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Abstract: Since the early 2000s, Brain-Computer Interface (BCI) systems have emerged as a transforma-tive technology 
in neuroscience, enabling direct communication between the brain and exter-nal devices. Originally 
developed to restore motor functions and control external systems, BCIs now extends to real-time 
physiological state monitoring. This paper explores the evolu-tion and methodologies of BCIs, focusing on 
signal detection techniques. Non-invasive meth-ods, such as Electroencephalography (EEG) and Functional 
Near-Infrared Spectroscopy (fNIRS), provide safe and accessible options, while invasive techniques like 
Electrocorticogra-phy (ECoG) offer superior precision. Hybrid BCIs, integrating modalities such as EEG-
fNIRS, enhance performance by combining the strengths of individual technologies. The applications of BCIs 
span clinical and non-clinical domains, including stroke rehabilitation, communica-tion for individuals with 
severe impairments, brain-controlled gaming, and artistic creation. Recent advancements in signal acquisition, 
processing, and integration, such as improved electrode designs and real-time signal processing algorithms, 
have established BCIs as a criti-cal tool for neurotechnological innovation, with immense potential to 
transform healthcare and human-computer interaction. 

1 INTRODUCTION 

Brain-Computer Interface (BCI) systems have 
become a key focus of research, offering direct 
communication pathways between the brain and 
external devices. Early BCI studies focused on 
restoring motor functions and controlling external 
systems, and this research has expanded to include 
real-time monitoring of physiological states. The 
foundation of BCI research was laid in the early 20th 
century with Hans Berger’s discovery of 
electroencephalography (EEG). This breakthrough 

demonstrated that neural activity could be measured 
and analysed, forming the basis for the modern 
exploration of direct brain-to-machine 
communication. From this foundational work, the 
field of BCIs has advanced significantly, with a 
particular focus on the development of technologies 
capable of accurately detecting and interpreting 
neural signals. These signals serve as the fundamental 
medium through which brain activity is translated 
into actionable commands for controlling external 
devices. The brief history of BCIs evolution is shown 
in Figure 1. 

Figure 1. This diagram shown a span of evolution of BCIs range from 1929 to 2015 (Fabien et. al. 2018). 
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Alt Text for the figure: the timeline labelled with various important events of BCI evolution from 1929 to 2015. 
The brackets conclude the names of scientists who discovered or invented this specific event. For example, Hans 
Berger recorded the first human EEG in the 1920s. 

Following the historical development, it is 
essential to understand how BCIs function. The 
methodology of BCI involves several steps that 

enable direct communication between the brain and 
external devices. Figure 2 shows the basic processing 
of BCI system. 

 

 
Figure 2. A schematic representation of the basic processing of BCI systems (Aricò et. al. 2018). 
Alt Text for the figure: the Brain-computer interface starts at brain to signal acquisition, then feature extraction, 
and feature translation. The artificial output from the translation will then enhance the brain instruction to the 
computer device.

The first step in any Brain-Computer Interface 
(BCI) system is signal acquisition, where brain 
signals is captured using various techniques.  While 
all these detection methods aim to capture brain 
signals accurately, they can be broadly categorized 
into non-invasive and inva-sive approaches based on 
their implementation. Non-invasive techniques, such 
as Electroen-cephalography (EEG) and functional 
near-infrared spectroscopy (fNIRS), are widely used 
due to their safety, ease of use, and accessibility. 
These methods measure neural activity indirectly 
through the skull and scalp, making them particularly 
well-suited for real-world applications due to their 
non-invasive nature and minimal risk to users. In 
contrast, invasive methods like Electrocorticography 
(ECoG) directly record electrical activity from the 
cortical surface, offer-ing superior spatial and 
temporal resolution, which is ideal for specific 
applications requiring high precision. Recently, 
hybrid systems that integrate multiple modalities 
have emerged, combining the strengths of each 
technology to overcome individual limitations and 
enhance overall performance.  However, raw brain 
signals are often noisy and require preprocessing to 
remove artifacts. One of the most common artifacts, 

especially in EEG signals, is eye move-ment. To 
address this, specific preprocessing techniques are 
employed, such as digital filtering for noise removal 
and Independent Component Analysis (ICA) for 
artifact correction. 

Next, the feature extraction phase begins, where 
relevant features are extracted from the pre-processed 
signals to identify specific patterns in brain activity. 
Common techniques in-clude time-domain features 
(such as signal amplitude, variance, and peak values) 
and frequen-cy-domain features (such as power 
spectral density and wavelet transforms), which 
together provide a comprehensive description of 
signal characteristics. Effective feature extraction is 
critical for improving the accuracy and robustness of 
BCI systems, as it directly influences the performance 
of the subsequent classification algorithms. There are 
three main types of classi-fication algorithms used in 
the BCI field: Machine Learning (ML), Deep 
Learning (DL), and Transformer-based models. 
These algorithms translate brain activity into 
actionable outputs, which can then be used to control 
external devices such as robotic arms, prosthetics, or 
speech synthesis systems. This paper primarily 
focuses on the signal detection aspect of BCI systems, 
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exploring various techniques and their role in 
enhancing the quality and reliability of brain signal 
acquisition. 

2 TECHNOLOGY OF SIGNAL 
DETECTION 

Neural signals are essential in brain-computer 
interfaces (BCIs) for translating brain activity into 
device control commands. These signals reflect the 
electrical and physiological activity of the brain, 
enabling direct interaction between neural functions 
and external systems. BCIs primarily rely on 
accurately capturing these signals, thereby enabling 
applications such as prosthetic control and 
communication aids. To achieve this, various 
techniques are employed to measure brain activity, 
with non-invasive methods being the most widely 
used due to their safety, ease of application, and 
accessibility. 

2.1 Non-Invasive Signal Detection 

Currently, among the non-invasive approaches, 
Electroencephalography (EEG) and Functional Near-
Infrared Spectroscopy (fNIRS) are two prominent 
technologies for recording brain activity. 

2.1.1 Electroencephalography (EEG) 

Electroencephalography (EEG) is a widely adopted 
non-invasive technique for monitoring electrical 
activity in the brain. By placing electrodes on the 
scalp, EEG captures voltage fluc-tuations arising 
from current flows within neuronal networks (Finnis 
et. al. 2024). Since its introduction nearly a century 
ago, EEG has been a foundational tool in both clinical 
diagnos-tics and neuroscience research. Rather than 
detecting action potential, EEG measures 
postsynaptic potentials generated by neurotransmitter 
activity. These signals originate from cortical 
pyramidal neurons, which are aligned in a way that 
makes their synchronized activity more detectable. 
However, the signal is often modulated by factors 
such as cerebrospinal fluid and the skull, which can 
distort or attenuate its propagation (Andrea et. al. 
2019). 

EEG plays a pivotal role in diagnosing 
neurological disorders, including epilepsy, sleep dys-
functions, and other conditions (Andrea et. al. 2019). 
In recent years, its integration with brain-computer 
interface (BCI) systems has expanded its 
applications, enabling innovations such as mind-

controlled prosthetics and rehabilitation devices (Lee 
et. al. 2017). A major ad-vantage of EEG lies in its 
exceptional temporal resolution, which allows it to 
track rapid neu-ral changes in real-time (Mathewson 
et. al. 2017). Modern EEG systems, which can 
support over 128 recording channels and achieve 
sampling rates exceeding 10 kHz, are lightweight, 
portable, and cost-efficient (Andrea et. al. 2019). 
These features make EEG suitable for both controlled 
laboratory environments and real-world applications, 
such as classrooms and athlet-ic training. 

However, EEG systems are not without 
limitations. They are highly sensitive to noise, in-
cluding electrical interference and movement 
artifacts, such as eye blinks or head motion 
(Mathewson et. al. 2017). Moreover, variations in 
signal preprocessing methods and referenc-ing 
techniques between different research studies can 
reduce result reproducibility and limit their broader 
application. Despite these challenges, continued 
advancements in signal pro-cessing and 
computational analysis ensure that EEG remains a 
critical tool for exploring brain function and 
developing neurotechnological innovations (Pfeffer 
et. al. 2024). 

2.1.2 Functional Near-Infrared 
Spectroscopy (fNIRS) 

Functional Near-Infrared Spectroscopy (fNIRS) is an 
emerging non-invasive imaging technol-ogy that 
monitors brain activity by measuring changes in 
blood oxygenation (Finnis et. al. 2024). Compared to 
EEG which directly records electrical activity, fNIRS 
indirectly tracks neural processes by capturing 
fluctuations in oxyhaemoglobin (HbO2) and 
deoxyhaemoglobin (HbR) levels. These changes are 
indicative of hemodynamic responses to brain 
activation. Employing near-infrared light, fNIRS 
detects these variations with greater spatial resolution 
(approximately 1 cm) than EEG (roughly 3 cm) 
(Borgheai et. al. 2020). Furthermore, fNIRS is less 
susceptible to artifacts caused by muscle activity or 
motion, making it an advantageous choice in many 
scenarios (Finnis et. al. 2024). Unlike EEG, one of 
fNIRS’s most notable ben-efits is its immunity to 
electromagnetic interference, which is particularly 
valuable in envi-ronments where electrical noise 
poses a challenge. This characteristic has made 
fNIRS a pre-ferred tool in applications such as 
controlling prosthetic devices and studying brain 
activity under real-world conditions. In the context of 
BCIs, fNIRS has shown great promise for assist-ing 
individuals with severe motor impairments, such as 
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late-stage amyotrophic lateral sclerosis (ALS) 
patients (Borgheai et. al. 2020). It can translate 
haemodynamic changes into actionable control 
signals during cognitive tasks, such as mental 
arithmetic or imagery. 

Recent innovations include the development of 
hybrid EEG-fNIRS systems, which combine the 
temporal resolution of EEG with the spatial precision 
of fNIRS (Liu et. al. 2021). Fur-thermore, advanced 
paradigms such as the Visuo-Mental (VM) task 
combine visual stimuli and mental calculations to 
generate distinctive hemodynamic patterns in single 
trials (Bor-gheai et. al. 2020). These advances reduce 
response times and enhance usability, particularly in 
spelling systems for communication. Unlike 
traditional methods requiring multiple trials, fNIRS-
based systems can identify target responses rapidly, 
often achieving classification accu-racies above 80% 
(Liu et. al. 2021). The robustness of fNIRS against 
motion artifacts and its compatibility with bedside 
setups highlight its transformative potential for 
neurotechnological applications (Cutini et. al. 2012). 
As research continues, refinements in algorithms, 
real-time processing, and system integration are 
expected to further enhance its effectiveness, particu-
larly in personalized and clinical settings (Yücel et. 
al. 2017). 

2.2 Invasive Signal Detection 

ECoG is a neurophysiological method used to record 
electrical activity directly from the sur-face of the 
brain. It involves placing electrode grids on the 
exposed cerebral cortex, typically during a surgical 
procedure. It is considered a minimally invasive 
technique compared to fully invasive methods like 
intracortical recordings, as the electrodes rest on the 
brain surface rather than penetrating it (Wilson et. al. 
2006).  

ECoG based BCIs leverage several key 
advantages over non-invasive alternatives. The signal 
quality is enhanced in ECoG as the electrodes are 
closer to the neural sources, yielding signals with 
higher amplitude compared with EEG (Wilson et. al. 
2006). This reduces signal noise and allows for better 
artifact rejection. It also has higher spatial and 
temporal resolution. The millimetre-scale spatial 
resolution achievable with ECoG enables 
discrimination of fine neural patterns. This contrasts 
with the centimetre-scale resolution of EEG, which 
often leads to sig-nal overlap. The applications of 
ECoG have proven effective for both motor and 
sensory im-agery-based control tasks, particularly in 
tasks like imagining limb movements which activate 

distinct sensorimotor rhythms. ECoG’s precision 
allows mapping these activities across adja-cent 
cortical areas. Despite its advantages, ECoG-based 
systems face challenges including sur-gical risks, 
chronic viability, and signal interpretation. The 
implantation of ECoG grids re-quires craniotomy, 
carrying inherent risks such as infection and 
inflammation. In the long-term, it raises concerns 
about electro stability and biocompatibility. 

2.3 Hybrid BCI (hBCI) 

To enhance BCI performance, BCI systems are 
increasingly being incorporated with other 
physiological signals. The EEG-fNIRS mentioned in 
the fNIRS technology part is one of the most 
promising hybrid BCI systems. It combines the high 
temporal resolution of EEG and the spatial resolution 
of fNIRS, which provides a complementary insight 
into brain dynamics.  

Electrocardiography (ECG) and heart rate 
variability (HRV) are also gaining attention in BCIs 
for detecting emotional and autonomic responses. 
The study in states that the fusion of ECG and EEG 
features for hBCI enhances the average imagery 
classification accuracy in training and evaluation 
stages (Shahid et. al. 2011). However, more recent 
studies have pre-dominantly focused on combining 
EEG with other modalities such as electromyography 
(EMG) and functional near-infrared spectroscopy 
(fNIRS). For example, a 2024 study intro-duced a 
motor imagery classification model based on a hybrid 
BCI that integrates EEG and EMG signals, 
demonstrating improved classification accuracy.   
Another study in 2020 eval-uated the performance of 
a compact hybrid BCI combining EEG and fNIRS, 
achieving high classification accuracy with a reduced 
number of channels (Choi et. al. 2017). These 
develop-ments suggest that while the fusion of ECG 
and EEG in hybrid BCIs has been explored, re-cent 
research trends have shifted towards other 
combinations of physiological signals to en-hance 
BCI performance and practicality. 

3 APPLICATIONS OF BCI 

The BCI has significant potential in both clinical 
and non-clinical fields, with different 
applications tailored to distinct purposes. 
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3.1 Clinical Applications 

Brain-Computer Interfaces (BCIs) have 
revolutionized clinical rehabilitation and 
assistive technologies. These systems offer 
transformative solutions for patients with severe 
motor or communication impairments. In stroke 
rehabilitation, BCIs leverage motor imagery and 
real-time feedback to activate neural pathways, 
promoting neuroplasticity and aiding motor 
recovery, especially when combined with 
robotic devices or functional electrical 
stimulation (Ang et. al. 2015). For individuals 
with amyotrophic lateral sclerosis (ALS), BCIs 
provide an essential communication channel by 
detecting brain signals like P300 or steady-state 
visual evoked potentials (SSVEP), enabling 
word spelling or device control even in advanced 
disease stages (Vansteensel et. al. 2016). 
Furthermore, BCIs enable intuitive control of 
prosthetic limbs and wheelchairs by translating 
electroencephalography (EEG) signals into 
commands, empowering individuals with severe 
motor impairments to regain mobility and 
independence. Additionally, combining BCI 
with machine learning has led to significant 
advancements in natural language processing 
(NLP), allowing real-time text generation or 
speech synthesis through neural decoding, which 
is especially beneficial for patients with locked-
in syndrome (Moses 2021). These clinical 
applications highlight the profound impact of 
BCIs on improving patient quality of life and 
enabling greater independence.  

3.2 Non-Clinical Applications 

In non-clinical fields, Brain-Computer Interfaces 
(BCIs) have demonstrated transformative 
potential across diverse fields such as gaming 
and creative arts. In gaming, BCIs enable brain-
controlled experiences that allow players to 
interact with games through their thoughts, 
which enhance engagement and creates 
innovative design possibilities. This 
advancement highlights the potential of BCIs to 
revolutionize entertainment and education by 
driving the development of more intuitive 
human-computer interfaces (Nijholt et. al. 
2015). Similarly, in the creative arts, BCIs allow 
users to create music, paintings, or digital art 

through neural activity, providing a unique 
platform for self-expression and creativity. This 
is particularly impactful for individuals with 
physical disabilities, as it broadens access to 
artistic creation while pushing the boundaries of 
traditional art production and experience 
(Miranda et. al. 2011). These applications 
underscore the versatility of BCIs in shaping 
interactions with technology beyond clinical use. 

4 CONCLUSIONS 

Brain-Computer Interface (BCI) systems have 
emerged as one of the most transformative 
technologies in modern science, bridging the gap 
between neural activity and external device control. 
BCIs have come a long way since their foundational 
discovery with EEG in the early 20th century. Today's 
advanced hybrid systems have demonstrated 
remarkable potential in both clinical and non-clinical 
domains. Central to the effectiveness of these systems 
is the methodology of signal detection, which 
encompasses non-invasive techniques like EEG and 
fNIRS, invasive methods such as ECoG, and hybrid 
BCIs that combine multiple modalities for enhanced 
performance. Each of these approaches offers unique 
advantages: EEG provides ex-ceptional temporal 
resolution, fNIRS delivers superior spatial resolution, 
and ECoG achieves unmatched precision through 
direct cortical contact. 

The clinical applications of BCIs are diverse, 
including stroke rehabilitation, assistive tech-
nologies for individuals with ALS, and 
communication solutions for locked-in syndrome. 
These applications demonstrate BCIs' capacity to 
significantly improve quality of life. These systems 
leverage advanced signal processing and machine 
learning to translate neural activity into actionable 
outputs, facilitating motor recovery, communication, 
and mobility. Non-clinical applications, such as 
brain-controlled gaming and artistic creation, 
demonstrate the versatility of BCIs beyond 
healthcare, offering new platforms for self-
expression, creativity, and intuitive interaction with 
technology. Despite these advancements, several 
challenges need to be addressed through ongoing 
research, including signal noise reduction, movement 
artifact compensation, and minimizing risks 
associated with invasive methods. Variability in 
preprocessing techniques and the complexity of 
integrating multimodal systems also present obstacles 
to widespread adoption. However, ongoing research 
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in computational algorithms, re-al-time signal 
processing, and system miniaturization continues to 
address these limitations, paving the way for broader 
usability in both laboratory and real-world settings. 

Looking ahead, BCIs are positioned to 
revolutionize human-computer interaction, enabling 
seamless integration between neural processes and 
external systems. Emerging hybrid sys-tems, such as 
EEG-fNIRS combinations, highlight the potential to 
enhance classification ac-curacy and usability, 
particularly for personalized and clinical applications. 
The fusion of BCIs with fields like artificial 
intelligence, natural language processing, and 
robotics is creating synergistic effects. These 
combinations are accelerating innovation by enabling 
more sophisti-cated interpretation of neural signals, 
thus opening doors to new possibilities in 
communica-tion, rehabilitation, and entertainment. In 
conclusion, BCIs have the potential to redefine the 
relationship between humans and technology, 
transforming how humans interact with ma-chines 
and the environment. While significant challenges 
remain, continued advancements in signal 
acquisition, processing techniques, and system 
integration ensure that BCIs will play an increasingly 
vital role in addressing societal needs, improving 
accessibility, and enhancing the overall quality of life 
for individuals across the globe. 
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