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Abstract: Digital twins (DTs) are dynamic digital representations of physical systems that accurately depict their 
behaviour and states through virtual space over their lifetime. They are built on models and computer 
programs that use real-time data from sensors or IoT devices. DTs serve as a bridge between the physical and 
virtual worlds, enabling real-time tracking, data analysis, and simulation of various scenarios. They facilitate 
remote management, immediate intervention, and data-driven decision-making across industries. The 
implementation of DT principles in industrial symbiosis can optimize resource usage, improve collaboration, 
and create more sustainable production systems. However, the lack of system integration with information 
and communication technology tools and the complexity of knowledge sharing within symbiosis networks 
delay its effective implementation. To establish DTs in IS, a systematic approach is required, involving the 
specification of exchange processes, determination of bottlenecks, prioritization of integrated parts, and the 
creation of mathematical models and simulations. The benefits of DTs in IS include reduced time to market, 
reduced waste and energy consumption, improved performance monitoring, and enhanced collaboration 
between teams. Future developments needed for IS include addressing the lack of big data for training ML 
models, ensuring data security, establishing standards and regulations, and overcoming observability and 
controllability issues. 

1 INTRODUCTION 

Industrial symbiosis (IS) is a mutually beneficial 
interaction between different industries/companies 
for the exchange of waste materials or energy to be 
used as a source for other companies. That results in 
the design of a production system that is more 
resource-efficient and has a reduced environmental 
impact (Seager et al.,2010). It is an effective strategy 
for the optimization of resource usage and 
collaboration improvement in the context of Industry 
4.0 (Scafà et al., 2020). 

Is also strengthens synergies between humans and 
machines (Scafà et al., 2020). It encompasses the 
exchange of waste materials and waste energy 
between industrial units. Its design could be 
facilitated by tools based on information and 
communication technology (ICT) (Grant et al., 2010; 
Kosmol, 2019) . The implementation of IS can lead 
to the development of eco-industrial parks (EIPs), 
where more industries collaborate to create a more 
sustainable and circular production system (Al-
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Quradaghi et al., 2020). Therefore, IS is a key 
component of the circular economy. It promotes the 
increasing resource efficiency, waste reduction, and 
environmental sustainability. IS is a shift from the 
traditional linear economic model to a more circular 
approach (Feiferytė-Skirienė & Stasiškienė, 2021). 

One of the main challenges in the development of 
IS networks is the lack of system integration by the 
use of ICT tools. Although the trend of using 
semantic web technologies to share information and 
knowledge is constantly increasing. These tools are 
often not fully incorporated into broader IP activities 
(Kosmol, 2019). This gap hinders the effective 
implementation and sustainability of IP business 
models. 

Another major gap lies in the complexity of 
knowledge sharing within IS networks. Despite being 
considered as crucial in the implementation and 
maintenance of IP business models. Knowledge 
sharing is rarely explored or implemented in depth 
(Kosmol, 2019). This lack of understanding can delay 
the development of robust IS networks and limit their 
potential benefits. 
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The design of EIPs for specific industries reveals 
gaps in the early stages of development. While there 
are frameworks to guide decision-makers, there is a 
need for better integration with design software to 
predict product recycling and its production 
optimization (Al-Quradaghi et al., 2020). Addressing 
these gaps could significantly improve the efficiency 
and sustainability of IS initiatives. 

Digital twins (DT) are dynamic digital 
representations of physical systems. That means a 
digital representation of devices or processes that 
accurately represent their current and predicted future 
states (Gómez-Berbís & Amescua-Seco, 2019). They 
depict the behaviour and states of real-life objects 
through virtual space over their lifetime (Verdouw et 
al., 2021). These virtual replicas are built on a series 
of models and computer programs that use real-time 
data from sensors or Internet of Things (IoT) devices 
(Kaur et al., 2019; X. Zhang et al., 2023) . Moreover, 
it can be taken that DT is a digital shadow, digital 
replica or digital mirror of physical systems (Lyu, 
2024). 

DTs are not just conventional data models or 
simulations. They make forecasting and optimization 
by simulating digital models of systems. DTs do this 
by constantly updating and evolving in response to 
changes in properties of physical factors (Kang et al., 
2021). All parts that are integrated into DT can be 
visually seen in Figure 1. This dynamic nature 
differentiates them from static digital models. DTs 
serve as a bridge between the physical and virtual 
worlds, allowing for real-time tracking, data analysis, 
and simulation of various scenarios (Ferrigno & 
Barsola, 2023). They facilitate remote management, 
immediate intervention, and data-driven decision-
making across industries. These include 
manufacturing, health care, transportation, and smart 
agriculture (Kaur et al., 2019; Verdouw et al., 2021). 
By integrating technologies such as IoT, artificial 
intelligence, and machine learning, DTs can offer a 
comprehensive understanding of system behavior, 
and can foster improved efficiency, optimization, and 
information selection in cyber-physical systems 
(Awouda et al., 2024; Fuller et al., 2019). 

 
Figure 1: The four forces that make DT. 

Sources for analysis of literature were Elsevier 
data basis. For the searching term “Digital twins for 
design of industrial symbiosis” appeared 540 raw 
articles. Related to energy (used filter) are 81. Other 
searching results for (“Digital twins” AND 
“industrial symbiosis”) can be found 121 articles 
(Fig.2).   

 
Figure 2: Results shown by searching the Elsevier database 
for expression — “Digital twins” for design of “industrial 
symbiosis” 

But, anyway, all those articles are not directly 
connected to the use of digital twins (DTs) in IS or 
EIP. 

2 DIGITAL TWINS 

DTs are available in several types. Asset 
Administration Shell (AAS) DTs are becoming more 
popular in Industry 4.0, within three different types 
(J. Zhang et al., 2025). These types of AAS contribute 
to the systematic engineering of specific components 
in DTs. Moreover, in manufacturing, DTs can be 
identified based on the relationship and data flow 
between the physical object and its digital equivalent. 
These types are evolving with corporate digital 
transformation processes, including external data 
sources such as social media and artificial intelligence 
solutions. The agricultural sector emerging DTs with 
levels of complexity. Type classification is based on 
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the sophistication of the twin’s capabilities 
(Pylianidis et al., 2021; Verdouw et al., 2021). 
Verdóuw et al. (2021) classified different types of 
DTs with the proposed conceptual framework for 
their design and implementation in smart agriculture. 
This framework consists of a control model based on 
a general system approach and an implementation 
model based on the Internet of Things Architecture 
(IoT-A). 

DTs can be ranged between simple data-driven 
models and designed complex simulations enhanced 
by artificial intelligence. The classification of DTs 
often depends on their level of sophistication, the 
degree of their integration with physical systems, and 
the specific industry where they are used. 

DTs are emerged as a key technology in Industry 
4.0 and 5.0. They are widely used in equipment and 
assets in creating virtual representations of physical 
machines and devices in smart factories. DTs enable 
real-time monitoring, predictive maintenance, and 
process optimization (Lampropoulos & Siakas, 
2023). IoT devices in smart factories can be 
connected to DTs for dynamic representation of a 
physical system through its lifecycle (sensor) data 
(Catarci et al., 2019). The DTs of systems is modelled 
the overall production or overall complex systems. 
They provide real-time automated analysis of data 
from connected machines, accelerate error detection 
and make correction. This type of DTs improves 
overall efficiency and reducing costs in industrial 
production. 

Some research finds the potential of human DTs 
in the context of human-robot collaboration and 
augmented reality interfaces in Industry 5.0 ((Zafar et 
al., 2023)). As Industry 5.0 continues to evolve, DTs 
would play an increasingly important role in 
achieving smart, sustainable, and human-cantered 
manufacturing (Zafar et al., 2023) . 

DTs enable real-time visualization, monitoring, 
and control of workflows. They simulate process 
parameters (Wang et al., 2024). DTs are integrated 
with local systems in real-time. This allows the 
prediction of the status of production and to perform 
effectiveness analysis of human resources (Ruppert & 
Abonyi, 2020). They can also be used for predictive 
maintenance. Integration of artificial intelligence 
enables them to monitor, diagnose, and optimize 
different systems (Kerkeni et al., 2025).  

DTs are one of the key players in the 
transformation of manufacturing towards Industry 4.0 
and 5.0. They are used for product design, production 
planning, ergonomics, maintenance, and the entire 
product lifecycle (Cinar et al., 2020). The integration 
of advanced technologies like Vision Transformers 

and DTs can make manufacturing sustainable, 
stronger, and more personalized (Industry 5.0 goals) 
(Fantozzi et al., 2025). 

DTs can be integrated within real-time 
localization systems (RTLS). That can predict 
production status and monitor performances, as well 
as analyse the effectiveness of human resources 
(Ruppert & Abonyi, 2020). DTs can serve as 
independent cloud computing services. That enables 
scalability and will control simulations through a 
model DT-as-a-Service (DTaaS) (Borodulin et al., 
2017). This showed the importance of cloud 
platforms for the concept of DTs in smart factories. 

Moreover, the integration can be done with the 
IoT and artificial intelligence. That creates precise 
digital replicas of production systems. It enables 
process optimization, the reduction of downtime, and 
the improvement of maintenance strategies (Fantozzi 
et al., 2025). The integration of DTs into the industry 
requires a combination of hardware and software 
components with high performances. That 
combination makes a comprehensive virtual 
presentation of physical objects and processes. 

Many authors gave the basic content of DT in 
different ways. Alam and Sadik (2017) reported that 
DTs are based on two modules. Those are physical 
modules (process and communication systems) and 
digital modules (virtual system—computer models 
and decision-making). Rodič et al. (2017) divided 
systems into digital shadows (physical systems) and 
digital masters (computer models that capture the 
shadow). Moreover, Lyu (2024) explained 
differences between expressions digital model, digital 
shadow and DT. Based on him, the digital model is 
the presentation of the physical systems without the 
automatic exchange of data (system simulation). 
Digital shadow has a single connection with the 
physical system. It only receives the change of the 
state of the physical system. Contrary, DT has 
bidirectional communication between digital and 
physical systems with changes in both in real-time. 

DT can represent part of the physical system 
(reactor, separation system, or product), or it can 
represent the whole system. 

The main hardware for DTs are sensors, IoT 
devices, and communication systems to collect real-
time data from physical parts (Costantini et al., 2022; 
Khalyasmaa et al., 2023). Sensors collect information 
for parameter values like temperature, vibration, and 
performance metrics (Okpala Charles Chikwendu et 
al., 2025).  

The software, which is used creates advanced 
computational models. It can contain different 
simulation tools and artificial intelligence algorithms 
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to process and analyse the collected data (Okpala 
Charles Chikwendu et al., 2025).  

There are several types of software tools for 
establishing DTs in the manufacturing industry. Each 
of those types of software has a different purpose or 
different role in the creation of DTs. 

1. Unity3D—This is a tool for real-time 3D 
system development. It can be chosen because its 
cross-platform capability and simplified modelling of 
industrial systems (González-Herbón et al., 2024; 
Rassolkin et al., 2020). It is used for physical 
simulations and visualization of DTs (Rassolkin et al., 
2020). Similar commercial software are: AspenONE, 
CATIA®, SolidWorks®, and AutoCAD® for visual 
representation and FlexSim®, Tecnomatrix®, 
AnyLogic®, Simio®, Arena®, 3DVIA Composer®, 
Matlab, ANSYS, Thermoflow, COMSOL, Modelica, 
etc. 

2. The Vuforia SDK as a software development 
kit is used to simplify augmented reality integration 
in DTs (González-Herbón et al., 2024). 

3. Node-RED is a system integration option for 
DTs (González-Herbón et al., 2024). 

4. The MQTT protocol is used for communication 
in DT systems (González-Herbón et al., 2024). 

5. Object-Z notation is a formal language for 
realizing the concept of DTs (Barbie & Hasselbring, 
2024). 

6. A Unified Modelling Language (UML) is used 
to visualize relationships between DT concepts such 
as class diagrams (Barbie & Hasselbring, 2024). 

Generally speaking, there is no standardized set of 
software for implementing DTs. Which software will 
be used depends on the specific requirements of the 
DT implementation project and the industry in which 
it is applied.  

 
Figure 3: Architecture of DTs. 

The connection between physical and virtual 
systems is done with a communication interface. Its 
role is connection and conversion of data through 
sensors, switches, routers, firewalls, hosts, links, 
databases, intelligent devices and management 
systems (Fig. 3). That is a two-way street. 
Communication solutions are IoT, big data, and cloud 
technologies (Shin et al., 2018). 

DTs can have different levels of autonomy in 
response to physical systems, and they can have 
different levels of integration of physical systems. 
Autonomy is directly connected to responses in real-
time.  

3 DIGITAL TWINS AS AN 
IMPORTANT TOOL FOR 
INDUSTRIAL SYMBIOSIS 

The implementation of DT principles in industry or 
systems created by IS can be done only on previously 
designed models. Lyu (2024) gave differentiation 
between models created with various methodologies 
as first principle models (models based on numerical 
solutions and optimization), statistical models 
(machine learning based on historical state and 
behaviour data, neural networks), rule-based and 
multiagent system based decision-making models, 
computer-aided engineering (CAE), deep learning 
models, industrial DT applications (for PALM), IoT, 
AI-based operational energy-DT (EDT), Data-driven 
EDT, power industry EDT, generic EDT, etc. 

Software that will be used in any of these types of 
models should provide the following: synchronization 
rules and template implementation for temporal data, 
their synchronization, their aggregation, obtain data 
from sensors and other sources in the physical 
systems, data conversion, use of behavioural models 
of DT, implementing visual models, creating multi-
images of physical systems (PS), DT data processing 
and analysis, results visualization, ensure data 
confidentiality, and DT data storage. All these digital 
processes with their relations are presented in Fig. 4.  

Digital platforms for the implementation of DTs 
are IoT, Business process Management platforms, 
analytics & data platforms, and application platforms 
(Nath, 2021). Moreover, there can be used public 
clouds like Microsoft Azure, Amazon Web Services 
(AWS), Google Cloud Platform (GCP), Alibaba 
Cloud, Oracle Cloud Infrastructure (OCI), IBM 
Cloud, and Tencent Cloud.  

In manufacturing, the collaboration DT is divided 
into the physical world (shop floor and management 
floor participants) and the cyber world (DT layers, 
industrial technology layers and application layers). 
The shop floor participants are factories machines, 
workers, monitoring devices, sensors, robotic devices, 
etc. The management floor participants are people 
who use operational data such as decision-makers, 
management department employees, HR, security, 
and all other human supported departments in 
administration).  

Production process

Sensors, 
smart devices,
Databases,
Management system

Physical system data

updatePhysical system feedback

Virtual copies
 (simulation, other 
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Figure 4: Software system architecture for DTs. 

 
Figure 5. Interaction between different information technologies for creating of DT in industrial symbiosis. 

On the other side, in the cyber world, DT layer has 
models and solutions for autonomous collaborative 
industrial manufacturing. Here could be found real-
time data and predictions of potential risks that are 
used by decision-makers and sent to the physical 
system. The industrial technologies layer is included 
in solutions for collaboration, like blockchain 
networks (secure exchange of data), AI-based DT 
technologies (predictive data analytics, predict 
potential risks, predictive maintenance, etc.), cloud 
and edge computing technologies for real-time data 
analysis, and visualization tools for clear and quick 
understanding of physical systems (Fig. 5). The 
application layer is the usage of DT for different 
systems, like the energy industry, rail industry, 
logistic industry, health care industry, etc. 

DTs in manufacturing creates systems at different 
levels, like unit level (smallest participant/unit), 
system level (system of a few participants or units 
connected into a process) and system of systems 
(SoS) level (connected to several systems or DT 
levels). 

The implementation of DT in the industry is in a 
low stage. Applications of DT in industry are in 
general for optimization and predictions for discrete 
manufacturing; manage, predict, optimize, safety and 
scheduling of batch processes; predict energy demand 
and improve energy distribution; improvement and 
prediction of renewable energy generation; conduct 
real-time FEM analytics for assessing offshore oil 
platforms’ structural integrity using weather and 
ocean data; enhance recovery yields in mineral 
processing and monitor mine tailings and 
environmental waste in real-time and offer expert 
recommendations; vehicles supply manufacturers 
with usage data for design enhancements. Current 
information about implemented projects of DT in the 
industry showed partial implementation of specific 
processes. DT is implemented in water processing for 
future state of the system prediction, an air separation 
process for selecting the fastest start up and shut 
down, beverage processes for rescheduling based on 
various disturbances, steam turbine subsystems for 
online performance monitoring, and phosphorus 
production for minimal energy consumption. Ma et 
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al. (2022) reported about DT implementation in the 
ceramic industry in China. Implementation in Pharma 
can lead by DT connections with cognitive sensors 
and simulations. Based on that, DT is directed to 
visualization. Visualization is done with smart data 
management and integration. It uses data 
visualization, data persistence and processing, and 
data integration. Integrated data are shown in MES, 
SCADA, PLC and IBA (Salis et al., 2023).  

Logistics is very important in supply chains for 
industrial processes or in systems like IS. DT can be 
used in “Logistics 4.0” as part of Industry 4.0. This 
helps in tracking the movement of goods.  

Moreover, control, energy generation and fault 
diagnostics of wind turbines can be supported by DT. 

Iyer et al. (Iyer et al., 2024) showed the system of 
IS based on the framework of digitalization within 
Industry 4.0. They connect existing “industrial 
technologies” based on products and information that 
are supplied by industry in symbiotic systems. All 
these information must be sent to the work centre of 
DT (Park et al., 2020). On the other side, the 
sustainable smart manufacturing framework suggests 
using intelligent design, intelligent production, 
intelligent maintenance and service, and intelligent 
recovery (Ren et al., 2019).  

Determination and creation of DT are done by two 
teams: business & operations team, and the IT & 
development team (Nath, 2021). The implementation 
steps for DT in IS are following: 

1. There must have already established IS or 
EIP. 

2. Specification of all processes that connect 
units in IS or EIP. Determination exchange 
processes for energy, materials, goods, and 
services. The whole system is divided into 
subsystems based on the business model that 
will be used. (separate system for electricity 
generation and distribution, separate heat 
generation and distribution, separate 
systems for sharing materials, etc.). 

3. Determination of bottlenecks and negative 
factors. Preparing of high-digital DT 
references. 

4. Prioritization of integrated parts and data 
validation.  

5. Creating mathematical models and 
simulation. 

6. Selecting the best model with simulation 
validation. 

7. Determination of the connection points for 
sensors and all other equipment that is 
required. Making a list of equipment for 
further projects. 

8. Determination of benefits (added value, 
economic and quality benefits). 

9. The project proposal is analysed for 
economic, environmental, production and 
social benefits. If there are benefits (higher 
incomes), comes the next step. Based on the 
type of connection, selection of 
communication technology must be done. If 
there are no calculated benefits, the whole 
process returns back to the basics modelling 
and simulation.  

10. Determination of complete business process 
and operation plan. Decision-making for 
investment for the DT project. 

11. When all processes and connections are 
determined, the digital (virtual) system is 
designed.  

12. Installation of required equipment (sensors, 
flowmeters, ethernet, etc.) and establishing 
two-way connection between physical and 
digital systems.  

13. The first results for the function of created 
DT. Testing and improvement. 

14. Used Business model will lead to creating 
sub-control centres. Those sub-control 
centres are control systems of separate 
companies that are in charge of the supply or 
distribution of utilities, materials or services. 

15. All sub-control centres are connected to the 
main control centre of IS where the 
management of IS can be controlled, 
monitored and take action with decision-
making for all units that consist of the IS or 
EIP. 

In case when IS management is responsible for all 
exchange processes in IS, and no other companies are 
in charge of specific types of distribution or services, 
there is only one control centre.  

Establishing DTs in the industry, but also in IS 
must be based on key factors for approving that kind 
of project. Objective criteria must be set based on the 
DT’s target to ensure it adds business value. Business 
values and outcomes broadly include improved life of 
the asset, process efficiency gains, operational 
optimization or lower operating costs, new digital 
revenues, competitive advantages, improvement and 
customer satisfaction (production units in IS), 
improved safety, and social goodness, like the 
reduction of the carbon footprint (Nath, 2021). 
Moreover, the part of business processes is sending 
alerts. Yellow (lower importance) and red (high 
importance) alert for the probability of existing 
problems in the system. Many monitored parameters 
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are related to the key performance indicators 
determined for the system.  

Senna et al. (2020) determined pillars of energy-
DT. The four pillars are factory driver IO, human-
machine interaction, energy data modelling & 
standardization, and data-driven services. As 
supporting IOT technologies are selected factory 
driver IO, big data & cloud computing, industrial 
internet of things (IIoT), AI, DT modelling and 
simulation, and augmented reality. Major objectives 
for establishing are energy savings, environmental 
footprint reduction, and life cycle cost reduction. 

IS contain production processes as all processes 
of exchange and transformation of materials and 
energy quality; there are storage, recyclability, 
services, etc. Integration of all these additional 
segments in DT could be made with specified DTs of 
storage/warehouses, DT of shipping, DT of recycle 
system, and DT of specific services based on KPIs 
related to those services. 

4 HOW DT CAN IMPROVE IS 

The benefits for the industry gotten by usage of DT 
are many. Reduced time to design and to market (DT 
utilize digital models to simulate product 
performance, potentially reducing or eliminating the 
need for field trials. This is because simulations can 
identify likely failure scenarios, enabling designers to 
make necessary product adjustments before 
production.), Reduced waste during manufacturing 
(determining optimal manufacturing parameters can 
reduce waste and rejects, leading to a greener and 
more advanced production process.), Reduced energy 
consumption (DT enables first-time right production, 
reducing energy consumption per part. It can also 
identify products with suboptimal energy 
performance for replacement.), Reduced raw 
material consumption (operating optimally with 
minimal defects reduces raw material consumption, 
promoting greener operation.), and Improved 
performance monitoring (High-fidelity 3D models 
enhance augmented reality, improving product 
tracking and problem-solving. IoT technologies also 
offer the advantage of remote monitoring.), 
Introduction of numerous virtual sensors (digital 
models in DTs allow engineers to measure physical 
quantities, like temperature and pressure, at locations 
unsuitable for physical sensors.), Maintaining 
optimal operation (two-way communication between 
a DT and its physical twin, like a production machine, 
allows for parameter adjustments in the DT to be 
applied to the physical counterpart, ensuring optimal 

operation.), Reduced cost of maintenance of 
machinery and elimination of downtime  (By 
predicting future states using predictive analytics, a 
DT can anticipate maintenance issues, allowing for 
preventive maintenance and avoiding costly 
shutdowns. Optimizing asset operations also reduces 
maintenance costs.), Improved warehousing/shipping 
of finished products (A DT mirroring warehousing 
and shipping optimizes operations, further reducing 
the facility’s carbon footprint.), Improved 
collaboration between teams (Digital models linked 
by a common digital thread improve factory team 
collaboration by providing a “single source of truth”. 
This minimizes errors and enhances synergies in 
manufacturing optimization.), Improved safety (DT-
controlled augmented reality can train staff in 
hazardous trades safely). 

5 FUTURE DEVELOPMENTS 
NEEDED FOR IS 

DTs are not so well presented to the industrial 
symbiotic systems. There is not enough knowledge in 
management or engineers that are employed in 
production plants.  

There is a lack of big data for training ML models 
in DTs of manufacturing processes. ML models are 
crucial in DTs for autonomous decision-making. 
They need large, representative data sets, which are 
scarce in manufacturing due to its heterogeneous 
nature, unlike uniform consumer industries. Each 
manufacturing method requires unique data, making 
it time-consuming and resource-intensive to build 
large data sets. Challenges include finding, accessing, 
and transforming data from various sources, along 
with issues of poor data quality and translation loss. 

Data security in DTs is crucial in a connected IIoT 
environment to protect intellectual property, 
requiring a focus on privacy, confidentiality, 
transparency, and data ownership, particularly in 
business collaborations. 

The lack of standards, regulations, and 
governance in data handling hinders data-centric 
technologies like DTs. For effective data sharing, 
interoperability standards are vital, especially 
between DTs from different organizations. Issues 
may also occur when DTs at various levels produce 
different data types without correct conversion. 

Reluctance to share strategic knowledge: data is 
now a key asset, not just a business by-product. 
Therefore, companies may keep data confidential to 
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maintain their competitive edge, hindering 
collaboration between organizations’ DTs. 

Observability and controllability issues: a DT’s 
control system requires processes to be observable 
and controllable. Sensors need to capture critical 
quantities effectively, while actuators must execute 
the DT’s commands. Suitable hardware is essential 
for DT success. 

Creating physics-informed ML models enhances 
accuracy by identifying and removing data outliers, 
but their complex multi-physics and multiscale nature 
complicate high-fidelity model development. 

Lifecycle mismatch: products like aircraft and 
cars often last longer than the software used to design, 
simulate, or analyze them. Unsupported software can 
render the virtual twin obsolete before its physical 
version. 

Upfront capital outlay: creating reliable DTs 
requires significant resources affordable only by large 
corporations. Without resource pooling by industry 
bodies, DTs may remain inaccessible to smaller 
businesses for years. 

Conventional engineers must learn new ML and 
AI methods and be assured of their effectiveness to 
adopt DTs in the factory. 

6 CONCLUSIONS 

DTs are built on mathematical models and simulation 
software that use real-time data from sensors or IoT 
devices. The implementation of DT principles in IS 
can optimize resource usage, improve collaboration, 
and create more sustainable production systems. 
However, the lack of system integration with ICT 
tools and the complexity of knowledge sharing within 
symbiosis networks delay its effective 
implementation. To establish DTs in IS, a systematic 
approach is required, involving the specification of 
exchange processes, determination of bottlenecks, 
prioritization of integrated parts, and the creation of 
mathematical models and simulations. The benefits of 
DTs in IS include reduced time to market, reduced 
waste and energy consumption, improved 
performance monitoring, and enhanced collaboration 
between teams. Future developments needed for IS 
include addressing the lack of big data for training 
ML models, ensuring data security, establishing 
standards and regulations, and overcoming 
observability and controllability issues. 
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