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Abstract: This study presents a deep learning-based approach for enhancing Condition-Based Maintenance (CBM) 
strategies in aircraft systems by utilizing Long Short-Term Memory (LSTM) networks to forecast future 
vibration trends. Using high-resolution time-series data from the NASA IMS Bearing Dataset, the proposed 
LSTM model successfully captures complex temporal dependencies that characterize degradation behaviour 
in aircraft components. Experimental results demonstrate that the model achieves high prediction accuracy 
with a low Mean Absolute Error (MAE) of 0.0010, enabling timely detection of incipient faults and 
minimizing unnecessary maintenance interventions. Compared to traditional models, LSTM networks offer 
high performance in learning nonlinear patterns and maintaining predictive reliability under varying 
operational conditions. The integration of LSTM-based forecasting into CBM frameworks supports proactive 
maintenance planning, reduces lifecycle costs, and increases aircraft safety. This study contributes to the 
literature by validating the practical implementation of LSTM in real-world aerospace maintenance 
workflows, offering a scalable and intelligent solution for predictive maintenance in both civil and military 
aviation contexts. 

1 INTRODUCTION 

In modern aircraft systems, reliability and safety are 
important. Conventional maintenance strategies such 
as corrective or time-based maintenance often result 
in either excessive downtime or the risk of undetected 
failures. In contrast, Condition-Based Maintenance 
(CBM) offers a proactive and data-driven solution 
that enables timely interventions based on the actual 
health status of aircraft components (Choi et al., 
2016). 

CBM constitute a paradigm shift in aircraft 
engineering, promising significant enhancements in 
the efficiency and safety of aircraft systems. Unlike 
traditional maintenance strategies that rely on time-
based schedules or reactive responses to mechanical 
failures. CBM uses real-time data to assess the 
ongoing health of aircraft components. This proactive 
approach is facilitated by the integration of advanced 
sensors and monitoring technologies that gather 
crucial information such as vibration patterns, 
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temperature fluctuations or pressure levels 
(Kabashkin & Perekrestov, 2024). By analysing these 
data, CBM enables the timely identification of 
potential failures, allowing maintenance actions to be 
precisely aligned with the actual condition of the 
components. This not only prevents unnecessary 
maintenance interventions but also minimizes the risk 
of unexpected downtimes or catastrophic failures. 
Thereby improve the reliability and availability of 
aircraft systems. In the context of aircraft industry, 
where operational efficiency and safety are important, 
CBM emerges as an indispensable tool for modern 
aircraft maintenance strategies (Verhagen et al., 
2023). 

A key advantage of CBM in aircraft is integration 
with health monitoring systems and machine learning 
algorithms, which allow for fault prediction and 
anomaly detection. These capabilities not only 
increase operational efficiency but also improve 
flight safety by preventing failures. For example, 
research by Ozkat et al. showed that deep learning 
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models applied to vibration sensor data on a real-time 
UAV can predict when it will fail and provide a 
critical window for preventive action (Ozkat et al., 
2023). 

 
Figure 1: Schematic representation of CBM process. 

Table 1: Advantages and disadvantages of RUL forecasting. 

Benefits of RUL 
Forecasting 

Challenges in RUL 
Forecasting 

Proactive maintenance 
planning 

Uncertainty and forecast 
accuracy 

Prevention of 
unexpected failures 

Complex system 
dynamics 

Optimizing maintenance 
costs 

Insufficient historical data 

Increasing equipment 
availability 

Impact of environmental 
factors 

Improving spare parts 
inventory management 

Presence of multiple 
failure modes 

Increasing operational 
security 

Sensor noise and errors 

Efficient use of 
resources 

Computational 
complexity 

Moreover, CBM has been adopted in both civil 
and military aircraft applications, including programs 
such as Health and Usage Monitoring Systems 
(HUMS) used in helicopters and Integrated Vehicle 
Health Management (IVHM) systems in fixed-wing 
aircraft(Hünemohr et al., 2022; Scott et al., 2022). 
The use of CBM has led to cost savings and 
maintenance performance, as noted by the U.S. 
Department of Defense's CBM+ initiative 
(Department of Defense, 2024). 

In summary, CBM is an innovative approach in 
aircraft maintenance planning. Its capacity to 
synchronise maintenance operations with the 
prevailing conditions of the system, thereby 

minimising the necessity for unscheduled 
maintenance interventions, and its ability to facilitate 
the implementation of predictive analytics, renders it 
an indispensable instrument for the future generation 
of aircraft safety and sustainability. The primary aim 
of this study is to evaluate the effectiveness of CBM 
applications in reducing maintenance costs and 
enhancing operational efficiency in aircraft systems. 
The necessity for such improvements stems from the 
limitations of traditional maintenance approaches. The 
utilisation of CBM allows for the synchronisation of 
maintenance operations with the true condition of 
aircraft components (Cusati et al., 2021). This 
approach has the potential to synchronise maintenance 
practices with performance requirements, thereby 
reducing the overall cost of aircraft operations over 
their lifecycle. Furthermore, the use of CBM systems 
has been found to enhance the operational reliability 
and safety of military and civilian aircraft systems. 
(Ernest Yat-Kwan Wong et al., 2006). The study's aim 
is to provide empirical evidence and insights into the 
cost-effectiveness and operational advantages of 
integrating CBM methodologies into current aircraft 
maintenance models. 

The methodology deployed in this study uses Long 
Short-Term Memory (LSTM) models to analyse 
vibration data for CBM systems. The study focuses on 
the importance of predictive maintenance in aircraft, 
and on the capabilities of LSTM in processing time-
series data, which is crucial for understanding and 
predicting the future states of aircraft components. 
LSTM networks are especially appropriate for 
modelling sequential data with long-range temporal 
correlations (Malhotra et al., 2016). The integration of 
LSTM models in the analysis is a key aspect of the 
approach, with the objective being to achieve 
enhanced prediction accuracy (Peringal et al., 2024). 

The potential real-world implications of research 
on CBM within the aircraft discipline are of 
considerable importance. The adoption of a predictive 
and data-driven approach, as opposed to the traditional 
reactive maintenance strategy, enables CBM to 
implement interventions prior to the occurrence of 
failures. This proactive strategy has been shown to 
have a significant impact on maintenance costs, with 
a consequent reduction in aircraft downtime and 
enhancement of system reliability. Through the 
integration of CBM strategies, maintenance activities 
in aircraft systems can be aligned more closely with 
actual equipment condition, allowing for optimized 
scheduling, reduced downtime and increased overall 
mission reliability. Consequently, CBM applications 
offer considerable economic and operational 
advantages, further encouraging the thorough 
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evaluation and advancement of predictive techniques, 
such as the LSTM models investigated in this study, 
to enhance the efficiency of these systems in real-
world operational applications. 

 
Figure 2 LTSM Neural Network Architecture. 

The potential real-world implications of research 
on CBM within the aircraft discipline are of 
considerable importance. The adoption of a predictive 
and data-driven approach, as opposed to the 
traditional reactive maintenance strategy, enables 
CBM to implement interventions prior to the 
occurrence of failures. This proactive strategy has 
been shown to have a significant impact on 
maintenance costs, with a consequent reduction in 
aircraft downtime and enhancement of system 
reliability. Through the integration of CBM 
strategies, maintenance activities in aircraft systems 
can be aligned more closely with actual equipment 
condition, allowing for optimized scheduling, 
reduced downtime and increased overall mission 
reliability. Consequently, CBM applications offer 
considerable economic and operational advantages, 
further encouraging the thorough evaluation and 
advancement of predictive techniques, such as the 
LSTM models investigated in this study, to enhance 
the efficiency of these systems in real-world 
operational applications. 

2 METHODOLOGY  

The vibration data used in this study were obtained 
from the NASA IMS Bearing Dataset, a recognised 
standard in the field of condition monitoring research 
(J. Lee et al., 2007). This dataset consists of 
continuous vibration measurements which reflect the 
life cycles of bearings under applied loads. These 
measurements are effective in simulating mechanical 
degradation in real-world conditions. The high-
resolution, time-series data is essential for predictive 

maintenance modelling. The dataset provides a robust 
foundation for the application of LSTM networks in 
estimating future vibration trends. The selection of 
this dataset, which includes critical failure modes, 
ensures that the research methodology is well-suited 
to address challenges in the implementation of CBM 
in aircraft systems. 

The vibration data used in this study were 
obtained from a bearing test rig developed by the NSF 
I/UCRC Intelligent Maintenance Systems Center in 
the United States. The test rig consists of four 
Rexnord ZA-2115 double row ball bearings 
connected to a shaft rotating at a constant speed of 
2000 RPM. A radial load of 6000 pounds (~26700 N) 
was applied to the shaft and all bearings were 
operated with a forced lubrication system. Vibration 
data was collected by means of high precision 
piezoelectric ICP accelerometers type PCB 353B33 
mounted on the bearing housings. In the first data set, 
a total of two axes of data were collected for each 
bearing in the x and y axes, while in the other sets 
only single axis measurements were made(Qiu et al., 
2006). 

 
Figure 3: RMS Vibration Data for Bearing. 

The preprocessing of vibration data is a critical 
step in preparing it for LSTM model training, and it 
is essential to ensure the quality and integrity of the 
input. Initially, the raw vibration signals from the 
NASA IMS Bearing Dataset are subjected to Min-
Max normalization. This technique is employed to 
scale the data range between 0 and 1, thus helping to 
minimise the effects of varying scales and 
magnitudes, consequently enabling improved 
convergence during the training phase. This approach 
is crucial in ensuring that each feature contributes 
equally to the gradient descent optimisation process, 
thus preventing discrepancies that may arise from 
differing units and ranges. Following this, the 
normalized data is processed by generating window-
based sequences, a step that configures the time-
series data into a structured format suitable for LSTM 
input. Each sequence is characterised by a 
predetermined number of time steps, which are 
represented by a multidimensional array, thereby 
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conforming to the LSTM's requirement for 
continuous temporal data inputs. The subsequent 
phase involves the extraction of features, with the aim 
of reducing the dimensionality of the data set and 
thereby extracting meaningful information. This 
process employs Root Mean Square (RMS) metrics 
as a means of quantifying the variability of the data. 
The RMS value, calculated over each time window, 
represents an aggregate of vibration magnitude, 
serving as a key indicator of bearing condition and 
mechanical health. By transforming the data into this 
comprehensive format, the preprocessing pipeline 
equips the LSTM model with precise and statistically 
comprehensive inputs, enhancing its ability to predict 
future vibration trends accurately. 

The LSTM neural network was implemented to 
model time-series vibration data, thanks to its ability 
to identify long-range dependencies. The LSTM 
architecture comprises multiple layers that are 
designed to handle the sequence prediction tasks that 
are particular to the dataset. At its core, the network 
comprises an input layer, followed by a series of 
(LSTM) layers. These layers incorporate cells that are 
structured to retain information across time steps 
through gates, namely input, forget and output gates. 
This enables the network to effectively retain memory 
and learn sequences. The network uses a 
configuration of hidden layers comprising LSTM 
blocks stacked on top of each other. Each block 
processes a specific aspect of the temporal data (Al-
Selwi et al., 2024). LSTM networks are an enhanced 
form of recurrent neural networks (RNNs). The 
hidden layer of an LSTM network has a gated unit, 
also known as a gated cell. The LSTM consists of four 
interconnected layers that produce the cell's output 
and cell state. These two layers are then transferred to 
the next hidden layer. LSTMs consist of three logistic 
sigmoid gates and one tanh layer. 

The forget gate is crucial to an LSTM network 
because it discards information that is irrelevant for 
the current prediction context. When the gate outputs 
a value close to zero, the corresponding content is 
effectively eliminated from the cell state. Conversely, 
an output near one ensures that the information is 
retained for subsequent time steps. The input gate 
enables new data, relevant information to be 
integrated into the cell state. This selective update is 
derived from processed input data and modulated by 
a learnt weight structure. Finally, the output gate 
determines which parts of the current cell state are 
propagated to the next layer or output. This shapes the 
model's final prediction at that time step. 

The LSTM models were trained and validated 
using Python as the primary programming 

environment and TensorFlow and Keras as the 
frameworks for creating and refining the neural 
network architecture. The LSTM model was designed 
using a sequential layer setup to take full advantage 
of Keras's high-level capabilities and streamline the 
implementation process. In order to prepare the 
network for rigorous testing, the model underwent 
several iterations in order to calibrate 
hyperparameters such as the number of hidden units, 
learning rate, and batch size. The Python libraries 
NumPy and Pandas were instrumental in the 
management of data operations and the facilitation of 
the execution of the training pipeline. Regular 
checkpoints were conducted throughout the iterative 
process to capture the model's state, guaranteeing a 
robust recovery procedure if necessary. The 
evaluation of the trained LSTM models was 
conducted within the same framework, using a test set 
that was separated at the outset of the data processing 
workflow to ensure the maintenance of unbiased 
evaluation metrics. The implementation of these 
methodologies ensured the establishment of a reliable 
predictive model capable of estimating future 
vibration trends with a high degree of accuracy. 

The visualisation of results and the evaluation of 
prediction accuracy are critical components of the 
research methodology, facilitating in-depth analysis 
of the LSTM model's performance. For the purposes 
of this study, the Python library Matplotlib was 
utilised in order to create comprehensive 
visualisations. These tools enabled the creation of 
various plots, including line graphs showing 
predicted and actual vibration trends over time, 
thereby facilitating a clear visual comparison. The 
assessment of the model's accuracy was conducted by 
utilising standardised metrics, namely the mean 
absolute error (MAE) and the root mean square error 
(RMSE). These metrics offer quantifiable indicators 
of prediction accuracy and are imperative for the 
evaluation of the model's validity. The analysis was 
enriched with graphical plots, which highlighting the 
model's ability to track actual trends and identify 
potential inconsistencies. This information forms the 
basis for understanding the model's predictive 
capacity in real-world aircraft and space CBM 
scenarios. 

3 RESULTS 

The LSTM architecture demonstrated a strong 
capability in forecasting future trends in RMS 
vibration data, a critical aspect for the effective 
implementation of condition-based maintenance in 
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aircraft systems. The network was able to process 
high-frequency signals obtained from the IMS 
Bearing Dataset effectively by leveraging its strength 
in modelling temporal dependencies. The system's 
capacity to monitor and analyse minute yet 
substantial variations in RMS values over time allows 
for the early identification of degradation indicators, 
often preceding the onset of apparent system failures. 
This predictive advantage enhances the ability of 
maintenance teams to initiate timely interventions, 
thereby contributing to improved operational safety 
and logistical efficiency in aircraft. Furthermore, the 
model enables more strategic maintenance planning 
by continuously monitoring vibration behaviour and 
providing reliable short-term forecasts. This results in 
minimised unnecessary servicing and optimised 
resource use and cost-efficiency. The enhanced 
performance of the LSTM model is attributable to its 
design, which is optimally suited to the analysis of 
sequential data. This model is a highly effective 
analytical tool for advancing condition-based 
maintenance in aircraft applications.  

 
Figure 4: The prediction result used 50% as training data 
and 50% as test data 

The LSTM model demonstrated a remarkable 
capacity to precisely forecast future RMS vibration 
trends, a capability that is of paramount importance 
for condition-based maintenance of aircraft systems. 
The model uses its realistic ability to understand 
complex time patterns to create a model of high-
frequency vibration data from the IMS Bearing 
Dataset. The model's capacity to forecast alterations 
in RMS values over time signifies its ability to discern 
subtle yet substantial changes in component 
conditions prior to the manifestation of evident 
issues. The implementation of this process enables 
team members to engage in proactive actions, thereby 
facilitating enhanced safety standards and optimising 
operational efficiency, a particularly salient 
consideration within the domain of aircraft 
engineering and maintenance. Maintenance 
professionals are able to enhance their planning 
processes, avoid unnecessary actions, and achieve 
financial and temporal efficiencies by monitoring 
RMS trends and making accurate predictions. The 
LSTM model's capacity for accurate prediction is 

attributable to its design, which is optimally suited to 
the analysis of time-based data. This development 
indicates that the system is a powerful tool for 
improving condition-based maintenance in aircraft 
systems. 

The predictive performance of the LSTM model 
was systematically assessed through a set of widely 
recognized evaluation metrics, namely MAE and 
RMSE. The model demonstrated a strong predictive 
capability, achieving a low MAE of 0.0010, which 
indicates high accuracy in estimating future RMSE 
vibration patterns in aircraft system components. 
Additionally, the RMSE value approaching zero 
reinforces this finding by reflecting minimal 
divergence between predicted and actual values 
across the time series. However, the observed R² 
value of -0.6838points to limitations in the model’s 
ability to explain variance within the dataset, which 
can be attributed to the complex and highly nonlinear 
nature of the underlying degradation mechanisms. 
This discrepancy suggests that while the model is 
effective in short-term trend prediction, it may face 
challenges in modelling long-term structural variance 
in highly stochastic systems. These results support the 
model’s applicability in real-world aircraft 
maintenance workflows, where timely and accurate 
predictions are essential for ensuring operational 
reliability and cost-effectiveness. 

 
Figure 5: The prediction result used 100% as training data. 

The strong ability of the LSTM network to model 
sequences gives it a clear advantage compared to 
traditional predictive models, especially in the field 
of condition-based maintenance. LSTM networks are 
explicitly designed to learn and preserve long-term 
dependencies through a gated memory cell 
architecture. This design enables them to dynamically 
adjust to evolving data distributions and recognize 
intricate vibration patterns that may precede 
mechanical failures. The model's robustness in such 
contexts is reflected in its consistently low prediction 
errors, even under varying operational conditions and 
non-uniform degradation rates. The ability of LSTM 
models to retain relevant historical information and 
update internal representations in response to new 
input makes them particularly effective in early 

Future Vibration Estimation Using LSTM for Condition-Based Maintenance of Aircraft Systems

173



anomaly detection and maintenance forecasting. 
Consequently, their integration into predictive 
maintenance pipelines represents a significant leap 
forward in aircraft maintenance planning, enabling 
data-driven, cost-efficient, and proactive 
interventions that improve overall system reliability 
and operational safety. 

4 DISCUSSION AND 
CONCLUSIONS 

This study emphasises the pivotal function of LSTM 
networks in optimising the execution of CBM 
strategies within the aircraft engineering industry. 
The proposed model enables high-accuracy 
forecasting of future vibration behaviour, thereby 
signifying a methodological departure from 
conventional maintenance practices. Conventional 
maintenance practices are primarily based on fixed 
time intervals or reactive repairs following fault 
detection. LSTM networks have been demonstrated 
to have strong capabilities in modelling nonlinear and 
temporally complex datasets, particularly those 
derived from the operational behaviour of aircraft 
subsystems. This facilitates the early identification of 
degradation patterns, thereby enabling predictive 
interventions to be implemented before faults evolve 
into critical failures. Such foresight supports 
maintenance strategies that are both targeted and 
timely, significantly reducing unplanned 
maintenance and improving the operational safety 
and reliability of aircraft in both the civil and defence 
industries. The findings of this research affirm that 
the integration of LSTM models into CBM 
architectures provides a data-driven and adaptive 
maintenance paradigm, whereby servicing actions are 
aligned with the real-time health status of system 
components. This enhanced predictive capability has 
been demonstrated to contribute to substantial cost 
savings by reducing the need for maintenance and 
optimising the efficiency of resource allocation 
within aircraft operations. 

The present study aims to contribute to the 
literature in the field of CBM by integrating LSTM 
models and demonstrating the advanced capabilities 
of the LSTM architecture compared to traditional 
maintenance methods in the aircraft industry. Despite 
the limitations of classical regression algorithms and 
fundamental artificial neural network structures in 
capturing long-term relationships in time series, 
LSTM models have demonstrated notable efficacy in 
learning and maintaining such intricate temporal 

patterns. This feature facilitates more precise 
predictions of future vibration trends and has the 
potential to extend the lifespan of critical aircraft 
components by reducing unnecessary maintenance 
interventions. Analyses have demonstrated that 
LSTM models achieve lower MAE and RMSE 
values, indicating that they enhance the accuracy and 
reliability of CBM applications. This has been shown 
to result in enhanced system reliability, reduced 
unexpected failures and decreased maintenance costs 
in operational results. In conclusion, the integration 
of LSTM architecture into aircraft maintenance 
strategies is not only compatible with artificial 
intelligence-based predictive maintenance 
approaches, but also offers concrete practical gains 
for the maintenance optimisation of aircraft systems. 
This makes LSTM models optimal for the 
implementation of preventive, economical, and 
safety-focused maintenance strategies in 
contemporary aircraft. 

This research makes a significant contribution to 
the academic literature by effectively bridging 
theoretical principles with real-world implementation 
practices, thereby advancing the comprehension and 
applicability of advanced CBM strategies in the field 
of aircraft engineering. The study demonstrates that 
the deployment of LSTM networks enhances 
predictive accuracy, particularly in the context of 
forecasting future vibration behaviours. In contrast to 
traditional statistical models, the proposed LSTM-
based framework provides a scalable and practical 
foundation for real-time CBM integration. The LSTM 
model has been developed to learn from complex 
temporal sequences, thereby offering a data-driven 
mechanism to anticipate component-level 
degradation. This, in turn, has the effect of 
minimising redundant interventions and improving 
overall system availability and reliability. These 
findings reflect a paradigm shift from conventional 
predictive analytics to intelligent maintenance 
strategies, enabling more informed, timely and cost-
effective decision-making processes. Consequently, 
this study addresses a critical research gap by 
providing empirical validation of LSTM's potential to 
transform CBM methodologies and establishes the 
foundation for future research into AI-enhanced 
maintenance planning in aircraft environments. 
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