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Abstract: This underscores the critical importance of enhancing production flexibility and intelligence. The extant 
research primarily focuses on assembly line production models and has not extensively explored non-
assembly line production models. The present study focuses on the application of data empowerment to island 
assembly models to optimize resource scheduling, production efficiency, and equipment utilization. The 
research methods employed encompass theoretical modeling and case analysis. A mixed-integer 
programming model is employed to analyze the role of data empowerment, and an intelligent warehouse 
system is utilized to validate its effectiveness. A substantial body of research has demonstrated that the 
empowerment of data leads to a considerable enhancement in the utilization of equipment and optimizes 
inventory management. This approach contributes to the acceleration of production cycles and the 
enhancement of process and task completion rates. Furthermore, it facilitates seamless production connections, 
thereby enhancing system stability and response speed. Moreover, data empowerment enhances system 
flexibility, thus enabling the system to respond more effectively to market fluctuations and uncertainties. This 
article demonstrates the importance of data empowerment in manufacturing transformation and the potential 
for further exploration of data technology integration in various fields.

1 INTRODUCTION 

In recent years, the global manufacturing industry has 
undergone a rapid transition from Industry 3.0 to 
Industry 4.0. The traditional assembly line production 
model plays a significant role in large-scale, 
standardized production. It meets market demand for 
standardized products with its efficient and scalable 
characteristics. However, as consumer demand 
diversifies and market uncertainty increases, the 
traditional assembly line model is showing its 
limitations in adapting to small-batch, multi-variety, 
and personalized production. Traditional models 
often prove ineffective when it comes to dealing with 
market demand fluctuations, customized production, 
and rapid resource allocation. Non-assembly line 
production models have presented challenges in the 
face of traditional assembly line models. Data-driven 
technologies have advantages that make them a 
potential solution to these problems. These 
technologies have been adopted widely in 
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manufacturing, and there is immense potential for 
them in non-assembly line production. It is critical to 
conduct in-depth research on the application of these 
technologies in non-assembly line production to drive 
the transformation and upgrade of manufacturing and 
enhance corporate competitiveness. Therefore, how 
to enhance the flexibility and intelligence of 
production systems while maintaining high efficiency 
is a pressing issue that must be addressed in the 
transformation and upgrading of manufacturing. 

To address the challenges, data-empowered 
technologies are increasingly being recognized as a 
key method for enhancing production flexibility and 
intelligence. Data-empowered technologies enable 
real-time data collection, analysis, and optimization, 
thereby improving the adaptive capabilities and 
decision-making efficiency of production systems. 
This assertion is especially valid in non-assembly line 
production models, where the optimization of 
resource scheduling, equipment utilization, and 
production cycles can effectively address the 
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complexity and uncertainty inherent in production 
environments (Li,2025). A significant body of 
research was conducted by scholars and industry 
experts on data-empowered technologies, with a 
particular focus on their application in manufacturing. 
For instant, the application of data empowerment in 
flexible production systems can significantly improve 
production response speed and resource utilization 
(Zhang,2024). Wu et al. demonstrated through case 
studies that data empowerment can help enterprises 
quickly adjust production plans in highly uncertain 
production environments, thereby maintaining 
efficient operations (Wu,2025). However, despite the 
myriad valuable explorations provided by extant 
research on the application of data empowerment in 
production systems, the majority of studies 
concentrated on assembly line production models or 
specific industries. These studies did not fully 
consider the potential of data empowerment in non-
assembly line production models. Under island 
assembly models, the question of how to achieve 
intelligent and flexible production through data 
empowerment remains a relatively under-researched 
area. Therefore, filling this research gap and 
exploring the specific applications and effects of data-
driven technologies in non-assembly line production 
modes holds significant theoretical and practical 
significance. 

The focus of this study is to explore the 
application of data empowerment in non-assembly 
line production models, with an emphasis on how it 
can enhance the flexibility and intelligence of 
production systems through real-time data collection 
and optimized decision-making, thereby addressing 
issues such as uneven resource allocation, equipment 
idling, and prolonged production cycles. The core of 
the research lies in integrating the island assembly 
mode with data empowerment technology, delving 
into the underlying mechanisms of their combination, 
and validating their effectiveness through case studies 
in actual production settings. 
Theoretical modeling can reveal the intrinsic 
mechanisms of data empowerment in non-assembly 
line production modes from an abstract level, while 
case studies can validate the effectiveness and 
feasibility of these mechanisms through actual cases. 
Therefore, this study comprehensively employs 
theoretical modeling and case study methods. 
Specifically, first, through theoretical modeling, 
based on the characteristics of data empowerment 
technology and island assembly mode, this study 
proposes the key mechanisms of data empowerment 

in non-assembly line production modes. Second, the 
specific application effects of data empowerment in 
resource scheduling, production efficiency, and 
equipment utilization are explored using optimization 
tools such as data analysis and mixed integer 
programming models in combination with a specific 
smart warehouse case. 

The study aims to investigate how data 
empowerment can optimize non-assembly line 
production modes, focusing on addressing key 
challenges such as unbalanced resource allocation, 
equipment idling, and prolonged production cycles. 
By systematically analyzing the core differences 
between non-assembly line and traditional assembly 
line modes, the study reveals the unique application 
value and efficiency-enhancing pathways of data 
empowerment in non-standard production scenarios, 
and validates its effectiveness in improving 
production efficiency and resource utilization 
through actual case studies. 

2 OVERVIEW OF  
NON-ASSEMBLY LINE 
PRODUCTION MODELS 

2.1 Definition and Characteristics of 
Non-Continuous Production Mode 

Non-continuous production mode is a production 
organization method that does not rely on traditional 
assembly lines. It is widely used in scenarios 
involving small batches, multiple varieties, and 
customized production. This production organization 
method, which does not rely on traditional assembly 
lines, has the following notable characteristics: It 
emphasizes that each unit in the production process 
can operate independently, and production steps can 
be flexibly arranged according to product 
requirements and process characteristics, rather than 
following a fixed sequence. Unlike traditional 
assembly line production modes, non-assembly line 
production modes offer significant advantages in 
terms of production flexibility and the ability to 
address diverse demands (Tang,2021), particularly in 
industries with long production cycles, complex 
products, and strong customization requirements, 
such as aerospace manufacturing, shipbuilding, and 
the production of special equipment. 

Under the non-assembly line production model, 
production tasks are not strictly constrained by fixed 
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processes, and production units operate 
independently and flexibly, enabling effective 
response to production environments characterized 
by significant market demand fluctuations, diverse 
product types, and strong personalized customization 
requirements. This model possesses strong 
adaptability and production flexibility (Zhang,2022). 
However, this flexibility also presents challenges in 
data management and resource allocation. The 
complexity of non-assembly line production requires 
enterprises to have more precise scheduling and 
resource allocation capabilities, especially with the 
support of intelligent and automated management 
systems. It is necessary to effectively integrate and 
optimize the massive amounts of data generated 
during the production process to improve production 
efficiency and resource utilization (Wang,2022). 

Although non-assembly line production faces 
greater challenges in resource allocation and 
production rhythm control compared to assembly line 
production, it demonstrates unique advantages in 
handling customized and highly flexible production 
tasks. By leveraging data-driven capabilities and 
intelligent scheduling systems, non-assembly line 
production can meet personalized production 
demands while improving production efficiency and 
resource utilization, thereby playing an increasingly 
important role in modern manufacturing 
(Chen,2021). 

2.2 Data Characteristics in  
Non-Assembly Line Production 
Modes 

2.2.1 Data Types and Sources 

In non-assembly line production modes, intelligent 
manufacturing systems rely on wireless local area 
network (WLAN) technology to achieve device 
interconnection and data collection. System data 
primarily includes equipment operation, workstation 
status, material flow, and production rhythm, 
covering the entire production process. 

Data sources primarily include production 
information management systems, sensors, and 
central control screens. Specific types include 
equipment operating status, such as current operation, 
shutdown, or fault conditions. Production 
environmental data covers key parameters such as 
production capacity, air pressure, temperature and 
humidity, and noise levels. Information for each 
workstation and unit includes location, power status, 

material status, and task progress. Additionally, 
warehouse location information provides detailed 
data on storage status, material categories, and 
storage duration. Through comprehensive monitoring 
and management of these data, the efficiency and 
reliability of the production process can be effectively 
improved (Fang,2021).  

Managers can use mobile terminals to monitor 
workstation and task status in real time, while 
electronic bulletin boards provide visual monitoring. 
Digital twin technology enables real-time interaction 
between the physical status of equipment and virtual 
models, supporting digital mapping of the entire 
production process and significantly improving 
system efficiency and flexibility. 

2.2.2 Data Complexity and Correlation 

In non-assembly line production modes, the island-
based assembly model achieves decoupling and 
flexible reorganization of assembly processes 
through modular work units called “islands.” Each 
‘island’ is responsible for completing one or a group 
of relatively independent assembly operations and 
possesses certain autonomous operations and local 
optimization capabilities. Under the unified 
management of the central scheduling system, the 
“islands” collaborate to complete complex assembly 
tasks and can dynamically adjust the content and 
execution order of operations based on real-time 
production status. It is precisely because of this 
characteristic of the island assembly model that the 
data in the production process is highly complex and 
interrelated.  

To achieve this flexible and efficient coordination 
mechanism, each “island” relies extensively on data-
driven analysis methods during operation. First, by 
collecting real-time data on equipment status and 
process execution, the system uses correlation 
analysis to identify resource conflicts, process 
dependencies, and bottlenecks, guiding dynamic 
adjustments to assembly rhythms. Second, leveraging 
mixed-integer programming (MIP) algorithms, the 
system integrates multiple constraints such as process 
priorities, resource utilization, and time windows into 
a unified scheduling model to optimize production 
scheduling strategies across multiple islands, 
ensuring globally optimal resource allocation. Third, 
based on predictive models (such as time-series-
based order trend forecasting and inventory demand 
forecasting), the system can anticipate future 
production capacity loads and material requirements, 
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enabling proactive adjustments to assembly plans to 
mitigate the impact of sudden orders or inventory 
shortages. 

Additionally, some “islands” utilize edge 
computing devices to locally process high-frequency 
data such as equipment operational status, sensor 
feedback, and work-in-progress information, 
reducing reliance on the central system and 
accelerating response times. These data analysis and 
processing mechanisms support the independent 
operation of “islands” and ensure the entire assembly 
system maintains high adaptability and robustness in 
response to dynamic changes in orders, processes, 
and material conditions. 

3 APPLICATION OF DATA 
EMPOWERMENT IN  
NON-ASSEMBLY LINE 
PRODUCTION MODELS 

3.1 Role and Mechanism of Data 
Empowerment 

3.1.1 Enhancing Production Efficiency 
Through Data Empowerment 

In a Smart Warehouse environment, the demand for 
resources among different work islands is highly 
uncertain, requiring real-time scheduling systems to 
effectively resolve potential conflicts during frequent 
resource calls. At the same time, the diversity of data 
types, such as equipment operating status, material 
location information, and process progress, 
significantly increases the complexity of the decision-
making process. Faced with constantly changing 
order demands, the assembly system must have a 
highly flexible, dynamic adaptation capability to 
minimize material waste and avoid process delays. To 
effectively address these issues and enhance the 
dynamic adaptability of assembly systems, data 
decomposition has emerged as a critical approach. By 
decomposing complex data, heterogeneous data can 
be transformed into basic elements that can be 
independently identified and analyzed, thereby 
providing a reliable foundation for analyzing resource 
requirements and optimizing decision-making 
processes. Data decomposition helps systems better 

identify potential conflicts, optimize resource 
scheduling, reduce material waste, and avoid process 
delays. 

Initially, the data types involved must be 
identified and classified. According to the preceding 
analysis, the present study encompasses the following 
data types. The initial category is equipment data, 
encompassing the operational status of equipment, 
including power status (i.e., on, off, and malfunction), 
as well as real-time production capacity and 
environmental parameters such as air pressure, 
temperature, and humidity. The second category is 
production data, which encompasses production 
rhythm, the number of work-in-progress items, and 
the input and output quantities of materials. The third 
category is job unit data, which includes the real-time 
operating status of each job unit, the material 
information involved, power consumption, and task 
execution progress. The fourth category is inventory 
data, which encompasses information regarding 
temporary storage location, material status, storage-
related information, and material storage time. The 
fifth category is real-time monitoring data, which is 
primarily obtained through sensors and central 
control screens to gather real-time information on 
equipment operation and environmental conditions. 
Additionally, it encompasses the execution status of 
tasks, which are ascertained through the utilization of 
mobile handheld devices. 

Following the identification of the data types, it is 
imperative to undertake a subsequent analysis of the 
data sources to ensure data completeness and 
accuracy. Sensors installed on-site enable real-time 
monitoring of equipment operating status and 
environmental parameters, thereby ensuring the 
timeliness and authenticity of the data. The 
production information management system provides 
comprehensive production data support and statistical 
analysis functions, helping to systematically 
understand production status. Central control screens 
and electronic bulletin boards are utilized to display 
the status of equipment and key production indicators 
in a centralized manner, thereby enhancing the 
efficiency of information transmission. The 
implementation of digital twin technology facilitates 
the real-time mapping of equipment operation within 
a virtual environment, thereby enabling dynamic 
simulation and interaction with the status of the 
equipment. This, in turn, enhances perception and 
control capabilities over the production process. The 
overall process is shown in Figure 1. 
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Figure 1: Data decomposition process (Picture credit: Original)

3.1.2 Data Dimensions and Key 
Performance Indicators 

Effective application of data dimensions, and key 
performance indicators (KPIs) is critical to improving 
production efficiency in the management and 
optimization of smart warehouses. Data dimensions 
offer a thorough analytical view of the production 
process. They include the time dimension, which 
identifies time-based patterns to support production 
decision-making; the equipment dimension, which 
monitors equipment utilization rates and failure 
frequencies to mitigate risk; the material dimension, 
which ensures material flow and supply align with 
production demands to reduce waste (Fang,2021); the 
process dimension, which monitors progress to 
optimize production workflows; and the work unit 
dimension, which coordinates resources between 
workstations to enhance flexibility and adaptability. 
However, data dimensions alone are insufficient for a 
comprehensive assessment of production efficiency. 

Thus, key performance indicators (KPIs) have 
emerged as essential tools for quantifying the 
performance of each dimension. Production cycle 
time measures processing time to help identify 
bottlenecks and optimize processes. Equipment 
utilization assesses usage to help identify issues with 
inefficient use. Inventory turnover rate measures 
material flow efficiency to avoid inventory buildup. 
Process completion rate reflects production task 
execution to help adjust plans. Task execution rate 
focuses on execution efficiency to ensure the 
coordinated operation of all production links. 
Comprehensive utilization of data dimensions and 
key performance indicators (KPIs) enables 
companies to enhance production transparency, 
improve flexibility and efficiency, and make more 
precise decisions in complex production 
environments (Zheng,2022). This optimization 
extends to their overall warehouse management 
system.  
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Figure 2: Data dimension and key performance indicator correspondence chart (Picture credit: Original)

A close intrinsic relationship exists between data 
dimensions and key performance indicators. As 
shown in Figure 2. Each data dimension provides the 
necessary contextual data for calculating KPIs. For 
instance, the level of equipment utilization is directly 
influenced by the operational status within the 
equipment dimension. Frequent equipment 
malfunctions result in a significant decrease in 
equipment utilization, potentially indicating 
underlying resource scheduling issues. Concurrently, 
the length of the production cycle time is closely 
related to the processing time of each process in the 
time dimension, which can reveal bottlenecks in the 
production process. Furthermore, the integration of 
inventory turnover rate with real-time data from the 
material dimension can facilitate the formulation of 
rational material replenishment and allocation 
strategies by management, thereby enhancing the 
overall efficiency of the production system 
(Zheng,2022). Through meticulous examination of 
these dimensions and indicators, smart warehouses 
can attain more efficient resource scheduling and 
decision support. 

To further enhance the operational efficiency of 
smart warehouses, effective correlation analysis is 
imperative. The objective of correlation analysis is to 

explore the interrelationships between data 
dimensions and key indicators, thereby providing a 
scientific basis for real-time decision-making 
(Ren,2022). Through the implementation of 
statistical analysis and machine learning 
methodologies, researchers can identify the pivotal 
factors influencing production efficiency and discern 
potential interdependencies among data elements. 
This methodological approach facilitates a 
comprehensive understanding of how disparate data 
dimensions interact with one another, thereby 
providing a foundational framework for optimizing 
resource allocation and enhancing production 
flexibility. 

3.2 Smart Warehouses and Production 
Scheduling 

3.2.1 Application of Mixed-Integer 
Programming Models in Scheduling 
Optimization 

In the context of a Smart Warehouse environment, 
correlation analysis frequently entails the 
management of resources, including scheduling and 
allocation. For instance, alterations in equipment 
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status, process priorities, and material inventory can 
directly influence the execution of tasks on an 
assembly line. MIP is an optimization algorithm 
capable of handling models with both integer and 
continuous variables, making it highly suitable for 
addressing complex scheduling problems in smart 
warehouses, particularly those involving resource 
conflicts and priority allocation. MIP methods can 
represent these variables and their interdependencies 
as a set of mathematical constraints and an objective 
function. By optimizing these constraints, the 
algorithm attains a globally optimal schedule. 

3.2.2 Model Definition 

Within the MIP model, it is imperative to delineate 
the objective function and constraints. 

The objective of optimization is to be established, 
and it may pertain to the minimization of production 
cycle time, inventory costs, or equipment utilization. 
In the context of intelligent warehouses, the objective 
is to enhance equipment utilization and resource 
dynamic adaptability by minimizing completion time 
and inventory costs.The parameters are defined as 
shown in Table 1 and Table 2. 

Table 1: Core Parameter Table 

Decision 
variables 

Meaning 

Xijt Indicates whether task j is assigned to device i at time t. If so, Xijt=1; otherwise, 
Xijt=0 

Sjt Indicates the start time of task j at time t 

Cjt Indicates the completion time of task j at time t 

Ikt Indicates the quantity of inventory material k at time t 

Table 2: Core Parameter Table 

Parameters Meaning 

Tij Processing time of task j on device i 

M A sufficiently large constant to ensure task order 

Dj Deadline for task j 

Pk Inventory cost per unit of material k 

Rk Material quantity required for task 

Ki Maximum processing capacity of device i 

Objective function: Minimize the total completion 
time and inventory cost minimize Z = ෍ C୨୨ + ෍ P୩୩,୲ ⋅ I୩୲ (1)

where Cj is the completion time of task j, and 
Pk·Ikt is the inventory cost of each material in each 
time period. 

Resource allocation constraint: Each task can only 
be assigned to one device. ෍ X୧୨୲୧ = 1 ∀j, t (2)

Device capacity constraint: The task load of each 
device cannot exceed its processing capacity. 

෍ X୧୨୲୨ ≤ K୧ ∀i, t (3)

Task start and end time constraints: S୨୲ + T୧୨ ⋅ X୧୨୲ ≤ C୨୲ ∀i, j, t (4)
Process priority constraint: Task j can only start 

after task k is completed.  S୨୲ ≥ C୩୲ + M ⋅ ൫1 − X୧୨୲൯ ∀i, j ≠ k, t (5)
Inventory update constraint: The inventory level 

at each time period is updated based on production 
and consumption. I୩୲ାଵ = I୩୲ + ෍ R୩୨ ⋅ X୧୨୲ − D୨ ∀k, t (6)
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3.3 Model Results Analysis 

3.3.1 Results Interpretation 

Following the resolution of the model, a systematic 
analysis was conducted, with a focus on the specific 
task allocation and the operational status of the 
equipment associated with each task. A comparison 
of the model solution results with actual production 
data allows for an effective evaluation of the model's 
performance and its applicability in practical 
applications. This analysis suggests that managers 
can adjust their scheduling strategies promptly, 
thereby enhancing resource allocation efficiency. 

Specifically, the MIP model optimized the 
allocation of equipment and tasks, thereby effectively 
reducing equipment idle time in a non-flow 
production mode. The model demonstrated a 
substantial enhancement in equipment utilization, 
leading to a notable reduction in resource waste 
stemming from equipment idling (Ni, 2022). This 
improvement was achieved through the dynamic 
allocation of tasks to the most appropriate equipment, 
thereby optimizing resource usage. Furthermore, the 
model meticulously scheduled the commencement 

and conclusion of each production task, ensuring that 
tasks were executed by their relative priorities. This 
approach not only reduced waiting times within the 
production process but also enhanced the production 
system's capacity to adapt to evolving market 
demands. Consequently, this methodology 
contributed to a reduction in the overall production 
cycle and an improvement in delivery efficiency, 
Figure 3 shows the correlation analysis process. 

In the context of material management, the MIP 
model can dynamically adjust real-time material 
demands and inventory status, thereby reducing 
inventory backlogs. The model can automatically 
identify and determine the optimal replenishment 
timing and quantity for materials. This capability 
effectively reduces unnecessary inventory costs and 
further optimizes material management (Huang, 
2019). In the context of island production models, the 
implementation of the MIP model enables the system 
to achieve efficient coordination between production 
units, thereby avoiding resource conflicts and 
bottlenecks. This coordination mechanism has been 
demonstrated to enhance overall production 
efficiency while ensuring production flexibility. 

 
Figure 3: Correlation analysis process (Picture credit: Original) 
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3.3.2 Application Analysis 

The MIP model exhibits considerable adaptability in 
responding to fluctuations in production demand, 
particularly in cases of variable order demand. The 
model's capacity for expeditious reallocation of 
resources is pivotal in ensuring the prioritized 
execution of critical tasks, a feature that is particularly 
salient in contexts characterized by the fulfillment of 
bespoke and limited production volumes. The 
model's scheduling optimization has been shown to 
improve the production system's responsiveness and 
adaptability to market changes, enhancing its 
flexibility and efficiency. 

Furthermore, the MIP model provides accurate 
decision support by leveraging real-time data to 
optimize production planning and scheduling 
decisions. The integration of data analysis enables 
management to make more precise decisions, 
informed by real-time feedback. This approach 
effectively mitigates production deviations and 
reduces resource wastage, thereby enhancing overall 
production efficiency(Ren,2022). This process 
exemplifies the merits of data empowerment in 
decision-making, thereby enhancing the scientific 
rigor and efficiency of production scheduling. 

The MIP model has been demonstrated to play a 
dual role in terms of quality and cost improvement. 
The model's efficacy is demonstrated by its ability to 
optimize equipment utilization and inventory 
management, thereby reducing inventory costs while 
enhancing quality control levels. The model 
incorporates a priority allocation function for critical 
equipment and materials, thereby averting quality 
issues stemming from material shortages or 
equipment failures and ensuring effective cost control 
during production. This optimization not only ensures 
product quality but also further improves production 
economics. 

The MIP model establishes a sustainable feedback 
optimization mechanism. The model provides data 
support for future scheduling optimization through 
continuous feedback on execution results, thereby 
forming a cycle of continuous improvement. The 
production management team can use this feedback 
to continuously adjust resource allocation plans, 
thereby improving the adaptability and scalability of 
the model. This mechanism enables the MIP model to 
continuously optimize in a dynamic production 
environment, providing enterprises with long-term 
production management advantages. 

4 CONCLUSIONS 

The primary conclusions of this study emphasize the 
substantial influence of data empowerment on 
numerous pivotal indicators within non-assembly line 
production models. Firstly, the enhancement in 
equipment utilization is indicative of the optimization 
of resource scheduling that is driven by data. The 
implementation of real-time data collection and 
intelligent task allocation is instrumental in 
enhancing the operational efficiency of production 
equipment. This, in turn, leads to a reduction in 
equipment idle time and ensures the optimal 
utilization of overall production capacity. Secondly, 
the enhancement in inventory turnover rate 
substantiates the efficacy of data empowerment in 
inventory management. Conventional inventory 
management is characterized by substantial expenses 
and protracted lead times. Conversely, data 
empowerment employs dynamic integration of 
production, inventory, and order data to optimize 
replenishment strategies and storage routes, thereby 
effectively mitigating inventory buildup and shortage 
risks. About the production cycle time, the 
empowerment of data results in a reduction of said 
cycle through the optimization of task allocation and 
resource configuration. Intelligent algorithms 
circumvent traditional production issues, such as 
process queuing and resource conflicts, by 
prioritizing processes and considering resource 
constraints. This renders the production process more 
efficient and seamless. Furthermore, the 
enhancement in process completion and task 
execution rates underscores the pivotal role of data 
empowerment in facilitating effective production 
coordination. The real-time dissemination of pivotal 
production data facilitates seamless coordination 
among processes, mitigates production delays, and 
enhances the stability of the production rhythm. 

In summary, the application of data empowerment 
in non-assembly line production models can 
effectively improve key production indicators, 
optimize resource allocation, enhance production 
efficiency, and strengthen system flexibility and 
responsiveness. Enterprises can enhance their 
responsiveness to market demand changes and 
production environment uncertainties by leveraging 
accurate data analysis, intelligent scheduling, and 
resource optimization. This, in turn, can lead to 
improvements in overall competitiveness. Data 
empowerment has been shown to improve production 
efficiency and provide enterprises with more efficient 
decision-making support and operational capabilities 
in a dynamic market environment. Consequently, this 
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can drive the non-assembly line production model 
toward greater efficiency and flexibility. 

The findings of this study offer novel insights for 
future research, particularly in the domains of 
production process optimization and intelligent 
scheduling. The findings suggest that data 
empowerment has a substantial impact on equipment 
utilization, inventory management, and production 
cycle acceleration. This prompts numerous avenues 
for future research, particularly about the 
enhancement of system intelligence, the 
augmentation of data accuracy and real-time 
performance, and the adaptation to more intricate and 
evolving production environments. 

Subsequent research endeavors should 
concentrate on investigating methodologies for the 
dissemination of data-empowered technologies 
across diverse industry sectors, with a particular 
emphasis on those domains characterized by intricate 
resource scheduling and considerable demand 
fluctuations. Furthermore, cross-industry 
applications and system integration will be pivotal in 
the development of data-empowered technologies. 
Research must explore the profound integration of 
data technologies with conventional manufacturing 
industries and the innovative application of intelligent 
algorithms. 

REFERENCES 

Chen, L., & Wu, M., 2021. Design of an intelligent 
workshop quality data integration and visualization 
analysis platform. Computer-Integrated Manufacturing 
Systems, 27(06), 1641-1649. 

Fang, W., Guo, Y., Huang, S., Liu, D., Cui, S., Liao, W., & 
Hong, D., 2021. Research on intelligent control 
methods for production processes in discrete 
manufacturing workshops driven by big data. 
Transactions of the Chinese Society of Mechanical 
Engineering, 57(20), 277-291. 

Huang, S., Guo, Y., Cha, S., Fang, W., & Wang, F., 2019. 
Research and application of IoT in discrete 
manufacturing workshops and its key technologies. 
Computer-Integrated Manufacturing Systems, 25(02), 
284-302. 

Li, X., Tong, Y., & Cao, F., 2025. Enterprise digital 
transformation and participation in global value chains. 
Journal of Management Engineering, 39(01), 15-31. 

Ni, Y., Cai, G., Zhao, Y., & Wang, Z., 2022. A pricing 
model for a one-stop service platform for technology 
transactions under dual objectives and multiple 
stakeholders. Journal of Industrial Engineering and 
Management, 27(03), 24-32. 

Ren, L., Jia, Z., Lai, L., Zhou, L., Zhang, L., & Li, B., 2022. 
Data-driven industrial intelligence: Current status and 

future prospects. Computer-Integrated Manufacturing 
Systems, 28(07), 1913-1939. 

Tang, J., Ren, Y., Yu, Y., & Han, Y., 2021. Comparison and 
simulation analysis of SERU production and classic 
production methods. Nankai Management Review, 
24(02), 126-136. 

Wang, M., Wang, L., Xu, X., & Qin, Y., 2022. Real-time 
scheduling model for high-speed trains under severe 
initial delays and interval speed limits. Journal of 
Railway Engineering, 44(01), 8-16. 

Wu, L., & Zhen, L., 2025. Research on mathematical 
programming algorithms for optimizing production 
operations management. Chinese Journal of 
Management Science, 33(01), 345-355. 

Zhang, C., & You, M., 2022. A supply chain coordination 
model based on credit payment under retailers' fairness 
preferences. Industrial Engineering and Management, 
27(03), 44-53. 

Zhang, M., & Zhao, H., 2024. A study on the mechanism of 
industrial internet empowering enterprise green 
development from a value chain perspective. Science 
and Industry, 24(06), 1-9. 

Zheng, S., & Sha, J., 2022. Research on container allocation 
and container handling coordination optimization 
considering synchronous entry and exit of containers. 
Industrial Engineering and Management, 27(03), 33-43. 

ICEML 2025 - International Conference on E-commerce and Modern Logistics

690


