

TabM vs. Traditional ML for e-Commerce Product Ranking: A Multi-Signal Framework for Frequently Bought Together Recommendations

Dilge Karakaş, Enis Teper and Okan Kaya

Hepsiburada, Istanbul, Turkey

Keywords: e-Commerce, Purchase Frequency Prediction, Customer Behavior, Machine Learning.

Abstract: We present a machine learning framework for ranking products in e-commerce recommendation systems, specifically targeting “Frequently Bought Together” scenarios. Leveraging a TabM neural architecture with parameter-efficient BatchEnsemble mechanisms for ensemble learning, our system integrates similarity scores, position signals, and commercial performance metrics to optimize purchase probability predictions. Deployed on a major e-commerce platform, our approach demonstrates improved ranking performance while maintaining computational efficiency through strategic weight sharing across ensemble members. TabM model achieves 23.5% improvement in HR@5 over position-based baseline and 14.5% improvement in NDCG@10 over logistic regression. The model effectively handles class imbalance through diverse ensemble perspectives and significantly outperforms traditional machine learning approaches including gradient boosting and logistic regression.

1 INTRODUCTION

In the competitive e-commerce landscape, product ranking plays a pivotal role in “Frequently Bought Together” (FBT) contexts, especially in shaping user behavior and driving sales (Keskin et al., 2024b). FBT recommendations traditionally rely on co-purchase signals, but capturing these effectively while balancing relevance, business objectives, and computational constraints remains a significant challenge for large-scale platforms.

Recent BERT-like models treat purchase histories as sequences, significantly improving recommendation accuracy and NDCG scores (Sun et al., 2019). Studies on e-commerce ranking identify key challenges including heterogeneous data, class imbalance, and balancing customer relevance with business goals (Kabir et al., 2024). New recommendation systems use logical reasoning to learn asymmetric product relationships (e.g., batteries complement flashlights but not vice versa), going beyond simple co-purchase patterns (Wu et al., 2022). Analyses of commercial FBT systems reveal built-in biases and strategic positioning effects that impact business outcomes.

Despite these advances, existing approaches often suffer from: (1) limited scalability for real-time inference, (2) lack of interpretability required for busi-

ness operations, or (3) insufficient integration of diverse signal types (similarity, commercial, and positional). There is a need for a practical framework that balances predictive performance with operational requirements.

We compare advanced neural architectures (TabM with parameter-efficient BatchEnsemble mechanisms) against traditional machine learning approaches, ultimately demonstrating that deep learning models like TabM (Gorishniy et al., 2024) can achieve strong performance while meeting production constraints.

This paper makes several contributions:

- A systematic comparison of neural (TabM) and traditional ML approaches for FBT ranking, with detailed analysis of performance-complexity trade-offs
- A comprehensive feature selection analysis using Weight of Evidence binning and Information Value
- A production deployment case study demonstrating real-world implementation challenges and solutions in a large-scale e-commerce environment

2 RELATED WORKS

Product ranking in e-commerce has evolved significantly, transitioning from rule-based heuristics and standalone retrieval systems to learning-to-rank (LTR) models that integrate heterogeneous signals. Early approaches, such as collaborative filtering and content-based ranking, often decoupled retrieval and ranking stages. Modern architectures now favor unified pipelines that jointly optimize both tasks to align with user preferences and business objectives (Kabir et al., 2024).

LTR models, especially those based on gradient boosting, have gained prominence for their predictive strength and flexibility in handling mixed feature types. XGBoost (Chen and Guestrin, 2016) and LightGBM (Ke et al., 2017) are frequently employed in large-scale ranking tasks due to their scalability and regularization techniques. CatBoost (Prokhorenkova et al., 2018), in particular, excels at handling categorical variables without preprocessing, making it well-suited for e-commerce data with diverse categorical attributes. In parallel, ensemble methods like Random Forests and Extra Trees (Geurts et al., 2006) serve as strong baselines for both model interpretability and feature importance estimation. HistGradient-Boosting, available via scikit-learn, offers computational efficiency by combining histogram-based training with support for monotonic constraints and missing values.

Despite the advancements in tree-based models, logistic regression continues to be widely used in real-time production environments for its low inference latency, simplicity, and well-calibrated probabilistic outputs. When paired with systematic feature selection techniques—such as sequential forward selection and Weight of Evidence (WoE) (Raymaekers et al., 2021) binning—logistic regression achieves strong performance while maintaining interpretability (Loukili et al., 2023).

Beyond product recommendation, similar ranking strategies have been applied to other personalization tasks. For instance, a recent study on homepage banner optimization demonstrates that click prediction-based ranking using logistic regression leads to measurable improvements in click-through and conversion rates (Keskin et al., 2024a). This application further supports the viability of interpretable models in latency-sensitive production systems.

Finally, fairness and transparency concerns are increasingly relevant in commercial ranking. Studies have revealed that certain platforms may introduce systemic biases—such as favoring private-label or sponsored items—through opaque ranking poli-

cies. These findings underscore the importance of explainability and bias-aware evaluation in deployed recommendation models.

3 DATA COLLECTION

To support "Frequently Bought Together" (FBT) recommendations, we construct a training dataset by integrating user interaction history, candidate recommendations, and product metadata. As illustrated in Figure 1, users generate both recommendation exposures and order events, which are then merged with product-level features to form labeled product pairs. Candidate products are first retrieved using embedding-based similarity, ranked by $(1 - \text{distance})$. Positive labels are assigned when the candidate was co-purchased with the main product in the same order, while negatives are drawn from unpurchased but recommended items. Data is split chronologically into 70% training, 15% validation, and 15% test to simulate real-world deployment.

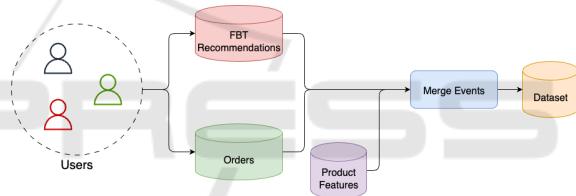


Figure 1: Overview of the data collection and merging pipeline.

The dataset integrates features from multiple sources, including product catalog (category hierarchy, brand, merchant, reviews), pricing (listing prices, view events, and historical orders), and user engagement metrics (views, clicks, sales across six platform touchpoints). Performance signals such as click-through rate (CTR), conversion rate (CR), and percentile rankings are also incorporated.

Table 1 summarizes the groups. Prices follow a hierarchical imputation strategy listing → view → order → default and are log-transformed to reduce skew.

Table 1: Overview of feature groups used in the ranking model.

Feature Group	# Features	Source
Similarity & Position	2	Embedding, rank
Categorical Matching	5	Category, brand
Engagement Metrics	12	Views, clicks
Performance Ratios	6	CTR, CR
Commercial Signals	8	Price, reviews
Derived Features	4	Composites

The binary target variable indicates whether the candidate product was purchased after the user viewed the main product. Temporal constraints ensure that purchases are linked to recent exposures to prevent spurious attribution. This binary setup aligns with the goal of maximizing conversion probability and supports interpretable model evaluation.

Feature selection is performed using Information Value (IV) analysis to identify the most predictive features. The IV metric quantifies a feature's discriminative power based on the distribution of positive and negative classes across binned intervals, calculated as:

$$IV = \sum_i (P_i - N_i) \times \ln \left(\frac{P_i}{N_i} \right)$$

Based on IV scores, we selected the most important features with high discriminative power for the final ranking model.

4 SYSTEM ARCHITECTURE AND PIPELINE

Our modeling framework supports an end-to-end pipeline for "Frequently Bought Together" (FBT) recommendations, integrating both candidate generation and ranking stages in a production environment. The full architecture is illustrated in Figure 2.

The process begins with user interactions collected from e-commerce clickstream data, which are passed through a trained embedding model to compute dense product representations. These embeddings are enriched with metadata (e.g., category, brand, price, and reviews), and stored in a centralized product metadata repository. The resulting vectors are indexed using a K-Nearest Neighbor (KNN) indexer, enabling fast retrieval of similar products.

4.1 Serving API and Online Inference

The Serving API acts as the central online service for delivering FBT recommendations to end users in real time. When a user visits a product detail page, the API orchestrates the following steps:

1. **Candidate Retrieval:** The API queries the KNN index with the embedding of the currently viewed product to retrieve top- k candidate items.
2. **Feature Enrichment:** Retrieved candidates are enriched with additional metadata (e.g., product category, brand, price, ratings, and recent engagement statistics) from the centralized product metadata repository.

3. **Ranking Inference:** The enriched candidates are passed to the Product Ranking API, which applies the trained model to compute purchase likelihood scores. This ranking step balances similarity, commercial performance, and engagement signals.

4. **Response Delivery:** The final ranked list is returned as a JSON response to the frontend service, where it is displayed as "Frequently Bought Together" recommendations.

The Serving API is optimized for low-latency, high-throughput environments. It leverages caching for popular product embeddings, parallel batch queries for feature retrieval, and asynchronous communication with the ranking service. This ensures that recommendation responses are typically generated within 20–30 milliseconds, meeting the strict latency requirements of large-scale e-commerce platforms.

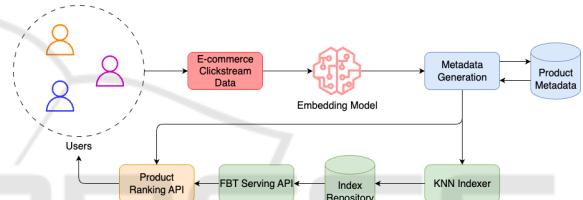


Figure 2: End-to-end FBT candidate generation and ranking pipeline.

5 METHODOLOGY

We conduct a comprehensive experimental evaluation comparing TabM neural ensembles with traditional machine learning approaches on the FBT ranking task.

5.1 Experimental Setup

Our evaluation framework compares the following algorithms:

- **TabM:** Parameter-efficient neural ensemble with BatchEnsemble mechanisms
- **CatBoost:** Gradient boosting optimized for categorical features
- **XGBoost:** Tree-based ensemble with regularization
- **Random Forest:** Bagging ensemble for baseline comparison
- **Logistic Regression:** Linear model with L2 regularization

Table 2: Model Performance Comparison on Test Set.

Model	Hit Rate			NDCG				Precision		
	@1	@3	@5	@1	@3	@5	@10	@1	@5	@10
TabM	0.451	0.709	0.826	0.451	0.551	0.608	0.666	0.451	0.219	0.138
CatBoost	0.429	0.698	0.814	0.429	0.534	0.590	0.650	0.429	0.215	0.137
XGBoost	0.411	0.684	0.802	0.411	0.518	0.575	0.639	0.411	0.210	0.136
Random Forest	0.400	0.670	0.790	0.400	0.506	0.563	0.629	0.400	0.206	0.135
HistGradientBoosting	0.389	0.669	0.786	0.389	0.500	0.556	0.621	0.389	0.204	0.134
Extra Trees	0.339	0.596	0.724	0.339	0.439	0.497	0.569	0.339	0.186	0.127
Logistic Regression	0.359	0.614	0.732	0.359	0.456	0.510	0.574	0.359	0.189	0.125
Position Baseline	0.321	0.561	0.669	0.321	0.412	0.459	0.531	0.321	0.170	0.118

Our model selection process balances three critical factors:

1. **Offline Performance:** Evaluated using HR@5, NDCG@10, and Precision metrics
2. **Production Constraints:** Inference latency < 30ms, memory footprint < 1GB
3. **Operational Requirements:** Model interpretability for business stakeholders

5.2 TabM Model Architecture

TabM (Tabular Multiple predictions) is based on parameter-efficient ensembling techniques (Gorishnyi et al., 2024), which employs BatchEnsemble mechanisms specifically designed to efficiently represent multiple MLPs while sharing most parameters. The model uses strategic weight sharing through learnable adapters and simultaneous training to achieve superior performance on tabular datasets.

The core TabM architecture consists of k implicit ensemble members, where each member processes inputs through modified linear layers with shared and non-shared components:

$$\mathbf{l}_{BE}(\mathbf{X}) = ((\mathbf{X} \odot \mathbf{R})\mathbf{W}) \odot \mathbf{S} + \mathbf{B} \quad (1)$$

where $\mathbf{X} \in \mathbb{R}^{k \times d}$ contains k object representations (one per ensemble member), $\mathbf{R}, \mathbf{S}, \mathbf{B} \in \mathbb{R}^{k \times d}$ are the non-shared adapters for each ensemble member, $\mathbf{W} \in \mathbb{R}^{d \times d}$ is the shared weight matrix, and \odot denotes element-wise multiplication.

The feature transformation for each ensemble member i follows:

$$\mathbf{h}^{[i]} = \mathbf{s}_i \odot (\mathbf{W}(\mathbf{r}_i \odot \mathbf{x}_i)) + \mathbf{b}_i \quad (2)$$

where $\mathbf{r}_i, \mathbf{s}_i, \mathbf{b}_i$ represent the individual adapters for ensemble member i , and \mathbf{x}_i is the input representation for that member.

The critical first adapter initialization ensures proper ensemble diversity:

$$\mathbf{R}^{[1]} \sim \mathcal{N}(0, 1), \quad \mathbf{R}^{[l]}, \mathbf{S}^{[l]} = \mathbf{1} \text{ for } l > 1 \quad (3)$$

The final prediction aggregates predictions from all ensemble members:

$$\hat{y} = \frac{1}{k} \sum_{i=1}^k f(\mathbf{h}^{[i]}) \quad (4)$$

where $f(\cdot)$ represents the output transformation (sigmoid for classification, identity for regression).

For our implementation, we configure TabM with $k = 32$ ensemble members, network depth $N = 3$ layers, and hidden dimension $d = 512$. The preprocessing pipeline follows TabM's advanced data preparation strategy: numerical features undergo Quantile-Transformer normalization with noise injection for stability, while categorical features are label-encoded with cardinality tracking. We employ PiecewiseLinearEmbeddings with 48 bins and 16-dimensional embeddings for numerical features, and apply dropout regularization during training. The model is trained using AdamW optimizer with weight decay, and Focal Loss ($\alpha = 0.25$, $\gamma = 2.0$) to handle class imbalance.

6 RESULTS AND DISCUSSION

The Information Value analysis demonstrates that initial ranking position provides the strongest predictive signals, while commercial performance differentials and categorical matching offer valuable supplementary information.

6.1 Model Performance Comparison

We evaluate multiple models using ranking metrics commonly adopted in recommendation systems: Hit

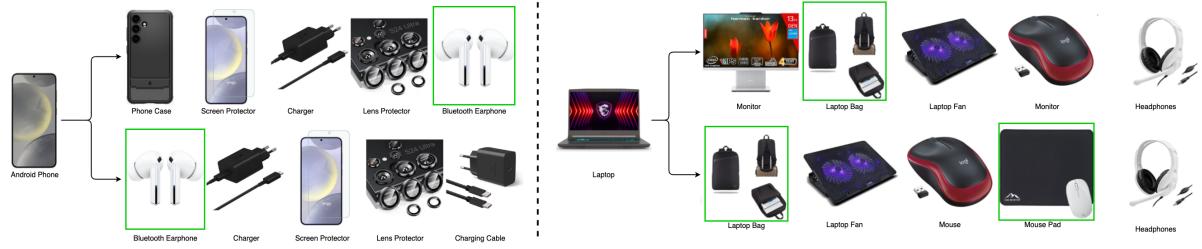


Figure 3: Ranking model outputs for Android Phone (left) and Laptop (right) showing recommended complementary products. First row shows the baseline recommendation order, second row shows our model’s reranked choices. Items outlined in green represent actual co-purchases from historical transaction data, demonstrating the model’s ability to prioritize frequently bought together items.

Rate at rank 5 (HR@5), Normalized Discounted Cumulative Gain at rank 10 (NDCG@10), and Precision at ranks 5 and 10 (P@5, P@10). Among these, NDCG is particularly informative as it accounts for both the position and relevance of recommended items, assigning higher scores when correct predictions appear earlier in the ranked list.

TabM emerges as the clear performance leader, achieving the highest scores across all evaluation metrics. The neural ensemble demonstrates superior ranking quality with an HR@5 of 0.826 and NDCG@10 of 0.666, representing substantial improvements over traditional machine learning approaches. CatBoost follows as the second-best performer among tree-based methods, while logistic regression provides a strong baseline despite its simplicity.

Figure 3 illustrates these quantitative improvements through qualitative examples, showing how our model effectively prioritizes items that were actually co-purchased (highlighted in green) compared to baseline rankings. This demonstrates improved alignment with actual user purchase behavior while maintaining recommendation diversity.

7 CONCLUSION AND FUTURE WORK

This paper presented a comprehensive evaluation of machine learning approaches for product ranking in “Frequently Bought Together” e-commerce recommendation systems. We systematically compared neural (TabM) and traditional ML methods, ultimately demonstrating that deployment decisions require careful consideration of the performance-complexity-interpretability trade-off space.

7.1 Key Contributions

Our research makes several contributions to practical recommendation systems:

- Empirical Comparison:** We provide a thorough comparison of TabM neural ensembles against traditional ML approaches, demonstrating that deep learning can indeed outperform gradient boosting methods in tabular recommendation tasks. TabM achieves superior performance across all metrics, with notable improvements of +23.5% HR@5 over position baseline, +14.5% NDCG@10 over logistic regression, and consistent gains over state-of-the-art gradient boosting methods including CatBoost and XGBoost.
- Neural Architecture Validation:** We demonstrate that TabM’s parameter-efficient BatchEnsemble mechanisms can effectively challenge the dominance of gradient boosting in tabular data scenarios, particularly in e-commerce ranking tasks where complex feature interactions are crucial.

Future research directions include:

- Multi-objective optimization techniques balancing conversion probability with revenue and inventory management objectives
- Personalization strategies incorporating user-specific preferences and historical interaction patterns
- Dynamic reranking approaches that adapt to real-time inventory and promotional considerations
- Cross-category recommendation expansion using graph-based relationship modeling

This research contributes to the growing field of practical recommendation systems in e-commerce, providing a framework that prioritizes deployability, interpretability, and business alignment alongside predictive performance.

REFERENCES

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pages 785–794.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. *Machine learning*, 63(1):3–42.

Gorishniy, Y., Kotelnikov, A., and Babenko, A. (2024). Tabm: Advancing tabular deep learning with parameter-efficient ensembling.

Kabir, M. A., Hasan, M. A., Mandal, A., Tunkelang, D., and Wu, Z. (2024). A survey on e-commerce learning to rank. *arXiv preprint arXiv:2412.03581*.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural information processing systems*, 30.

Keskin, M., Teper, E., Bük, B., and Sezgin, M. S. (2024a). Banner ranking based on click prediction in the e-commerce. In *2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)*, pages 1–6.

Keskin, M., Teper, E., and Kurt, A. (2024b). Comparative evaluation of word2vec and node2vec for frequently bought together recommendations in e-commerce. In *2024 9th International Conference on Computer Science and Engineering (UBMK)*, pages 1–5.

Loukili, M., Messaoudi, F., and El Ghazi, M. (2023). Machine learning based recommender system for e-commerce. *IAES International Journal of Artificial Intelligence*, 12(4):1803–1811.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A. (2018). Catboost: unbiased boosting with categorical features. *Advances in neural information processing systems*, 31.

Raymaekers, J., Verbeke, W., and Verdonck, T. (2021). Weight-of-evidence 2.0 with shrinkage and spline-binning. *arXiv preprint arXiv:2101.01494*.

Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., and Jiang, P. (2019). Bert4rec: Sequential recommendation with bidirectional encoder representations from transformers. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management*, pages 1441–1450. ACM.

Wu, L., Zhou, Y., and Zhou, D. (2022). Towards high-order complementary recommendation via logical reasoning network. In *2022 IEEE International Conference on Data Mining (ICDM)*, pages 1227–1232. IEEE.