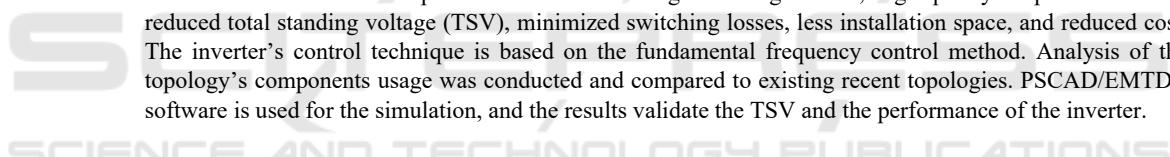


An Asymmetric Minimal Component Count Three-Phase Multilevel Converter Suitable for PV Applications


Samuel Nii Tackie¹, Zubeir Mohamed Nur¹, Ozgur Cemal Ozerdem¹ and William Olurotimi Falana²

¹Department of Electrical and Electronic Engineering, Near East University, Nicosia, Northern Cyprus, Cyprus

²Centre for Science, Technology and Engineering (BILTEM) Researchers, Near East University, Nicosia, Northern Cyprus, Cyprus

Keywords: Asymmetric Multilevel Inverter, Three-Phase Multilevel Inverter, Minimal Component Count, Total Standing Voltage.

Abstract: Multilevel inverters' well-enhanced DC-AC power conditioning feature makes them suitable for medium and high-power applications such as grid-tied PV systems. This paper proposes an asymmetrical three-phase multilevel inverter with minimal component count. The proposed three-phase topology is an improved architecture derived from the conventional H-bridge by incorporating extra switches and a DC source, thus resulting in a minimal component count structure. The system achieves 31-levels of load voltage, and the components employed per phase are 12 switches, 12 driver circuits, and 6 DC input sources. The proffered three-phase topology employs an extension technique in its connection to minimize the DC source components by a factor of 2. Increasing the phase count minimizes the voltage count significantly. The remarkable benefits of the presented inverter are higher voltage levels, high-quality output waveforms, reduced total standing voltage (TSV), minimized switching losses, less installation space, and reduced cost. The inverter's control technique is based on the fundamental frequency control method. Analysis of the topology's components usage was conducted and compared to existing recent topologies. PSCAD/EMTDC software is used for the simulation, and the results validate the TSV and the performance of the inverter.

1 INTRODUCTION

The surge in demand for electrical power and the integration of distributed generation systems into today's power grid have increased the demand for power conditioning devices such as power electronic converters, which are adaptable and efficient. One such converter is the inverter, which transforms DC power into AC power from sources like solar cells and batteries.

Multilevel inverters are of great importance in the power conditioning industry, meeting a lot of demands in contrast to the traditional two-level inverter that has the limitations of the inability to operate at higher voltage levels and substantial switching voltage stress (Islam et al, 2019). The benefits of MLI include minimized harmonic distortions, reduced switching losses, decreased electromagnetic interferences, higher output voltage levels, and high-quality waveforms (Tackie and Babaei, 2019), (Krishnan et al, 2018). MLI strives to generate a load voltage waveform that closely mimics

the sinusoidal waveform, which increases power quality and reduces the stress placed on semiconductor switches. MLI is used in highly efficient renewable energy systems, electric vehicles, HVDC, power transmission systems, and dynamic voltage restorers (Uthirasan et al, 2018), (Sekar et al, 2017), (Hammani et al, 2018), (Seth et al, 2017). The conventional classification of multilevel inverter topologies is grouped into three types defined as Cascaded H-Bridge (CHB), Neutral-point Clamped (NPC), and Flying Capacitor (FC) multilevel inverters (Ye et al, 2014), (Li et al, 2011), (Schettino et al, 2019). However, these topologies still have limitations, considering that the components used can be quite high. For example, the DC sources used in cascaded H-bridge MLI are higher, while NPC MLI requires lots of clamping diodes, FC MLI uses many clamping capacitors. Adding more components makes the system bulkier, more complex, and less reliable, and increases the cost. Studies show that researchers are working to improve these topologies to mitigate these disadvantages and ultimately

enhance the performance of the system (Aalami et al, 2018), (Ali et al, 2024). The cascaded H-bridge MLI is preferred amongst the three classical topologies because they don't require clamping capacitors or diodes to regulate the voltage output, and it does not require complex control.

The input voltage sources can vary depending on the scope of the inverter design and its purpose. There are two categories of CHB MLIs: symmetric and asymmetric. Considering the voltage input sources, if they are all equal in magnitude, it is called a symmetric topology. Topologies with different input sources are called asymmetric. The differences in magnitudes give the asymmetrical topology an advantage in achieving the desired high output voltage level without adding more structural units and voltage sources, as compared to the symmetric configuration. Furthermore, the space required for installing the asymmetric topology is less, and it costs less than the symmetric cascaded topology (Dixon et al, 2010).

Reviewing recent trends in the literature, researchers are focused on advancing the structure of MLI topologies by reducing component count as well as providing simpler control techniques. The authors in (Babaei et al, 2014) presented a cascaded multilevel inverter topology with reduced switches, using 6 unidirectional power switches and 2 input voltage sources to generate 7-level output. The study presented in (Dhananjayulu et al, 2020) describes a three-phase MLI with asymmetric magnitudes, which generates a 19-levels output voltage. It features 13 switches and 3 DC input sources per phase, resulting in a reduction in components and lowering the total harmonic distortions. Another topology that employs bidirectional switches, leads to an increase in IGBTs, and a rise in cost is presented by (Mekhilef and Kadir, 2010). A conventional NPC MLI is presented in (Panda et al, 2018) that is connected to the PV system; however, it requires an additional regulator to ensure the potential difference is preserved along the capacitors. The paper (Phanikumar and Agarwal, 2018) gives a single-phase asymmetric topology, which generates 17-levels. The components employed are 11 switches and 2 sources; the topology has lower conduction losses by utilizing just four switches that conduct in each state. Reference (Memon et al, 2024) details a 17-level asymmetric topology for PV systems that has reduced components and less voltage stress on the system. It has distributed the stress across the switches, and the inverter works with different loads. A switched diode-based multilevel inverter topology with fewer components was developed in (Sathik et al, 2020);

however, the switches experienced high-standing voltages. A crucial part of the system is selecting a control method, as it strongly affects the inverter's performance. The control technique determines the switching strategy, which, depending on the design objectives, can minimize the losses and total harmonics distortions (Hasan et al, 2017).

This paper proffers a new asymmetrical three-phase multilevel inverter topology that minimizes component count while achieving higher output levels. The topology is suitable for medium- and high-power applications, such as photovoltaic applications. The proposed topology generates 31-levels of voltage steps employing 12 switches and 6 DC sources per phase. An extension technique is used for the three-phase topology connection to reduce the DC sources in total, thereby reducing the total component count. The topology generates a line-to-line voltage of 61-levels for the three phases. The FF control method is used, and the simulation is carried out in PSCAD/EMTDC. An analysis of the component count of the proposed topology juxtaposed to existing recent topologies is conducted, highlighting the merits of the inverter. The simulation results for the load output and the total standing voltages of the switches are illustrated. The structure of the paper is outlined as follows: Section 2 features the proposed three-phase asymmetrical multilevel inverter, inverter losses, the total standing voltage, and comparative analysis. In Section 3, the simulation parameters and results are provided. Section 4 is the discussion, and Section 5 is the conclusion.

2 PROPOSED METHOD

2.1 Proposed Setup

The proposed topology is an improved version of the conventional three-phase H-bridge multilevel inverter. The H-bridge structure allows for the generation of both positive and negative voltage levels. Additional H-bridge units, switches, and DC sources are incorporated into the conventional H-bridge structure to derive the presented topology. The proposed asymmetric minimal component count three-phase H-bridge multilevel inverter entails a per-phase component of 12 power switches, four of which are bidirectional, and 6 input voltage sources. The proposed three-phase MLI consists of 36 power switches, twelve of which are bidirectional, and 18 DC sources. Bidirectional switches can block voltage in both polarities and are constructed using two IGBTs and two antiparallel diodes, while unidirectional

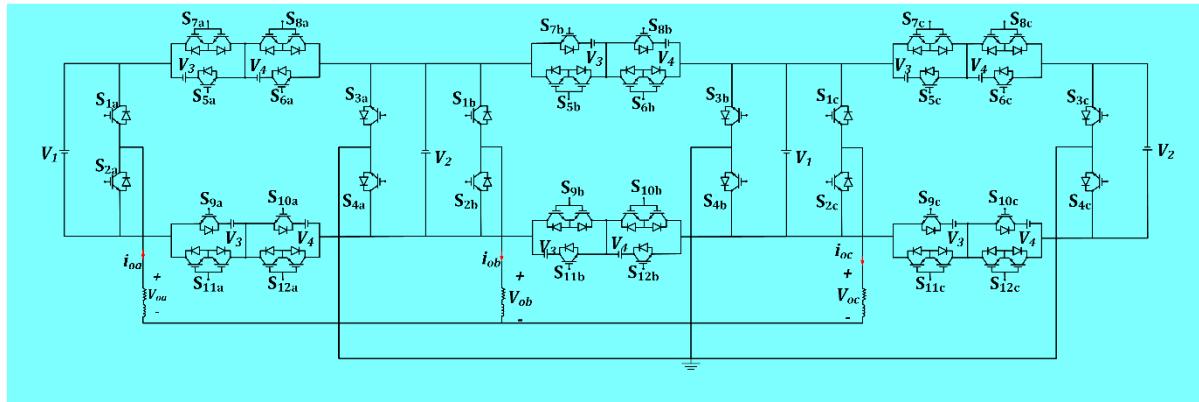


Figure 1. The proposed three-phase multilevel inverter.

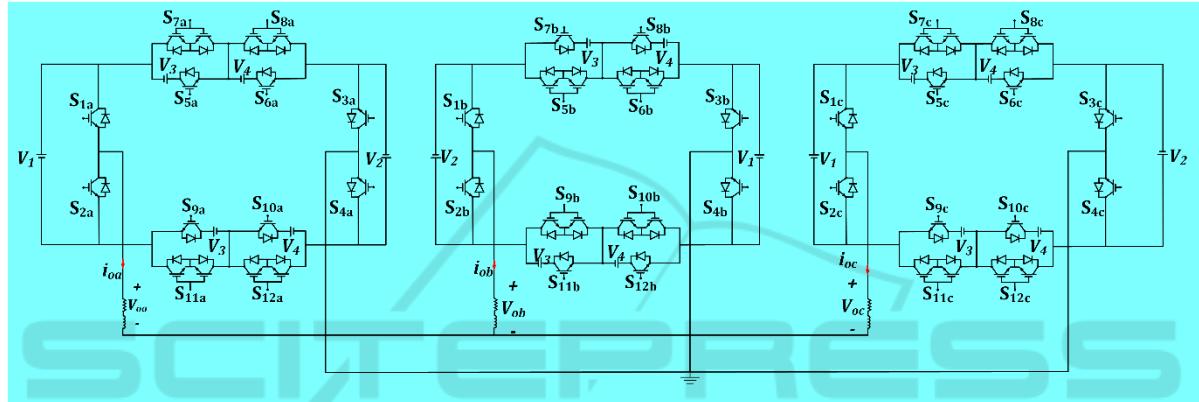


Figure 2. The proposed three-phase mli without extension technique.

switch blocks the voltage in one direction and are simply constructed with one IGBT and diode connected in parallel. The load of the system is the resistance-inductance (RL) load. Figure 1 illustrates the proposed three-phase multilevel inverter.

The structure of the proposed topology per phase, compared to the conventional H-bridge inverter, includes several additions. Two structural units are added to the upper and bottom sections of the inverter, with two sources in each unit. The top unit has two bidirectional switches, S_{7a} and S_{8a} , and the two DC sources are V_3 and V_4 . In the bottom unit, the bidirectional switches are S_{11a} and S_{12a} . The two structural units allow for the generation of positive and negative levels; the bottom structural unit generates positive levels, and the top structural unit produces negative levels for phase A. The same is replicated for the remaining phases, i.e., phase B and phase C, accordingly. The switch labeling changes to S_{7b} , S_{8b} , S_{11b} , and S_{12b} for phase B, while S_{7c} , S_{8c} , S_{11c} , and S_{12c} relate to phase C. However, the DC voltage sources V_3 and V_4 remain the same for all phases, with identical magnitudes.

In addition to the two structural units, there is an extra voltage source on the right side of each phase. The extension technique of the configuration reduces the DC source for each phase; instead of separate DC sources, each phase shares a common DC source with the adjacent phase. Phase B shares the DC source V_2 with phase A on its left side and the V_1 source with phase C on its right side. An extension technique is used in the configuration of the proposed three-phase multilevel inverter, which minimizes the component count of the DC sources; it reduces the total DC sources by a factor of 2.

The levels and component count of the three-phase proposed topology are expressed in equation (1), and Figure 2 shows the same proposed topology without the extension technique, i.e., individual phase configuration. An asymmetric configuration is utilized to achieve higher output voltage levels. This characteristic makes the inverter suitable for PV applications because of the varying magnitudes of DC sources generated by PV systems. If symmetric topology were used, only nine voltage levels would be generated. The proposed topology employs DC

sources of different magnitudes, arranged in series to raise the levels and generate a high-quality output waveform that closely mimics a sinusoidal waveform. The magnitudes of the DC sources and the maximum output voltage of the topology are given in equation (2). The proposed topology generates a maximum of 31-levels of output voltage when using asymmetric DC sources.

$$\begin{aligned}
 N_{Level} &= 31 \\
 N_{Sources} &= 16 \\
 N_{Switches} &= 36 \\
 N_{Driver} &= 36 \\
 N_{IGBT} &= 48
 \end{aligned} \tag{1}$$

$$\begin{aligned}
 V_1 &= 1V_{dc,in} \\
 V_2 &= 2V_{dc,in} \\
 V_3 = V_5 &= 4V_{dc,in} \\
 V_4 = V_6 &= 8V_{dc,in} \\
 V_{o,max} &= 15V_{dc,in}
 \end{aligned} \tag{2}$$

Table 1 details the switching states for the 31-levels of phase A of the topology. The switches that are switched on depend on which voltage sources are activated to generate a specific voltage level. As shown in Table 1, to generate a positive 15V_{dc}, the voltage sources V_1 , V_2 , V_3 , and V_4 are activated, and the switches turned on are S_{1a} , S_{3a} , S_{9a} , and S_{10a} . For 14 positive level sources, V_2 , V_3 , and V_4 are activated, and the switch path to follow is S_{2a} , S_{3a} , S_{9a} , and S_{10a} . Negative 5 voltage level -5V_{dc}, the switches S_{2a} , S_{3a} , S_{5a} , S_{8a} . Figure 3 shows selected active switches and current paths considering the switching states of phase A. For example, in Figure 3a, to generate 6V_{dc}, the closed loop of the load follows a path that takes the switch pattern passing switches S_{2a} , S_{3a} , S_{9a} , and S_{12a} . Each conducting switch displays a certain voltage level, and when one state is conducting, the other states are off. However, there's a situation to be avoided; some switches cannot be turned on simultaneously, as they will cause a short circuit of the voltage sources.

For example, switches (S_{1a}, S_{2a}) , (S_{3a}, S_{4a}) , (S_{5a}, S_{7a}) , (S_{6a}, S_{8a}) , (S_{9a}, S_{11a}) , and (S_{10a}, S_{12a}) for phase A are also similar for phase B and phase C switches. For a 0V output in phase A, there are two states: switches S_{2a} , S_{4a} , S_{11a} , S_{12a} , or S_{1a} , S_{3a} , S_{5a} , and S_{6a} are switched on. The switching states for phase A and phase C are similar. In phase C, to generate 15V_{dc}, switches S_{1c} , S_{3c} , S_{9c} , and S_{10c} are gated on, just like in phase A. However, in Phase B, switches S_{2b} , S_{4b} , S_{5b} , and S_{6b}

Table 1. Switching pattern for phase A.

Level	Switches ON	Input Sources	V _{Output}
1	$S_{1a}, S_{3a}, S_{9a}, S_{10a}$	$V_1+V_2+V_5+V_6$	15V _{dc,in}
2	$S_{2a}, S_{3a}, S_{9a}, S_{10a}$	$V_2+V_5+V_6$	14V _{dc,in}
3	$S_{1a}, S_{4a}, S_{9a}, S_{10a}$	$V_1+V_5+V_6$	13V _{dc,in}
4	$S_{2a}, S_{4a}, S_{9a}, S_{10a}$	V_5+V_6	12V _{dc,in}
5	$S_{1a}, S_{3a}, S_{10a}, S_{11a}$	$V_1+V_2+V_6$	11V _{dc,in}
6	$S_{2a}, S_{3a}, S_{10a}, S_{11a}$	V_2+V_6	10V _{dc,in}
7	$S_{1a}, S_{4a}, S_{10a}, S_{11a}$	V_1+V_6	9V _{dc,in}
8	$S_{2a}, S_{4a}, S_{10a}, S_{11a}$	V_6	8V _{dc,in}
9	$S_{1a}, S_{3a}, S_{9a}, S_{12a}$	$V_1+V_2+V_5$	7V _{dc,in}
10	$S_{2a}, S_{3a}, S_{9a}, S_{12a}$	V_2+V_5	6V _{dc,in}
11	$S_{1a}, S_{4a}, S_{9a}, S_{12a}$	V_1+V_5	5V _{dc,in}
12	$S_{2a}, S_{4a}, S_{9a}, S_{12a}$	V_5	4V _{dc,in}
13	$S_{1a}, S_{3a}, S_{11a}, S_{12a}$	V_1+V_2	3V _{dc,in}
14	$S_{2a}, S_{3a}, S_{11a}, S_{12a}$	V_2	2V _{dc,in}
15	$S_{1a}, S_{4a}, S_{11a}, S_{12a}$	V_1	1V _{dc,in}
16	$S_{2a}, S_{4a}, S_{11a}, S_{12a}$	-	0
16	$S_{1a}, S_{3a}, S_{7a}, S_{8a}$	-	0
17	$S_{2a}, S_{3a}, S_{7a}, S_{8a}$	$-V_1$	-1V _{dc,in}
18	$S_{1a}, S_{4a}, S_{7a}, S_{8a}$	$-V_2$	-2V _{dc,in}
19	$S_{2a}, S_{4a}, S_{7a}, S_{8a}$	$-(V_1+V_2)$	-3V _{dc,in}
20	$S_{1a}, S_{3a}, S_{5a}, S_{8a}$	$-V_3$	-4V _{dc,in}
21	$S_{2a}, S_{3a}, S_{5a}, S_{8a}$	$-(V_1+V_3)$	-5V _{dc,in}
22	$S_{1a}, S_{4a}, S_{5a}, S_{8a}$	$-(V_2+V_3)$	-6V _{dc,in}
23	$S_{2a}, S_{4a}, S_{5a}, S_{8a}$	$-(V_1+V_2+V_3)$	-7V _{dc,in}
24	$S_{1a}, S_{3a}, S_{6a}, S_{7a}$	$-V_4$	-8V _{dc,in}
25	$S_{2a}, S_{3a}, S_{6a}, S_{7a}$	$-(V_1+V_4)$	-9V _{dc,in}
26	$S_{1a}, S_{4a}, S_{6a}, S_{7a}$	$-(V_2+V_4)$	-10V _{dc,in}
27	$S_{2a}, S_{4a}, S_{6a}, S_{5a}$	$-(V_1+V_2+V_4)$	-11V _{dc,in}
28	$S_{1a}, S_{3a}, S_{5a}, S_{6a}$	$-(V_3+V_4)$	-12V _{dc,in}
29	$S_{2a}, S_{3a}, S_{5a}, S_{6a}$	$-(V_1+V_3+V_4)$	-13V _{dc,in}
30	$S_{1a}, S_{4a}, S_{5a}, S_{6a}$	$-(V_2+V_3+V_4)$	-14V _{dc,in}
31	$S_{2a}, S_{4a}, S_{5a}, S_{6a}$	$-(V_1+V_2+V_3+V_4)$	-15V _{dc,in}

are gated on. To generate a negative 5 level (-5V_{dc}) in phase B, the switches S_{2b} , S_{3b} , S_{9b} , and S_{12b} are turned on.

The load voltage for phase A is denoted as V_a , for phase B as V_b , and for phase C as V_c . The line-to-line voltages of the three-phase system are denoted by V_{ab} , V_{bc} , and V_{ca} . The line-to-line voltage generates a maximum of 61-level of output voltage. The equation (3) expresses the line voltages as follows:

$$\begin{aligned}
 V_{ab} &= V_{an} - V_{bn} \\
 V_{bc} &= V_{bn} - V_{cn} \\
 V_{ca} &= V_{cn} - V_{an}
 \end{aligned} \tag{3}$$

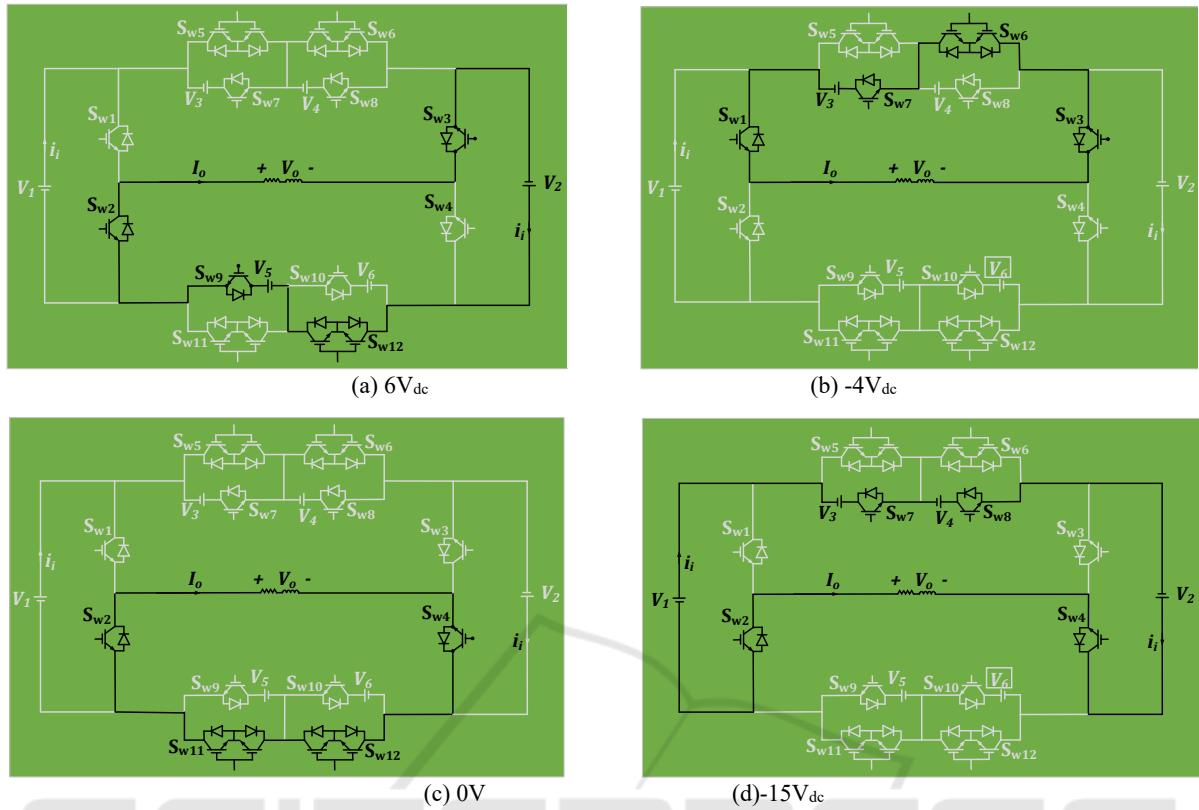


Figure 3. Switching states for the proposed topology phase A.

2.2 Standing Voltage

A key factor in determining the overall cost of an inverter is the blocking voltage of the switches and the diversity of the DC sources. A switch with low power ratings is preferred because it reduces the voltage stress on the switches and minimizes power losses. The peak voltage that a semiconductor switch can block in its off state is referred to as the blocking voltage. The sum of all the individual blocking voltages of the switches is the blocking voltage of the inverter system. The proposed asymmetric three-phase multilevel inverter uses 12 power switches per phase: 8 unidirectional switches and 4 bidirectional switches, which are expressed in equation (4). The blocking voltage of the total switches in the three-phase inverter is three times the sum of the blocking voltage for one phase, and it is expressed in equation (6).

$$\begin{aligned}
 V_{S1a} &= V_{S2a} = V_{dc,in} \\
 V_{S3a} &= V_{S4a} = 2V_{dc,in} \\
 V_{S5a} &= V_{S7a} = V_{S9a} = V_{S11a} = 4V_{dc,in} \\
 V_{S6a} &= V_{S8a} = V_{S10a} = V_{S12a} = 8V_{dc,in}
 \end{aligned} \quad (4)$$

$$V_{1\phi} = 2(3V_{dc,in}) + 4(12V_{dc,in}) = 54V_{dc,in} \quad (5)$$

$$V_{3\phi} = 3(54V_{dc,in}) = 162V_{dc,in} \quad (6)$$

2.3 Power Losses

Inverter power losses are largely attributable to two losses in the switches: switching losses and conduction losses. Blocking voltage losses also occur, but they are negligible and are not considered.

Switching losses occur in both states, and the summation of the losses during the on-state and the losses during the off-state gives the total switching losses. The total switching loss P_{sw} is given in equation (7). E_{on} is the turn-on losses, E_{off} is the turn-off losses, V_{sw} is the off-state voltage, I is the current prior to turning on, and I' is after it is on.

$$\begin{cases}
 E_{on} = \int_0^{t_{on}} v(t)i(t)dt \\
 E_{off} = \int_0^{t_{on}} \left[\left(\frac{I'}{t_{on}} t \right) \left(-\frac{V_{sw}}{t_{on}} (t - t_{on}) \right) \right] dt \\
 E_{on} = \frac{1}{6} V_{sw} I' t_{on}
 \end{cases} \quad (7)$$

$$\begin{cases} E_{off} = \int_0^{t_{off}} v(t)i(t)dt = \frac{1}{6}V_{sw}It_{on} \\ E_{off} = \int_0^{t_{off}} \left[\left(\frac{V_{sw}}{t_{off}}t \right) \left(-\frac{I}{t_{off}}(t-t_{off}) \right) \right] dt \\ E_{on} = \frac{1}{6}V_{sw}It_{off} \end{cases} \quad (8)$$

$$P_{SW} = f_s \sum_{k=1}^{N_{switch}} \left[\sum_{i=1}^{N_{on}} E_{on} + \sum_{i=1}^{N_{off}} E_{off} \right] \quad (9)$$

Conduction losses occur during the on-state. The losses of the IGBT and the diode of the switch give the conduction losses, and their sum is the total conduction losses. The proposed topology consists of bidirectional switches, which equate to more IGBTs and diodes. $P_{C,T}$ is the losses for the transistor IGBT, and $P_{C,D}$ is the diode losses. R_T , V_T denotes the resistance and the forward voltage drop for the transistor, while R_D , V_T is for the diode resistance and voltage drop. The total conduction loss is noted as P_C . The total power losses of the inverter, denoted by P_C and the efficiency η are given in the equations below:

$$\begin{cases} P_{C,T}(t) = [V_T + R_T t^\beta(t)]i(t) \\ P_{C,T}(t) = \frac{1}{2\pi} \int_0^{2\pi} n_T [V_T + R_T i^\beta(t)i(t)] d(\omega t) \end{cases} \quad (10)$$

$$\begin{cases} P_{C,D}(t) = [V_D + R_D i(t)]i(t) \\ P_{C,D} = \frac{1}{2\pi} \int_0^{2\pi} n_D(t) [V_D + R_D i(t)i(t)] d(\omega t) \end{cases} \quad (11)$$

$$P_C = P_{C,T} + P_{C,D} \quad (12)$$

The total loss of the inverter is given by equation (13), which sums up the switching losses and conduction losses. The Inverter's efficiency is calculated as the ratio of power output to power input, as expressed in equation (14).

$$P_{Losses} = P_{SW} + P_C \quad (13)$$

$$\eta = \frac{P_{out}}{P_{input}} \quad (14)$$

2.4 Comparison Study

A comparative analysis of the presented topology with other topologies is detailed in this section. The analysis focuses on the component count of the proposed three-phase circuit topology. The

topologies all have 31-step voltage levels. The focus is mainly on the IGBTs, diodes, DC sources, and driver circuits. Topologies with more components tend to have higher costs, require more space, and have less efficiency. The proposed topology has both unidirectional and bidirectional switches; it has 12 power switches. The presented topology uses 4 bidirectional switches, which means it has more IGBTs and diodes than the drivers, as a common emitter driver is used. A total of 12 drivers are utilized, 16 IGBTs, and 16 diodes. Table 2 has a component comparison of the proposed topology per phase to other existing topologies. The proposed inverter has 6 DC sources, the second highest among all topologies, only topology (Kubendran et al, 2024) and CHB conventional topologies having more. However, the proposed topology has the second-fewest total components behind only topology (Tackie et al, 2023). A bar chart comparing the topologies in Table 2 is illustrated in Figure 4. The proposed inverter is among the topologies with minimal component counts.

Table 2: Comparative topologies analysis of single-phase.

Topology	[P]	[22]	[23]	[24]	[25]	[26]
Voltage Level	31	31	31	31	31	31
DC Source	6	15	2	2	4	4
Switches IGBT	16	18	16	18	16	12
No. Driver	12	18	16	18	16	12
Diode	16	32	18	20	16	12
Clamped Diode	0	0	0	0	0	0
Capacitor	0	0	4	4	0	0
Clamped Capacitor	0	0	0	0	0	0
Total Component	50	83	56	62	52	40

Note: [22]- (Kubendran et al, 2024), [23] -(Roy et al, 2019), [24]- (Ahmad et al, 2020), [25] -(Chinthamalla, 2017), [26] -(Tackie et al, 2023)

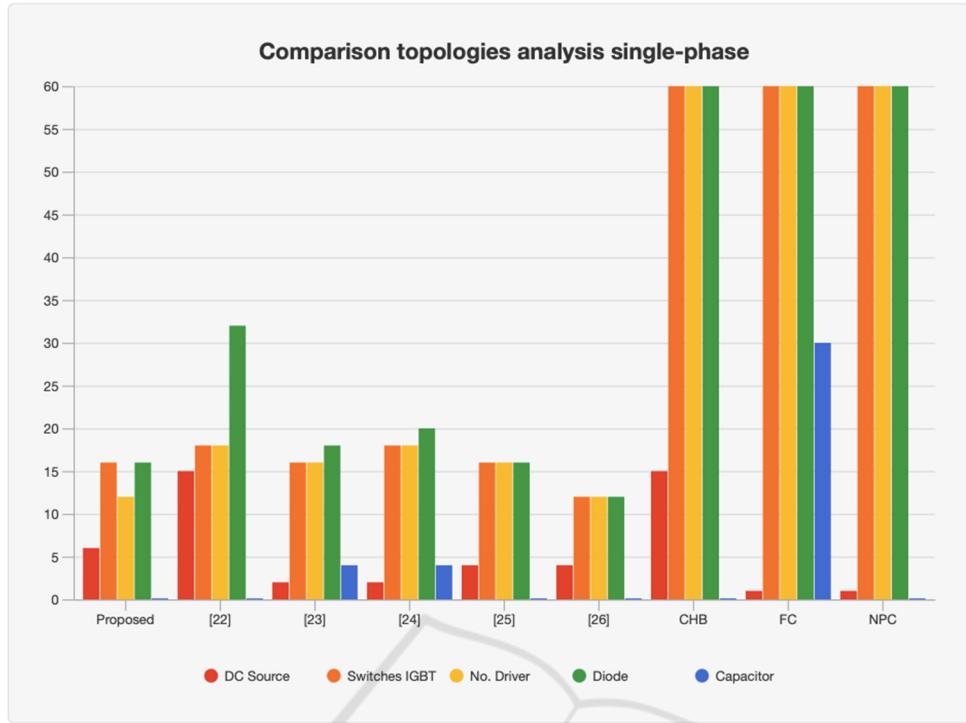


Figure 4. Comparative analysis per-phase

It's apparent that the proposed topology achieves an optimal cost-benefit when the component count is compared to the output voltage level generated. It utilizes low-power-rated switches, contributing to a more efficient system. The bar chart also includes the conventional multilevel inverters, which have the highest component counts. The proposed topology has 16 diodes per phase, the same as the topology (Chinthamalla, 2017), which is lower than the topologies (Kubendran et al, 2024), (Roy et al, 2019), (Ahmad et al, 2020). The number of driver circuits in the proposed topology is the lowest, along with the topology (Tackie et al, 2023).

3 RESULTS

The simulation is conducted using PSCAD. The presented asymmetrical three-phase multilevel inverter has a resistance inductance (RL) load. The components include 12 switches, of which 4 are bidirectional switches and 6 input sources per phase. Simulation is provided to validate the effectiveness of the inverter. The fundamental frequency control method is used for the switching control technique, offering some benefits such as lower switching losses, simpler phase control, and phase shifts of 120 degrees, in contrast to other control techniques. Phase

B is shifted by 120 degrees, and phase C is 240 degrees phase shifted. Table 3 outlines the parameters that are used for the simulation, including the asymmetric DC sources. The resistive-inductive load parameters are 50Ω for resistance and $0.055H$ for inductance.

A modulation index of 1 is selected, and the modulation index has effects on the results, as it determines the peak of the voltage in comparison with the reference signal, and affects the harmonic distortion. Higher modulation means higher output voltage. It is selected as '1'; more than that will cause overmodulation and distortions in output waveforms.

Table 3. Simulation configurations.

Variables	Magnitude
Output Frequency	50Hz
Output Resistance	50Ω
Modulation Index	1
Output Inductance	$0.055H$
Switching Frequency	5kHz
Input DC Sources	$V_1 = 16V, V_2 = 32V, V_3 = 64V, V_4 = 128V, V_5 = 64V, V_6 = 128V$

A switching frequency of 5kHz is selected; while a higher frequency equates to good output waveforms, it also leads to more losses; the aim is to balance it, as our objective is better power quality. For the asymmetric voltage sources, the initial source is chosen as $V_1 = 16V$. The incremented voltage step is 16V, so V_2 is 32V, which is double V_1 . V_3 and are 64V; they have the same magnitudes to generate the same steps of positive and negative levels, similar to V_4 and V_6 , which have 128V. The peak output phase voltage consists of 15 distinct levels of 16V, resulting in a peak output phase voltage of 240V. The phase voltages V_a , V_b , and V_c feature 31-stepped voltage levels with a peak value of 240V.

Figure 5 illustrates the stepped load output voltage waveform, along with the reference signal for phase A, 'Refa'. The output voltage aligns with the reference signal and generates a high-quality waveform. Figure 6 is the phase A output current, with a peak of 4.4A. Figure 7 presents the voltage waveform result and the reference signal for phase B, V_b , and Refb, while Figure 8 displays the phase current I_b for phase B. The results show a 120-degree phase shift compared to the phase A load outputs. Phase B output voltage also reaches a peak value of 240V. Phase C results waveforms are shifted by 240 degrees and are illustrated in Figures 9 and 10. The line-to-line output voltage generated 61-levels, the results for the line voltages; the line voltage between phase A and phase B is V_{ab} . V_{bc} is the line voltage between phase B and phase C, and V_{ca} is the line voltage from phase C to phase A. The result is illustrated in Figure 11. The waveforms have phase differences. V_{ab} is represented by the blue waveform, V_{bc} by the green waveform, and V_{ca} by the red waveform. The peak value of the line-to-line voltage waveforms is 415V.

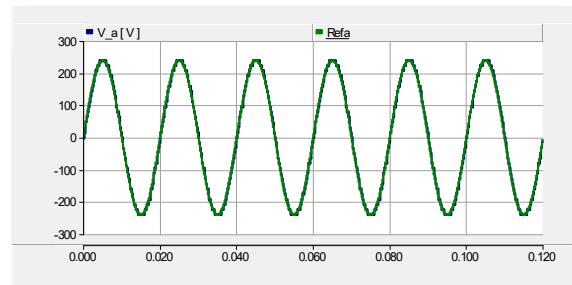


Figure 5. Phase A load voltage waveform.

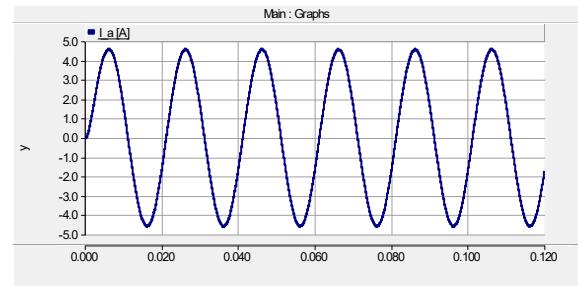


Figure 6. Phase A current waveform.

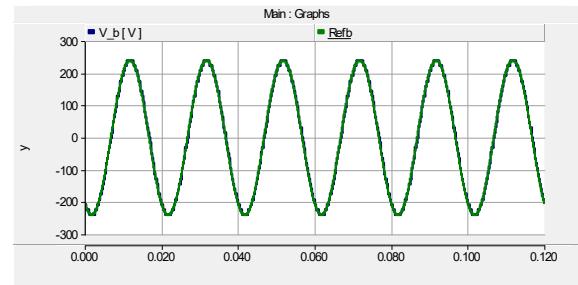


Figure 7. Phase B load voltage waveform.

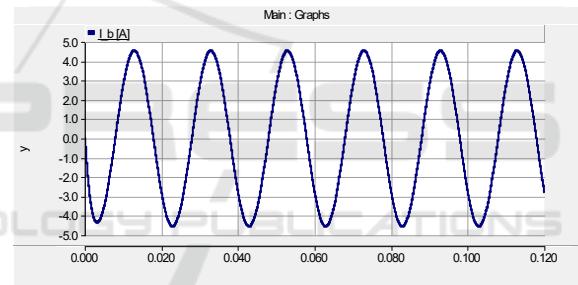


Figure 8. Phase B current waveform.

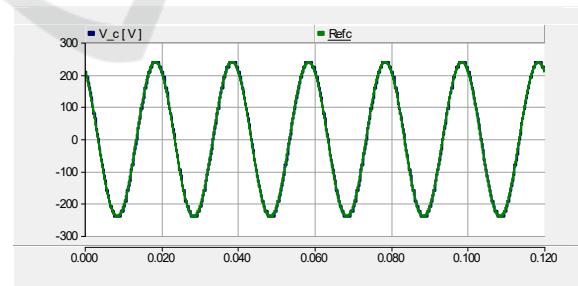


Figure 9. Phase C load voltage waveform.

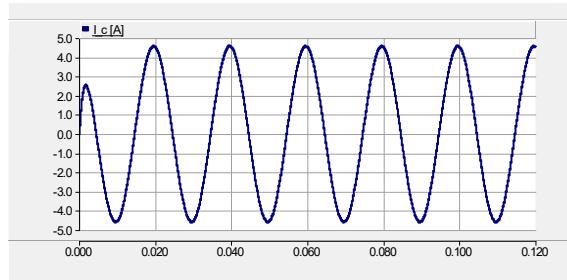
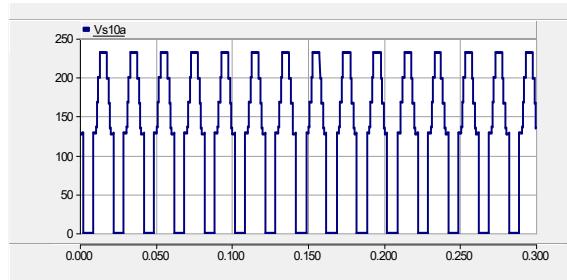
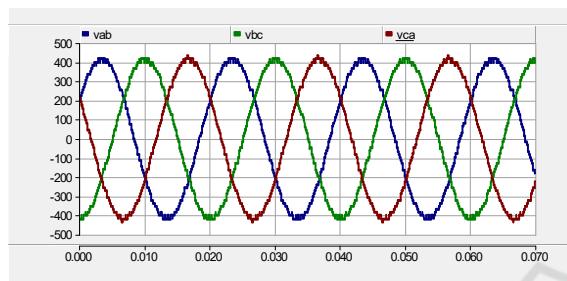
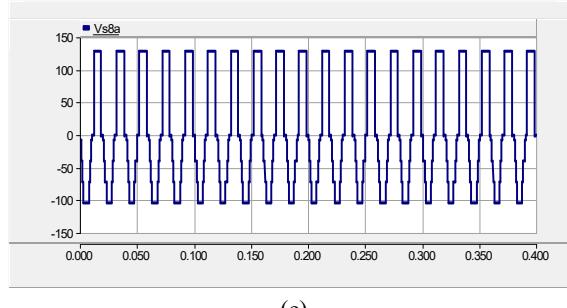
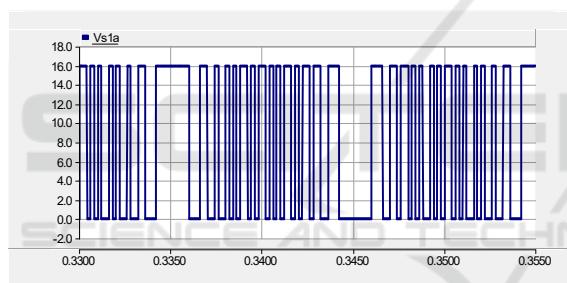
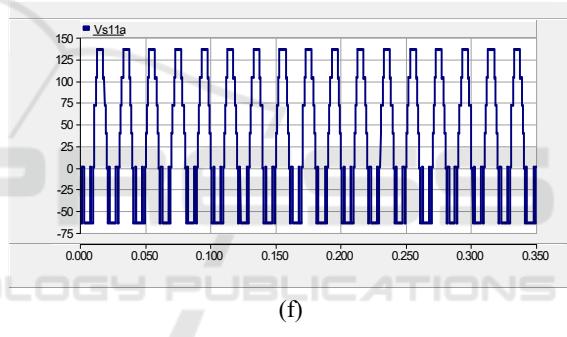
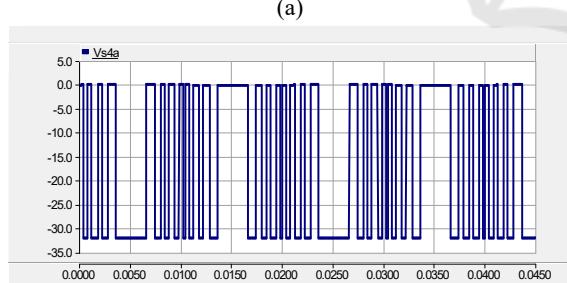



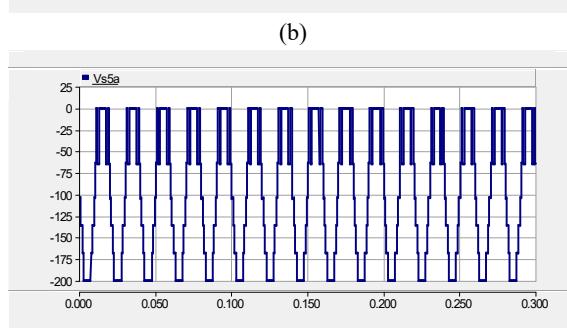
Figure 10. Phase C current waveform.

(d)


Figure 11. Line-to-line voltage waveforms.


(e)


(a)

(f)

(b)

 Figure 12. Standing Voltages of switches in phase A; (a) standing voltage of switch S_{1a} ; (b) TSV of switch S_{4a} ; (c) TSV of switch S_{5a} ; (d) TSV of switch S_{8a} ; (e) TSV of switch S_{10a} ; (f) TSV of switch S_{11a} .

(c)

The results of the standing voltage of phase A are depicted in Figure 12. Switches S_{1a} and S_{2a} have similar blocking voltage, and they are dependent on the V_1 voltage source. The waveform results of S_{1a} are illustrated as having a blocking voltage of 16V. Switches S_{3a} and S_{4a} have the same blocking voltage of 32V. The bidirectional switches S_{7a} , S_{8a} , S_{11a} , and S_{12a} can block voltage in both polarities, which is confirmed by the waveform results, i.e., the switches blocking voltages having positive and negative magnitudes. Switches S_{5a} , S_{7a} , S_{9a} and S_{11a} have standing voltage of 62V. Switches S_{6a} , S_{8a} , S_{10a} , and S_{12a} have standing voltage of 128V. The three-phase topology total standing voltage, TSV, will be 2592V.

4 DISCUSSIONS

The proposed three-phase multilevel inverter was able to generate 31-voltage levels: 15 positive, 15 negative, and 0V. The line-to-line voltage V_{ab} , V_{bc} , and V_{ca} generated 61-steps of output voltage. The TSV of the switches vindicates the standing voltage calculation of the switches, and the inverter's TSV is not a high number, hence reducing the losses. The total standing voltage, TSV, for the whole inverter is 2592V.

The topology was compared with other existing topologies that generate the same output voltage level to determine whether the component counts utilized are minimal. Conventional multilevel inverters have a higher component count, which results in higher losses, space, and cost. The proposed three-phase MLI topology with asymmetric DC sources overcomes this limitation. The asymmetric DC sources raise the voltage levels. Comparison with recent topologies was conducted, and the findings show that the proposed topology is among those with the lowest component count; it achieves an optimal cost-benefit when the component count is compared to the output voltage level generated. The DC source count of the three-phase topology is 16 sources, a higher number compared to recent topologies, and can be improved further. However, their voltage magnitude is less while achieving the desired voltage levels, which allows the use of switches with lower power ratings, causing a decrease in voltage stress on the switches and lower maintenance costs.

The contribution of this study lies in the proposed three-phase multilevel inverter, which adds further advancement to the rising field of renewable energy technology, an inverter that generates higher voltage levels, more power capacity with better power quality, reduced losses, and is cost-effective, making it suitable for photovoltaic applications. Further research directions include improving the circuit topology to have a very minimized component count and raising the voltage levels generated at the same time, as well as providing experimental results and findings.

5 CONCLUSIONS

This paper presents an asymmetrical three-phase multilevel inverter with minimal component count that is suitable for PV applications. The objective is to reduce the component utilized, while higher voltage levels are generated, producing higher-

quality output waveforms, and reducing switching losses and cost. The topology is an improved version of the conventional H-bridge MLI. The topology utilized fewer components; 12 power switches and 6 DC sources per phase and a total of 36 power switches and 16 DC sources. By using an extension technique, the number of DC sources was reduced from eighteen to sixteen DC sources. The asymmetric DC sources yield the advantage of raising the voltage levels without adding more components. Comparison with other existing topologies and conventional inverters is analyzed, and the proposed topology is among those requiring fewer components: IGBTs, diodes, driver circuit, and DC source. Additionally, the blocking voltage of the proposed topology is less compared to existing topologies, generating a 31-level inverter with a peak phase voltage level of 240V, and a line voltage of 61 levels with a peak value of 415V. The fundamental frequency control method is used, which provides reduced switching losses and simplifies the control of the three-phase switching gates.

Simulation results of the phase load voltage waveform of 31-steps are illustrated along with the reference voltage waveform in the same graph. As well as the phase current waveforms, the line-to-line voltage waveforms, and the total standing voltage of the switches are illustrated. PSCAD software was used to validate and investigate the simulation performance, with the results verifying the TSV calculation and overall performance of the inverter.

REFERENCES

Ahmad, A., Anas, M., Sarwar, A., Zaid, M., Tariq, M., Ahmad, J., & Beig, A. R. (2020). Realization of a Generalized Switched-Capacitor Multilevel Inverter Topology with Less Switch Requirement. *Energies*, 13(7), 1556. <https://doi.org/10.3390/en13071556>

Ali, M., Faiz, M. T., Khan, M. M., Ng, V., & Loo, K.-H. (2024). A New Three-Phase Hybrid Multilevel Topology with Hybrid Modulation and Control Strategy for Front-End Converter Applications. *Mathematics*, 12(13), 2116. <https://doi.org/10.3390/math12132116>

Ali, M., Natarajan Prabaharan, Ibrahim, S. A. A., K. VijayKumar, & Frede Blaabjerg. (2020). A new generalized switched diode multilevel inverter topology with reduced switch count and voltage on switches. *International Journal of Circuit Theory and Applications*, 48(4), 619–637. <https://doi.org/10.1002/cta.2732>

Chamarthi Phanikumar, & Agarwal, V. (2018). An asymmetrical multilevel inverter with minimum number of switches for 1- φ grid-connected

applications. *2020 International Conference on Power, Instrumentation, Control and Computing (PICC)*, 1–6. <https://doi.org/10.1109/picc.2018.8384791>

Dhananjayulu, C., Kaliannan, P., Padmanaban, S., Maroti, P. K., & Holm-Nielsen, J. B. (2020). A New Three-Phase Multi-Level Asymmetrical Inverter With Optimum Hardware Components. *IEEE Access*, 8, 212515–212528. <https://doi.org/10.1109/access.2020.3039831>

Dixon, J., Pereda, J., Castillo, C., & Bosch, S. (2010). Asymmetrical Multilevel Inverter for Traction Drives Using Only One DC Supply. *IEEE Transactions on Vehicular Technology*, 59(8), 3736–3743. <https://doi.org/10.1109/TVT.2010.2057268>

Ebrahim Babaei, Somayeh Alilu, & Laali, S. (2014). A New General Topology for Cascaded Multilevel Inverters With Reduced Number of Components Based on Developed H-Bridge. *IEEE Transactions on Industrial Electronics*, 61(8), 3932–3939. <https://doi.org/10.1109/tie.2013.2286561>

Hasan, N. S., Rosmin, N., Osman, Dygku. A. Awg., & Musta'amal@Jamal, A. H. (2017). Reviews on multilevel converter and modulation techniques. *Renewable and Sustainable Energy Reviews*, 80, 163–174. <https://doi.org/10.1016/j.rser.2017.05.163>

Krishnan, R. R., Borghate, V. B., Shahane, R. T., Santosh Kumar Maddugari, & Sidharth Sabyasachi. (2018). A three phase cascaded multilevel inverter operated with switching frequency optimal technique. *2020 International Conference on Power, Instrumentation, Control and Computing (PICC)*, 1–5. <https://doi.org/10.1109/picc.2018.8384772>

Li, J., Bhattacharya, S., & Huang, A. Q. (2011). *A New Nine-Level Active NPC (ANPC) Converter for Grid Connection of Large Wind Turbines for Distributed Generation*. 26(3), 961–972. <https://doi.org/10.1109/tpel.2010.2093154>

M. Hammami, M. Vujacic, A. Viatkin, & Grandi, G. (2018). *Analysis of a flexible single-phase multilevel inverter topology for photovoltaic applications*. 1–6. <https://doi.org/10.1109/irec.2018.8362533>

Mekhilef, S., & Kadir, M. N. A. (2010). Voltage Control of Three-Stage Hybrid Multilevel Inverter Using Vector Transformation. *IEEE Transactions on Power Electronics*, 25(10), 2599–2606. <https://doi.org/10.1109/tpel.2010.2051040>

Memon, R., Mahar, M. A., Larik, A. S., & Ali. (2024). An asymmetrical multilevel inverter with minimum voltage stress and fewer components for photovoltaic renewable-energy system. *Clean Energy*, 8(1), 1–22. <https://doi.org/10.1093/ce/zkad073>

Mohammadamin Aalami, Ebrahim Babaei, & Mehran Sabahi. (2018). *Design of a new combined cascaded multilevel inverter based on developed H-bridge with reduced number of IGBTs and DC voltage sources*. 1–6. <https://doi.org/10.1109/cpe.2018.8372571>

Panda, K. P., Anand, A., Bana, P. R., & Panda, G. (2018). Novel PWM Control with Modified PSO-MPPT Algorithm for Reduced Switch MLI Based Standalone PV System. *International Journal of Emerging Electric Power Systems*, 19(5). <https://doi.org/10.1515/ijeps-2018-0023>

R. Uthirasamy, Ragupathy, U. S., C. Megha, & R. Mithra. (2014). *Design and analysis of three phase modified cascaded multilevel inverter for PV applications*. 1–6. <https://doi.org/10.1109/icgcce.2014.6922441>

Rabiul Islam, Md., Mahfuz-Ur-Rahman, A. M., Muttaqi, K. M., & Sutanto, D. (2019). State-of-the-Art of the Medium-Voltage Power Converter Technologies for Grid Integration of Solar Photovoltaic Power Plants. *IEEE Transactions on Energy Conversion*, 34(1), 372–384. <https://doi.org/10.1109/tec.2018.2878885>

Roy, T., Sadhu, P. K., & Dasgupta, A. (2019). Cross-Switched Multilevel Inverter Using Novel Switched Capacitor Converters. *IEEE Transactions on Industrial Electronics*, 66(11), 8521–8532. <https://doi.org/10.1109/tie.2018.2889632>

S.N. Tackie, N.M. Komi, & O.C. Ozerdem. (2023). 31-Level Single-Phase Cascaded Inverter with Minimal Component Count. *International Journal on Technical and Physical Problems of Engineering*, 15(1), 271–282.

Schettino, G., Viola, F., Di, O., Livreri, P., & Miceli, R. (2019). Experimental Validation of a Novel Method for Harmonic Mitigation for a Three-Phase Five-Level Cascaded H-Bridges Inverter. *IEEE Transactions on Industry Applications*, 55(6), 6089–6101. <https://doi.org/10.1109/tia.2019.2933522>

Sekar, R., Suresh, D. S., & Naganagouda, H. (2017, December 1). *A review on power electronic converters suitable for renewable energy sources*. IEEE Xplore. <https://doi.org/10.1109/ICEECCOT.2017.8284556>

Seth, N., Goel, V., & Kulkami, R. D. (2017). Three phase innovative multilevel inverter topologies for research and industrial applications: A review. *International Conference on Nascent Technologies in Engineering*. <https://doi.org/10.1109/icnte.2017.7947934>

Sreenu Chinthamalla. (2017). Performance Analysis of 31 Level Cascaded Multi Level Inverter. *International Journal & Magazine of Engineering, Technology, Management and Research*, 4(12, 2017), 111–117.

Tackie, S. N., & Babaei, E. (2020). Modified Topology for Three-Phase Multilevel Inverters Based on a Developed H-Bridge Inverter. *Electronics*, 9(11), 1848. <https://doi.org/10.3390/electronics9111848>

V. Kùbendran, Shuaib, Y. M., S. Vidyasagar, V. Kalyanasundaram, & K. Saravanan. (2023). The development of a generalized multilevel inverter for symmetrical and asymmetrical dc sources with a minimized ON state switch. *Ain Shams Engineering Journal*, 15(2), 102358–102358. <https://doi.org/10.1016/j.asej.2023.102358>

Ye, Y., Wai, K., Liu, J., & Ding, K. (2014). A Step-Up Switched-Capacitor Multilevel Inverter With Self-Voltage Balancing. *IEEE Transactions on Industrial Electronics*, 61(12), 6672–6680. <https://doi.org/10.1109/tie.2014.2314052>