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This study aims to identify the most suitable target wind power plant (WPP) for short-term wind energy
production forecasting. Hourly meteorological data for 2022 from izmir Province were processed using the
Empirical Mode Decomposition (EMD) method to generate 56 Intrinsic Mode Function (IMF) signals, which
were used as input variables for the XGBoost model. As output, production data from 52 different WPPs
located within the same provincial boundaries were individually used as target variables. The model’s
performance was evaluated using R?, MAE, and MSE metrics. The results indicated that while high prediction
accuracy was achieved for some plants, the model's performance was limited for others. The best forecast
accuracy was obtained using data from WPP35, whereas the poorest performance was observed with WPP7.
These findings suggest that, despite being within the same province, differences in the geographical locations
of meteorological stations and WPPs, as well as region-specific meteorological characteristics, can

significantly affect prediction accuracy.

1 INTRODUCTION

Globally, energy demand 1is increasing day by
day(Renewable Energy Agency, 2025). Meeting the
increasing energy demand from traditional energy sources
causes many environmental consequences. The depletion of
traditional energy sources is also recognized as a major
problem by energy producers(Karadol & Sekkeli, 2022).
For these reasons, states have turned to renewable energy
sources as an alternative to traditional energy sources(Irena,
2025). The fact that renewable energy sources are
environmentally friendly and sustainable is seen as a great
advantage for governments. However, the fact that these
sources have random generation characteristics is
recognized as an economic and technical problem by
electricity grid operators(Karadol et al., 2021). To
overcome this problem, forecasting energy production is of
great importance.

When we examine the research in the field of short-term
forecasting of wind energy, it is seen that many studies have
been carried out with various machine learning based
methods(Joseph et al., 2023; Liu et al., 2019; Mustageem et
al., 2022; Shukla & Pasari, 2025).In addition to these
studies, Li et al. proposed the XGBoost regression model
optimized by Genetic Algorithm (GA) to solve the accuracy
and speed problems in wind power forecasting(X. Li et al.,
2023). Ma et al. proposed the XGBoost algorithm for very
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short-term wind power forecasting due to the variability of
wind power(Ma et al., 2020).

There is no research in the literature on wind
power generation forecasting for different targets at
1-hour horizon. To fill this gap in the literature, this
study examines the forecasting performance of the
XGBoost model for different target allocations at 1-
hour horizon. The meteorological data and WPP
generation data of Izmir province for the year 2022
are used to perform this investigation. All data sets
used are hourly resolution and real-time data. All
meteorological data obtained were decomposed into
signals by EMD method. As a result of this process,
56 signals were generated. The generated signals
were defined as input to the XGBoost model. With
this model, 52 WPP productions were defined as
targets in order to perform forecasts for a 1-hour
period. For each target, the forecasting performance
of the XGBoost model was analyzed. As a result of
these examinations, the best facilities for 1-hour
forecasts were determined.
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2 MATERIAL METHOD

In this study, it is aimed to determine the most
suitable target facility to realize wind power
generation forecasting with the XGBoost model at 1-
hour time horizon. For this purpose, firstly,
meteorological measurement data and WPP
generation data of [zmir province were obtained. The
obtained meteorological data were preprocessed by
EMD method and decomposed into IMF signals. As
a result of this decomposition, 56x8760 signals were
generated. These signals were used as input data for
the XGBoost model. With the XGBoost model, 52
WPP productions were selected as separate targets in
order to make WPP production forecasts with a time
horizon of 1 hour. R?, MAE, and MSE metrics were
used to evaluate the WPP production forecasting
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performance according to the selected target plants.
According to these metrics, the best target WPPs in
Izmir province were determined for the 1-hour
horizon.

2.1 Meteorological Data

For the 1-hour time horizon, empirical mode-
disaggregated meteorological data sets are used to
determine the best target facility for wind power
generation forecasting. The meteorological data used
in the study are hourly resolution and have a 1-year
period (01.01.2022-31.12.2022). These data sets
consist of solar radiation, humidity, cloudiness, air
temperature, soil temperature, rainfall, wind direction,
and wind speed. Some statistical properties of these
meteorological parameters are given in Table 1.

Table 1: Statistical properties of meteorological parameters

Meteorological Mean Star}da}rd Maks. value Min value Number Period
parameters Deviation of data

Cloudiness 2.34 2.56 8 0

Humidity 58.59 17.08 99 13

Radiation 211.19 300.86 1036.4 0

Wind rota 192.1 100.55 360 1 8760 01.01.2022-
Wind speed 2.86 1.47 11.5 0 31.12.2022
Air temperature 18.9 8.31 38.6 -0.1

Soil temperature 20.64 9.8 42.9 0.7

Rainfall 0.053 0.57 24 0

2.2  WPP Generation Data

In the research, 52 WPP production data located
within the borders of Izmir province were used. These
data are real-time and hourly resolution for the year
2022. The total installed capacity of the facilities from
which the data were obtained is 1742 MW. Within
this installed capacity, there are facilities with
different installed capacities, with a minimum
capacity of 3 MW and a maximum capacity of 226
MW. Co.
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Figure 1: Total WPP production at 1 hour resolution

The total generation graph of these plants at hourly
resolution is given in Figure 1. WPP generation data used
in the study were obtained from Turkish Electricity
Transmission and Distribution

2.3 Empirical Mode Decomposition
(EMD)

The EMD method is based on the principle that
nonlinear and non-stationary complex signals can be
decomposed into sub-components with different
oscillation characteristics(Jiang & Liu, 2023).
Based on this approach, Huang et al. proposed that a
complex signal can be decomposed into a residual
signal with a finite number of intrinsic mode
functions (IMFs) (Huang et al., 1998). This method
has found wide application in many fields from
engineering to climate science, from biomedical
signal processing to energy systems, thanks to its
structure suitable for time-frequency analysis.

The EMD method is based on the assumption that
complex signals are composed of components that
oscillate at various frequencies and
amplitudes(Shukla & Pasari, 2025). According to
this approach, the EMD decomposes a signal
sequentially into subcomponents called Intrinsic
Mode Functions (IMF) and a residual signal(Shang
et al., 2022). IMF components reflect the short-term
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and high-frequency fluctuations of the signal, while
the residual signal refers to the lower frequency and
overall trend of the signal(Aladag, 2023; Yuzgec et
al., 2024). The mathematical expression of the
EMD method 1is given in Equation
1(RajasundrapandiyanLeebanon et al., 2025).In
this equation, Y: is the input signal, N is the
number of IMF signals, and R is the residual
signal.

N

Y, = ZHIMFi +R(t) (1)

2.4 The Extreme Gradient Boosting
(XGBoost) Model

XGBoost is a supervised machine learning algorithm
based on decision trees, providing high accuracy and
high computational efficiency(Kanji & Das, 2025). It
is widely used in the literature due to its superior
performance, especially in classification and
regression problems (Hakkal & Lahcen, 2024; Joshi
et al., 2024; M. Li et al., 2020; Rathore et al., 2023;
Shi et al., 2021; Yelge¢ & Bingol, 2022; Zhang et al.,
2024). While models in traditional boosting
algorithms try to directly reduce the error values, in
the extreme gradient boosting approach, the model
focuses on the pseudo-residuals that are derivatives of
these errors(Demirer et al., 2024).In other words,
XGBoost is defined as an algorithm based on gradient
boosting, which is faster, more accurate, and more
robust to overlearning.

The gradient boosting method is based on
incrementally training successive decision trees in a
way that reduces the error rates in their previous
models(Demirer et al., 2024; X. Li et al., 2022). Each
new model focuses on the prediction errors of the
previous model and tries to correct them(Yan et al.,
2022). In this way, the generalization capability of the
model is increased, and more accurate predictions are
obtained.

In the literature analysis, it was found that the
XGBoost model is a highly effective approach for
modelling complex and dynamic systems such as
wind power generation forecasting due to its high
accuracy, flexibility, and computational
efficiency(Guan et al., 2023; W. Li et al., 2020; Phan
et al, 2021; Zheng & Wu, 2019).In this study,
XGBoost is used as the main modelling tool for short-
term power generation forecasts. The parameters of
the model used are given in Table 2.
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Table 2: XGBoost model parameters

Parameters Value
n_estimators 400
Learning_rate 0.1
Max_depth 6
Subsample 0.8
Colsample bytree 0.8
Random_state 42
Objective reg:squarederror
3 RESULTS

3.1 Meteorological IMF Signals

The first stage of the research is the conversion of
meteorological data into IMF signals by the EMD
method. At this stage, each meteorological parameter
was converted into 7 IMF signals. A total of 56 IMF
signals were obtained from all meteorological
parameters. IMF signals of wind speed data are given
in Figure 2 as an example.
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Figure 2: IMF signals of the wind speed data.

3.2  XGBoost Model WPP Forecasting
Results

In this study, the XGBoost model is used to predict
wind power plant (WPP) generation at 1-hour
forecast horizon and to determine the most suitable
target facility within the same province by using
meteorological measurement data. In this context,
meteorological data of Izmir province were
transformed into Internal Mode Functions (IMF)
using the Empirical Mode Decomposition (EMD)
method, and these signals were used as input data to
the XGBoost model.

To evaluate the performance of the model, 52
different WPP production data sets, each of which is
treated as a different target variable, are used
individually as the output of the model. For these
targets, the forecast performance metrics obtained
with the XGBoost model are presented in Table 3.
When the table is analyzed, it is seen that for some
power plants, forecasts with very high accuracy are
obtained, while for some power plants, the
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performance of the model is poor. Forecast results
with R? values of 0.90 and above are shown in bold
in the table.

Table 3: WPP production forecast performance metrics
over a 1-hour horizon.

Plant Number MAE MSE R’ Plant Number MAE MSE R?

WPP1 0.075 0.012 0.892 WPP27 0.062 0.008 0.931
WPP2 0.078 0.013 0.907 WPP28 0.064 0.008 0.913
WPP3 0.073 0.010 0.897 ‘WPP29 0.074 0.011 0.904
WPP4 0.065 0.009 0.934 WPP30 0.060 0.007 0.924
WPP5 0.091 0.016 0.856 WPP31 0.064 0.008 0.911
WPP6 0.089 0.016 0.860 ‘WPP32 0.057 0.006 0.937
WPP7 0.048 0.005 0.555 WPP33 0.065 0.009 0.936
WPP§ 0.070 0.010 0.916 WPP34 0.058 0.007 0.920
WPP9 0.063 0.007 0.933 WPP35 0.059 0.007 0.938
WPP10 0.079 0.013 0.858 WPP36 0.067 0.009 0.892
WPP11 0.069 0.010 0.924 WPP37 0.100 0.020 0.867
WPP12 0.070 0.009 0.878 WPP38 0.081 0.013 0.889
WPP13 0.068 0.009 0.922 ‘WPP39 0.065 0.009 0.928
WPP14 0.079 0.011 0.888 WPP40 0.059 0.007 0.897
WPP15 0.062 0.008 0.906 WPP41 0.068 0.009 0.912
WPP16 0.061 0.007 0.936 WPP42 0.064 0.008 0.901
WPP17 0.063 0.008 0.880 ‘WPP43 0.067 0.010 0.915
WPP18 0.076 0.011 0.887 ‘WPP44 0.062 0.008 0.929
WPP19 0.063 0.014 0.885 WPP45 0.067 0.009 0.904
‘WPP20 0.069 0.009 0.875 ‘WPP46 0.061 0.007 0.930
WPP21 0.082 0.013 0.898 WPP47 0.071 0.009 0.918
WPP22 0.060 0.007 0.934 WPP48 0.065 0.008 0.928
WPP23 0.067 0.009 0.920 WPP49 0.058 0.007 0.926
WPP24 0.072 0.010 0.917 WPP50 0.079 0.012 0.894
WPP25 0.071 0.011 0.889 WPP51 0.068 0.009 0.917
WPP26 0.067 0.009 0.923 WPP52 0.079 0.013 0.902

According to the findings, the most accurate
generation forecasts for the 1-hour forecast horizon
were realized with the data from WPP35. On the other
hand, the lowest forecast performance was obtained
with the production data of plant WPP7.

4 CONCLUSIONS

As a result of the research, it was concluded that it is
not always possible to use meteorological
measurement data and all power plant production data
within the same provincial borders together in
forecasting studies. One of the main reasons for this
situation is that meteorological measurement stations
and wind power plants are located in different
locations. Moreover, even if the measurement station
and the power plant are located in the same province,
the fact that some power plants have endemic
meteorological conditions specific to their region is
another reason for the differences in forecasting
performance.
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