classification rates of 94.44% for the A/V model and 
94.44% for the M/F model. 

The outcomes demonstrate the efficacy of the 
integration of signal processing, feature extraction, 
and DBN classification in BCI systems by showing 
that the suggested UIHBCI model is successful in 
classifying ME EEG signals. 

2.4 The Comparative Study of Deep 
Learning and Machine Learning 
for fNIRS-BCI 

Research contrasted deep learning with conventional 
machine learning methods for interpreting brain 
signals using functional near-infrared spectroscopy 
(fNIRS) in the context of brain-computer interfaces 
(BCI) (Lu et al., 2020). The purpose of the study is to 
ascertain which method processes fNIRS data for 
mental arithmetic tasks more effectively. Alongside 

the deep learning technique, namely the long short-
term memory-fully convolutional network (LSTM-
FCN), the traditional machine learning techniques, 
such as linear discriminant analysis (LDA), decision 
trees, support vector machines (SVM), K-Nearest 
Neighbor (KNN), and collective techniques, were 
assessed. 

 
Figure 1: Mechanism of LSTM-FCN for fNIRS-BCI Data 
(Lu et al.,2020). 

The fNIRS-BCI dataset used in the study was 
collected from eight subjects performing mental 
arithmetic tasks. Figure 1 depicts the LSTM-FCN 
architecture for fNIRS-BCI data. The data first 
underwent preprocessing to reduce physiological 
noise. Subsequently, feature extraction was 
performed to identify relevant channels and time 
periods. The classical machine learning methods 
required strict feature extraction and screening, while 
the LSTM-FCN model was designed to automatically 
learn features from the raw data. 

According to the results, SVM outperformed the 
other conventional approaches, achieving an average 
accuracy of 91.0% for tasks related to the subject and 
83.0% for tasks unrelated to the subject. However, 
with an accuracy of 95.3% for tasks relevant to the 
subject and 97.1% for tasks unrelated to the subject, 
the deep learning technique LSTM-FCN 
considerably surpassed the traditional methods. 
Interestingly, LSTM-FCN demonstrated its stability 
and efficacy in decoding fNIRS-BCI data by 
achieving 100% accuracy for several participants 
despite varying network dropout rates. 

The study comes to the conclusion that deep 
learning—specifically, the LSTM-FCN model—is a 
more viable method for analyzing fNIRS-BCI data 
than traditional machine learning techniques because 
of its higher accuracy and capacity to automatically 
learn features. This finding is significant as it 
highlights the potential of deep learning to handle 
complex and dynamic brain signal data, which is 
crucial for advancing BCI applications in areas such 
as assistive technologies and cognitive research. 
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2.5 Deep Learning for EEG-Based 
Mental State Decoding 

In order to decode mental states from 
electroencephalogram (EEG) data in non-invasive 
brain-computer interfaces (BCI), Dongdong Zhang 
and colleagues created a deep learning-based method 
(Zhang et al., 2019). The study addresses the 
challenge of accurately predicting mental states using 
EEG, which has traditionally suffered from limited 
accuracy and generalization. The authors suggest a 
brand-new 1D convolutional neural network (CNN) 
architecture that uses different-length filters to extract 
data from various EEG signal frequency bands. The 
goal of this strategy is to increase prediction accuracy 
and feature extraction. 

The researchers looked at a dataset of 25 hours of 
EEG recordings from five patients who were 
undertaking a low-intensity control task. To maintain 
inter-channel correlations, the data were preprocessed 
using a bandpass filter and standardized. In order to 
enable robust feature extraction, a relatively deep 
network was trained for the proposed 1D CNN 
employing a Resnet-like structure. The model's 
performance was evaluated using fivefold cross-
validation. 

The results demonstrate significant improvements 
over traditional prediction methods such as KNN and 
SVM. The proposed model achieved an accuracy of 
96.40% in predicting mental states, outperforming 
traditional algorithms and other published deep 

learning architectures. In the more challenging 
common-subject paradigm, the proposed model 
achieved a prediction accuracy of 53.22%, surpassing 
the performance of existing methods including EEG 
Net, FBCSP Shallow Net, and Deep Conv Net. 

The study's findings highlight the effectiveness of 
using 1D convolutional neural networks for EEG 
feature extraction and mental state prediction. This 
technique presents an appealing option to further 
develop both the precision and generality within BCI 
systems, possibly broadening its applications in 
monitoring mental states in a variety of real-world 
situations  

2.6 Continuous Pursuit Tasks in BCI 

The use of deep learning (DL)-based decoders for 
continuous pursuit (CP) activities has been examined 
in noninvasive brain-computer interfaces (BCI) 
which incorporate electroencephalography (EEG) 
(Forenzo et al., 2024). Using motor imagery, users 
perform CP tasks by tracking a moving target in 2D 
space, a process that requires dynamic and continuous 
control. The researchers developed a novel labeling 
system to enable supervised learning with CP data, 
which lacks clear labels for traditional supervised 
learning methods. They trained DL-based decoders 
using two architectures: EEGNet and a modified 
PointNet, shown as Fig2. The performance of these 
DL models was evaluated over multiple online 
sessions with 28 human participants. 

 
Figure 2: The Implementing of EEGNet and PointNet Architecture (Forenzo et al., 2024). 

The results showed significant improvements in 
the performance of DL-based models as more training 
data became available. In the very last period, both 

DL models surpassed a standard autoregressive 
decoder. Specifically, the normalized mean squared 
error (NMSE) be-tween the cursor and target dropped 
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from an initial value to 0.43 for EEGNet and 0.56 for 
PointNet every session. Furthermore, during the 
course of sessions, the correlation between the target 
and cursor positions grew, with EEGNet reaching a 
greater correlation by the last session. The study also 
investigated transfer learning and mid-session 
recalibration to enhance performance. Although 
transfer learning failed to significantly improve early 
session performance, mid-session recalibration 
demonstrated promising benefits in several cases. 

All things considered, the study indicates how well 
DL-based decoders perform BCI in hard tasks like 
CP, indicating that they may be utilized to expand 
BCI applications in practical situations while also 
enhancing the quality of life for normal people and 
people with motor impairments. 

2.7 Deep Learning for High-Speed BCI 
Systems 

To forecast visual input properties from EEG data, 
deep learning and the EEG2Code technique have 
been combined (Nagel & Spüler, 2019). The 
disclosed BCI system is by far the quickest, since the 
authors demonstrate that an individual may use this 
method in an online BCI to obtain an information 
transfer rate (ITR) of 1237 bits per minute. The top 

person can distinguish between 500,000 distinct 
stimuli with 100% accuracy utilizing just 2 seconds 
of EEG data in a simulated online exercise with 
500,000 targets. 

The study uses deep learning, namely a 
convolutional neural network (CNN), with the 
EEG2Code approach to generate a nonlinear model 
that forecasts random stimulation patterns according 
to VEP feedbacks. Figure 3 depicts a demonstration 
of the EEG2Code CNN model. The authors suggest 
that EEG signals include more information than is 
commonly supposed. However, they also mention a 
ceiling effect, which suggests that, not less than for 
BCIs that rely on stimuli that are visual, more 
powerful decoding approaches may not necessarily 
result in greater BCI control. 

The results highlight a significant improvement in 
classification accuracy and ITR when using deep 
learning compared to the previous ridge regression 
model. The technique increased the ITR from 232 
bits/min to 701 bits/min, a 202% improvement, while 
also improving the pattern prediction accuracy from 
64.6% to 74.9%. In a passive BCI environment, the 
top subject obtained an online ITR of 1237 bits/min. 
The system reached an average utility rate of 175 
bits/min for asynchronous self-paced BCI spelling, 
Users can create an average of 35 error-free letters 
each minute. 

 
Figure 3: Example of the EEG2Code CNN Pattern Prediction (Nagel & Spüler, 2019). 
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The authors come to the conclusion that although 
the method they outlined may be able to gather a 
significant quantity of data from EEG signals, the 
maximum number of targets and the minimum trial 
duration are still limitations for genuine BCI control. 
They highlight two important points: the need to 
make sure BCI systems continue to be feasible for 
end-user applications, and the difference between 
brain signal decoding performance and actual BCI 
control performance. 

3 CONCLUSION 

This review research focuses on the substantial 
breakthroughs in brain-computer interface (BCI) 
systems made available through judicious application 
of advanced classification algorithms. Among 
various advances, deep learning techniques such as 
LSTM-FCN and 1D CNN have demonstrated 
superior capabilities in decoding intricate brain 
signals, offering better accuracy and robustness 
compared to traditional methods. The symbiotic 
relationship between transfer learning and enhanced 
CSP algorithms has also been validated, particularly 
in overcoming the challenges of limited training data. 
Building upon these advances, the integration of deep 
learning with the EEG2Code method has achieved 
unprecedented information transfer rates, revealing 
the untapped potential of EEG signals in BCI 
applications. Despite these advancements, the 
alignment of algorithmic complexity with brain 
signal characteristics and the practical deployment of 
BCI systems for end-users remain ongoing 
challenges. As highlighted in the review by Samal 
and Hashmi (Samal & Hashmi, 2024), the continuous 
advancements in non-invasive and portable sensor 
technologies, such as EEG-based BCIs, are expected 
to significantly enhance the precision and real-time 
capabilities. As BCI technology evolves, it shows 
great promise in revolutionizing multiple fields, from 
assistive healthcare to human-computer interaction 
and neuroscience research, heralding a new era of 
more intuitive and effective BCI systems.  
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