Enhancing Agricultural Practices through Machine Learning for Soil Analysis and Crop Recommendation

Paineni Vaishnavi, Uppara Pavani, Sameena Yousuff, Pitta Pavani and Kalluru Divya Sai Computer Science and Engineering (Ds), Ravindra College of Engineering for Women, Venkayapally, Kurnool, Andhra Pradesh, India

Keywords: Crop Recommendation, ML, SVM, DT, Agriculture, Crop Yield Prediction, Soil Analysis, Weather Patterns,

Hybrid Model, Crop Quality Ranking.

Abstract: Based on many factors including Season, Soil type, Rainfall, Temperature, Groundwater Level, Fertilizers,

and Pesticides, the crop recommendation system based on machine learning suggests to the farmer the crop to be grown. This follows through examination of SVM and DT and a hybrid model of it as a new system on crop prediction. This is done through crop and crop production data-sets which enable this model to provide reliable recommendations. It also sorts crops based on quality and its findings help determine the quality of

both high and low-quality leads and helps boost industrial production and economic growth.

1 INTRODUCTION

Agriculture is the backbone of numerous nations, and India serves as no exception; a large proportion of individuals in India are engaged in agriculture as farmers. Traditional agricultural methods based on knowledge and instinct are not very effective in determining the category of crops and predicting production. Machine learning (ML) has recognized substantial progress in agriculture, enabling data-driven responses to improve sustainability and yield.

Based on different parameters like soil type, rainfall, groundwater level, temperature, fertilizers, pesticides, seasonal conditions, etc., a ML-based Crop Recommendation System will help farmers choose the best crop to plant. The system also uses ML algorithms such as SVM and DT to process large datasets to give accurate and productive recommendations. It helps the farmer to get the maximum yield possible, uses resources efficiently, and reduces economic loss.

Current crop recommendation systems utilize data mining to predict weather patterns and agricultural yield. But these methods, on the other hand, can't handle unpredictable temperature and rainfall patterns that may result in lower accuracy. Moreover, most of the solutions and implementations are hardware based and come at a premium cost, and maintenance proves to be a challenge as well. More specifically, the proposed system comprises a hybrid ML model which is a phased model that addresses issues such as efficiency, reliability in yield prediction, and crop quality ranking procedures.

This model can help farmers to select the crops and thus, improve farmers income and economy. In addition, the system incorporates other modules, including pesticide prediction and online agricultural commodity trading, making for a well-rounded solution to contemporary agricultural difficulties.

2 LITERATURE SURVEY

 a) Motwani, Aditya, et al. "Soil Analysis and Crop Recommendation using Machine Learning."
 2023 International Conference for Advancement in Technology (ICONAT). IEEE, 2023. https://ieeexplore.ieee.org/document/9725901

India ranks among the world's top three crop producers. The agricultural economy of India relies on its impoverished farmers. Soil types vary from area to region, leaving farmers with limited technical options when it comes to selecting the most profitable crops for their soil. Compared to Random Forest's 75% accuracy, CNN architecture achieves 95.21%.

b) Rao, Madhuri Shripathi, et al. "Crop prediction using machine learning." Journal of Physics:

Conference Series. Vol. 2161. No. 1. IOP Publishing, 2023.

https://www.researchgate.net/publication/35775 9181_Crop_prediction_using_machine_learning

Agriculture is the main income source for most developing nations. Farming techniques agricultural technology are always developing. It is difficult for farmers to keep up with the demands of merchants, customers, and the world at large. Soil erosion and industrial pollution are contributing to climate change, which farmers must address. (ii) Phosphorus, potassium, and nitrogen deficiency in the soil can stunt crop growth. One common error that farmers do is to produce the same crops every year. They apply fertilisers carelessly, without knowing the quantity or quality of the fertiliser they are using. The goal of the research is to find the most accurate crop forecast model that can help farmers pick crops according to weather and soil conditions. Using Gini and entropy, this study analyses three classifiers: KNN, DT, and RF. From what we can see, Random Forest is the most accurate of the three.

c) Priyadharshini, A., et al. "Intelligent crop recommendation system using machine learning." 2023 5th international conference on computing methodologies and communication (ICCMC). IEEE, 2023.

https://ieeexplore.ieee.org/document/9418375

The agricultural sector plays a crucial role in India's GDP. In a nation where 58% of the population works in agriculture, one of the biggest problems is that farmers often use outdated and unscientific methods to pick the wrong crops for their land. Planting crops that aren't well-suited to the soil, season, and area is a common mistake among farmers. People end their lives, stop working the land, and go to cities because of this. To get around this problem, this study suggests a method that considers all the variablesto help farmers choose crops. The practice of precision agriculture, which makes use of modern agricultural technology to manage crops in a site-specific manner, is gaining popularity in developing countries.

d) Pande, Shilpa Mangesh, et al. "Crop recommender system using machine learning approach." 2023 5th International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2023.

https://ieeexplore.ieee.org/document/9418351

The majority of rural Indians find gainful employment in agriculture and related fields. The country reaps the benefits of its thriving agricultural sector. Global standards indicate a poor crop output per acre. The higher suicide rate among marginal farmers in India might be explained by this. Findings from this study provide an easy-to-understand and implement strategy for farmers to predict crop yields. One possible approach is to use a smartphone app to link together farmers. Using GPS, the user's location is ascertained. User enters surface area and soil type. Algorithms trained by ML select the most profitable crops and predict farmers' harvests. In order to predict crop yields, scientists employ SVM, ANN, RF, MLR, and KNN. At 95% accuracy, Random Forest outperformed all other methods. In order to maximise yields, the algorithm also suggests when fertilisers should be used.

e) Kalimuthu, M., P. Vaishnavi, and M. Kishore. "Crop prediction using machine learning." 2022 third international conference on smart systems and inventive technology (ICSSIT). IEEE, 2022. https://ieeexplore.ieee.org/document/9214190

A certain percentage of domestic production is provided by agriculture, which is the backbone of India's economy and ensures food security. But unnatural climate change is diminishing food production and forecasting, which is bad news for farmers' bottom lines since it lowers yields and makes them less good at predicting crops. This study uses machine learning, a cutting-edge method predicting agricultural yields, to help inexperienced farmers plant more realistic seeds. The supervised learning algorithm Naive Bayes recommends it. For the purpose of assisting their growth, we take readings of the moisture, humidity, and temperature of agricultural seeds. An Android app is also in the works with the software. Users just need to input their current location and temperature for the program to begin making predictions.

3 METHODOLOGY

3.1 Proposed System

To make the most of ML for crop selection and yield prediction, the recommended Crop Recommendation System examines several factors such as soil type, rainfall, groundwater levels, temperature, fertilizers, pesticides, and seasonal situations. Using SVM and DT algorithms, the system processes large datasets to provide accurate recommendations, ensuring efficient resource utilization and increased productivity. Additionally, a ranking mechanism evaluates crop

quality, helping farmers distinguish between high and low-quality yields for better decision-making.

The system also features a crop pest forecasting and e-commerce module to enhance its utility and offer a comprehensive approach to modern-day agricultural challenges. Instead, this model combines crop datasets with crop production datasets so that it measures prediction accuracy while minimizing redundancy. It improves the efficiency of agricultural and helps the economy reduce the loss of agriculture and increase its viability and longevity through data-driven decision-making.

3.2 System Architecture

Crop Recommendation System: Its architecture (Figure 1) is attached with multi-layers for precise Crop Selection; Yield prediction. Soil type, precipitation, temperature, groundwater level, fertilisers, pesticides, season are just some of the

many variables collected by the Data Collection Layer. The next step would be processing this data into the Data Pre-processing Layer which would include operations such as handling missing values, normalizing the data, feature extraction, etc.

Next layer is Machine Learning Model Layer where various models (in our case SVM and DT) will be used to train and then cross-validate on the historical crop and production datasets. So, post training, in the Recommendation & Ranking Layer, it predicts the most suitable crops according to input parameters and ranks the crops on their quality. The system provides some additional smooth features like Pesticide Prediction and Online Trading Platform which helps the farmers to get pesticide suggestions and also helps to make transactions in the market. It's a digital portal layer that allow farmers to enter data and get recommended through a mobile or web-based interactive platform with visual insights on crop prediction and yield estimation, designing a holistic digital experience towards advanced agriculture.

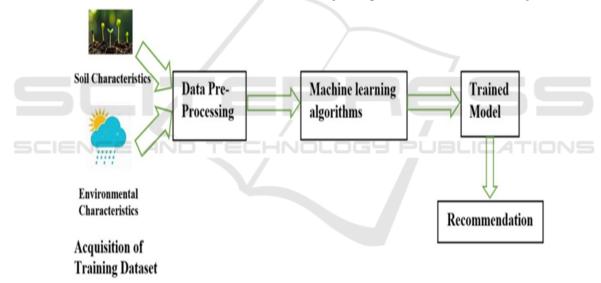


Figure 1: Proposed Architecture.

3.3 Modules

3.3.1 Gathering the Datasets

This segment collects crops datasets categorising soil type, rainfall, groundwater levels, temperature, fertilisers, pesticides and seasonality from free resources like Kaggle. After collecting the data, the proposed model uploads the data for preprocessing and analysis. With this step, the system receives reliable, realistic data for correct predictions.

3.3.2 Generate Train & Test Model

Because the ML model is trained on this data, it is important to clean the data of inconsistencies, missing values, and to normalise features. The training and testing datasets are separated with the 80% being training and 20% being testing in the post-processing. This allows the model to learn from past data while being able to retain another set that it will use only for evaluation, improving the fairness of its predictions.

3.3.3 Run Algorithms

This module will use machine learning models on the dataset to predict crops. This differs from model to model of course, but the dataset is typically 70% – 80%training and 30% — 20%testing. The data is up to October 2023 and is utilized using SVM and DT algorithms to determine the appropriate crop to be cultivated against the conditions. These models assist with the identification of patterns in the data, enabling better predictions for different farming conditions. Figure 2 shows the Upload Dataset. Figure 3 shows the Enter Input Data. Figure 4 shows the Results.

3.3.4 Obtain the Accuracy

After training and testing the model, this module measures the accuracy (figure 5) to assess the performance of the system. The model is evaluated best on the basis of various metrics like precision, recall, and F1-score, which indicate how well the model predicts fitted crops with input variables. In addition, hyperparameter tuning and more data preprocessing is done in order to optimize the results, if accuracy isn't sufficient enough.

3.3.5 Predict Output

The output of the module depends on the parameters input by the user. By using trained algorithms, we may estimate the most suitable crop to be planted in such conditions from these data. The technology can also rank crops in terms of yield and quality, helping farmers to make informed decisions. This helps in providing accurate and dependable suggestions to maximize the agricultural yield for farmers.

3.4 Algorithms

3.4.1 Decision Tree Classifier

The rule-based DT method divides the dataset based on feature values for the purpose of decision-making. Each node in the tree is a choice based on the parameters input. DT helps in identifying the best crop in crop recommendation system based on various parameters like soil type, rainfall, and temperature. This is an easy to interpret and computationally efficient algorithm for classification problems.

3.4.2 Support Vector Machine (SVM)

Support vector machines an SVM is a type of supervised learning algorithm used for classification. It finds the best hyperplane to classify data points. SVM aids in classifying and recommending crops based on soil conditions, weather patterns, and other input parameters in this system. Its predictions of crop selections are accurate, and it is also good with high-dimensional data.

4 EXPERIMENTAL RESULTS

Accuracy: How well a test can differentiate between healthy and sick individuals is a good indicator of its reliability. Compare the number of true positives and negatives to get the reliability of the test. Following mathematical:

Accuracy =
$$\frac{TP + TN}{(TP + TN + FP + FN)}$$
 (1)

Precision: The accuracy rate of a classification or number of positive cases is known as precision. Accuracy is determined by applying the following formula:

$$Precision = \frac{TP}{TP + FP}$$
 (2)

Recall: The recall of a model is a measure of its capacity to identify all occurrences of a relevant machine learning class. A model's ability to detect class instances is shown by percent of correctly anticipated positive observations relative to total positives.

$$Recall = \frac{TP}{TP + FN} \tag{3}$$

F1-Score: A high F1 score indicates that a machine learning model is accurate. Improving model accuracy by integrating recall and precision. How often a model gets a dataset prediction right is measured by the accuracy statistic.

$$F_1Score = \frac{2}{(\frac{1}{Precision} + \frac{1}{Recall})}$$
 (4)

$$F_1Score = \frac{2 x \operatorname{Precision} x \operatorname{Recall}}{\operatorname{Precision} + \operatorname{Recall}}$$
 (5)

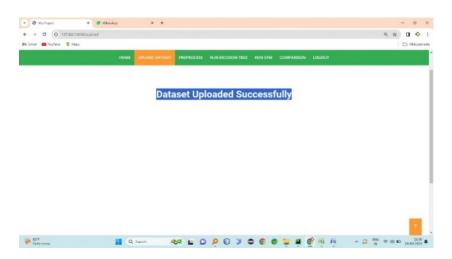


Figure 2: Upload Dataset.

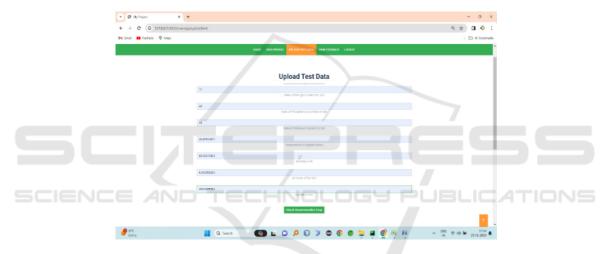


Figure 3: Enter Input Data.

Figure 4: Results.

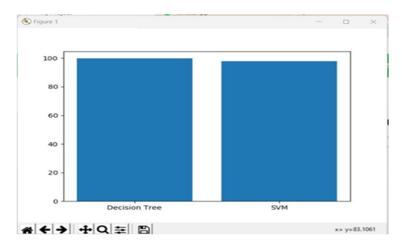


Figure 5: Accuracy Graph.

5 CONCLUSIONS

With the use of machine learning, the proposed Crop Recommendation System guides farmers towards optimal crop selection in response to specific agrarian conditions. By integrating SVM and DT algorithms, the system improves prediction accuracy and enhances decision-making in farming. Additionally, features like crop quality ranking, pesticide prediction, and an online trading platform provide a comprehensive solution to modern agricultural challenges. Not only does this optimize crop choices but also boosts productivity and economic growth, ensuring a data-driven, efficient, and accessible system for farmers.

6 FUTURE SCOPE

Future Scope of Crop Recommendation System: Integrating with deep learning models such as CNNs and RNNs for improved accuracy on predictions by analysing complex agricultural patterns. It assists in improving soil and weather analysis using IoT-based sensors for real-time data collection. It would be beneficial to also include geospatial analysis -- using things like satellite imagery and GIS -- to determine land suitability. And the introduction of a mobile app with multi-language options will provide a more minimalist approach to recommendations usage by farmers. Moreover, blockchain technology helps to incorporated for secure and transparent agricultural trading. These innovations will improve system speed, precision, and user-friendliness, which will serve farmers and increase crop yield.

REFERENCES

Doshi, Zeel, et al. "AgroConsultant: intelligent crop recommendation system using machine learning algorithms." 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). IEEE, 2018.

Kalimuthu, M., P. Vaishnavi, and M. Kishore. "Crop prediction using machine learning." 2022 third international conference on smart systems and inventive technology (ICSSIT). IEEE,2022. M. Kamei, Trends and Technology In The Era of Post TV-The Rise of OTT Platforms. Think India Journal, 22(33), (2019)184-192.

Kulkarni, Nidhi H., et al. "Improving crop productivity through a crop recommendation system using ensembling technique." 2018 3rd International Conference on Computational Systems and Informatio n Technology for Sustainable Solutions (CSITSS). IEEE, 2018.

Kumar, Avinash, Sobhangi Sarkar, and Chittaranjan Pradhan. "Recommendation system for crop identification and pest control technique in agriculture." 2019 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2019.

Lacasta, Javier, et al. "Agricultural recommendation system for crop protection." Computers and Electronics in Agriculture 152 (2018): 82-89.

Motwani, Aditya, et al. "Soil Analysis and Crop Recommendation using Machine Learning." 2023 International Conference for Advancement in Technology (ICONAT). IEEE, 2023

Pande, Shilpa Mangesh, et al. "Crop recommender system using machine learning approach." 2023 5th International Conference on Computing Methodologie s and Communication (ICCMC). IEEE, 2023.

Patil, Pavan, Virendra Panpatil, and Shrikant Kokate. "Crop prediction system using machine learning algorithms." Int. Res. J. Eng. Technol. (IRJET) 7.02 (2020).

- Priyadharshini, A., et al. "Intelligent crop recommendation system using machine learning." 2023 5th international conference on computing methodologies and communication (ICCMC). IEEE, 2023.
- Pudumalar, S., et al. "Crop recommendation system for precision agriculture." 2016 Eighth International Conference on Advanced Computing (ICoAC). IEEE, 2017
- Rajak, Rohit Kumar, et al. "Crop recommendation system to maximize crop yield using machine learning technique." International Research Journal of Engineering and Technology 4.12 (2017): 950-953.
 I.A.Guitart, G. Hervet, S.Gelper, Competitive advertising strategies for programmatic television. Journal of the Academy of Marketing Science, 48, (2020)753-775. https://doi.org/10.1007/s11747-019-00691-5
- Tengeh, R.K. and Udoakpan, N., 2021. Over-the-top television services and changes in consumer viewing patterns in South Africa. Management dynamics in the knowledge economy, 9(2), pp.257-277.
- Van Klompenburg, Thomas, AyalewKassahun, and CagatayCatal. "Crop yield prediction using machine learning: A systematic literature review." Computers and Electronics in Agriculture 177 (2020): 105709. https://www.kaggle.com/datasets/atharvaingle/crop recommendation-dataset

