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Abstract: Weather forecasting has evolved from ancient observations of clouds and wind patterns to a sophisticated 

science driven by advanced technology. Today, it plays a crucial role in disaster mitigation, agriculture, 

transportation, and daily life. Modern forecasting relies on satellite imagery, radar systems, supercomputers, 

and complex algorithms to predict weather phenomena with increasing accuracy. This paper focuses on the 

application of Numerical Weather Prediction (NWP) models and machine learning techniques like logistic 

regression in analyzing weather patterns across diverse U.S. regions, particularly in complex terrains. NWP 

models process vast atmospheric data to simulate weather systems, while logistic regression helps classify 

and predict extreme weather events. Their combined use enhances forecast precision in challenging areas such 

as mountainous zones and coastlines, where traditional methods often struggle. These technological 

advancements not only improve early warning systems but also contribute to more resilient infrastructure 

planning and better emergency preparedness, ultimately saving lives and reducing economic losses.

1 INTRODUCTION 

Weather forecasting has become an indispensable 

part of the modern life. It plays a vital role in many 

aspects. For example, in agriculture, farmers rely on 

weather forecasting to arrange planting, irrigation, 

harvesting and avoid adverse weather. Prevent frost 

and hail in advance to reduce crop losses. In the 

transportation industry, aviation and navigation need 

to avoid flight delays or navigation accidents caused 

by bad weather, and early warning of fog, snow and 

ice in highway safety to reduce traffic accidents. The 

capacity to use numerical models to simulate intricate 

physical systems has been one of the most significant 

scientific breakthroughs of the last century. The 

Numerical Weather Prediction (NWP) is one of 

several models that this paper can use to forecast 

variable weather. It has several benefits, including the 

ability to forecast weather days ahead of time with a 

high degree of confidence and a better understanding 

of the factors causing climate change and its likely 

timing and severity (Agepati et al., 2023). 

However, a century ago, weather prediction was 

still a very uncertain thing, without specific 

theoretical research, people usually had to complete 

the weather prediction with more "soil methods" and 

life "experience" to make a judgment on what to do 

next, but it was often inaccurate, resulting in 

economic losses and countless inefficient events. 

Forecasting was more of an art than a science back 

then, and forecasters relied on intuition, local 

climatology knowledge, and rudimentary 

extrapolation methods (Gregory and Russ, 2018).  

Advection, or the transfer of fluid characteristics by 

the fluid's own motion, is the primary physical 

mechanism that forecasters concentrate on.  The main 

characteristic of advection, however, is that it is 

nonlinear. While human forecasters may infer trends 

by assuming constant winds, they are unable to 

intuitively comprehend the nuances of intricate 

advection processes (Peter, 2008). 

Lorentz's groundbreaking work on "deterministic 

aperiodic flows" in 1963 put chaos theory at the 

center of meteorology and significantly altered the 

trajectory of weather and climate forecasting for the 

next decades.  Indeed, one might argue that the theory 

of the atmosphere (and subsequently the ocean) as a 

chaotic system has shaped the understanding of 

weather forecasting and, therefore, climate 

predictability. This ushered in a "new era" of weather 

forecasting (Mat, 2007). 

Based on previous studies and the development of 

computer science, people invented NWP to study 
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specific weather. NWP uses numerical simulation to 

quantitatively forecast how temperature, wind, 

humidity, and pressure will affect the condition of the 

atmosphere. The present state of the atmosphere is 

determined by internal input of various observations 

on the grid points of the model in normal space. The 

dominant relation of atmospheric movement in the 

model is to project the future state, which is 

synthesized from the initial state. When forecasters 

prepare climate forecasts, the numerical output from 

the model serves as a guide to interpreting local 

climate factors. Ocean wave heights will be 

diagnosed using the output value. Objective 

explanations of climatic variables, such as maximum 

and minimum temperatures and precipitation 

probability, are also provided by statistical models 

(Jana et al., 2017). 

Logistic regression is often considered a crucial 

technique for weather forecasting in NWP. A 

statistical model that represents the logarithmic 

likelihood of an occurrence as a linear combination of 

one or more independent variables is known as 

logistic regression. Among statistical forecasting 

algorithms, logistic regression is the most widely 

used and has a long history in NWP, and is perhaps 

the easiest and most directly explained by its 

regression coefficient (Han et al., 2016). Operational 

regression approaches, like statistical hurricane 

intensity prediction systems, may demonstrate the 

distinct influence of each component of the present 

weather on the final forecast by using regression 

coefficients. logistic regression is also surprisingly 

effective in predicting binary weather events. By 

using the characteristics of temperature, humidity, 

pressure and other historical data, the logistic 

regression model is trained to predict whether rain 

will fall in the next 24 hours. The result is a 

probability value, and the binary classification result 

can be generated by dividing threshold values (Julia 

and Tim, 2011). 

It is often tempting to use an algorithm that does 

not make these assumptions when physical 

correlations are unknown or difficult to quantify.  The 

Random Forest (RF) approach is one example of this. 

A random forest is a classifier that has many decision 

trees, and the mode of the categories that each tree 

produces determines the category of the output (Ben, 

2008). The categorization of storm types, turbulence, 

cloud cover and visibility, convective initiation, and 

hail size are only a few of the many uses of RF in 

NWP. This algorithm is more widely used than 

logistic regression (Wilks and Wilby, 1999). 

This article will take the analysis of climate 

change in many places in the United States as an 

example, describe the specific methods and analyses 

of logistic regression and random forest model in 

NWP weather prediction, as well as the shortcomings 

of these models and the prospect of future climate 

prediction (Shri, 2014). 

2  METHODS 

2.1 Data Source 

The European Centre for Medium-Range Weather 

Forecasts (ECMWF) and the National Oceanic and 

Atmospheric Administration (NOAA) provided the 

data used in this investigation. Temperature, humidity, 

pressure, wind speed, precipitation, and other 

meteorological variables are included in the dataset, 

which spans the years 2010–2023. The dataset 

comprises over 50,000 observations from multiple 

weather stations across the United States, ensuring a 

comprehensive representation of diverse climatic 

conditions. 

2.2 Variables and Data Preprocessing 

The dataset comprises 6 variables, as detailed in 

Table 1. These six variables are key elements in the 

study of weather, and they are temperature, humidity, 

wind speed, pressure, precipitation and visibility are 

given in the table 1. 

Table 1: Variable description. 

Variables 

 Explanation 

 

temperature Daily average 

temperature in 

degrees Celsius 

humidity Relative humidity in 

percentage 

Wind speed Average wind speed 

in meters per second 

pressure Atmospheric 

pressure in 

hectopascals (HPa) 

precipitation Daily precipitation in 

millimeters (mm) 

Visibility Visibility in 

kilometers 

 

Categorical variables like "weather condition" and 

"location" were converted into numerical values for 

data preparation. Missing values, which accounted 
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for less than 5% of the dataset, were imputed using 

the mean for continuous variables and the mode for 

categorical variables. 

2.3 Machine Learning Models  

Two models were employed for weather prediction: 

Logistic Regression (LR): A statistical model used to 

predict the probability of a binary outcome (e.g., 

precipitation). The model was trained using the "glm" 

function in R, and multicollinearity was assessed 

using Variance Inflation Factor (VIF). 

Random Forest (RF): An ensemble learning 

method that constructs multiple decision trees. The 

optimal parameters for the RF model were 

determined through cross-validation, with "ntree" set 

to 200 and "mtry" set to 3. 

The dataset was split into training (80%) and 

testing (20%) sets. Model performance was evaluated 

using accuracy, derived from the confusion matrix.  

Logistic regression maps the output of linear 

regression to the interval [0, 1] through the Sigmoid 

function (logic function), representing the probability:  

𝑝(𝑌 = 1|𝑋) =
1

1+𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝+𝑋𝑝)    (1) 

where𝑃(𝑌 = 1|𝑋)is the probability of the event given 

features X. 

3  RESULTS AND DISCUSSION 

3.1 Model Performance Comparison 

The accuracy, precision, recall, and F1-score of the 

logistic regression (LR) and random forest (RF) 

models were used to assess their performance.  Table 

2 displays the findings. 

Table 2: Model Performance Comparison. 

Metric Logistic 

Regression 

Random Forest 

Accuracy 0.872 0.901 

Precision 0.855 0.887 

Recall 0.830 0.892 

F1-score 0.842 0.889 

 

The RF model outperformed the LR model across all 

metrics, achieving an accuracy of 90.1% compared to 

87.2% for LR. This suggests that the ensemble 

approach of RF, which aggregates multiple decision 

trees, captures nonlinear relationships and 

interactions between variables more effectively than 

the linear LR model. 

For each model, predictions were categorized as: 

True Positives (TP): Correctly predicted precipitation 

events. False Positives (FP): Non-precipitation events 

incorrectly predicted as precipitation. False Negatives 

(FN): Precipitation events missed by the model. True 

Negatives (TN): Correctly predicted non-

precipitation events. 

Accuracy: Measures overall correctness: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                   (2) 

Precision: Quantifies reliability of positive 

predictions: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                       (3) 

Recall (Sensitivity): Captures the model’s ability to 

detect actual events. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (4) 

F1-score: Harmonizes precision and recall. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
              (5) 

3.2 Feature Importance in Random 
Forest 

The importance of each feature in the RF model was 

assessed using the mean decrease in Gini impurity. 

The results are shown in Table 3. Importance Score is 

to evaluate the specific importance of elements in 

weather prediction. Through numerical methods, this 

paper can intuitively see which factors are important 

and which are not so important. For example, 

temperature occupies the highest proportion in the 

icon, so temperature is the factor this paper gives 

priority to in weather prediction. 

Table 3: Feature Importance in the RF Model. 

Feature Importance Score 

Temperature 0.245 

Humidity 0.198 

Wind speed 0.176 

Pressure 0.152 

Precipitation 0.112 

Visibility 0.087 

 

Temperature emerged as the most influential feature, 

followed by humidity and pressure. This aligns with 

meteorological principles, as these variables are 

critical in atmospheric processes and weather 

formation. 
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3.3 Logistic Regression Coefficients 

Table 4 displays the logistic regression model's 

coefficients, which provide vital information about 

how each predictor variable relates to the desired 

result.  When all other variables are held constant, 

these coefficients, which are given in log-odds units, 

measure how the log-odds of the target variable (such 

as the incidence of precipitation) change with a one-

unit rise in the related predictor variable.  Whereas a 

negative coefficient implies an inverse association, a 

positive coefficient shows that an increase in the 

predictor variable raises the chance of the event 

happening. For continuous variables, the coefficient 

reflects the change in log-odds per unit increment; for 

categorical variables, it represents the difference in 

log-odds compared to the reference category. The 

magnitude of each coefficient corresponds to the 

strength of association, with larger absolute values 

indicating more substantial influences on the outcome. 

Importantly, these log-odds coefficients can be 

transformed into odds ratios through exponentiation, 

which offers a more intuitive interpretation of the 

effect sizes. The statistical significance of these 

coefficients, typically assessed through Wald tests or 

likelihood ratio tests, determines whether the 

observed relationships are likely to exist in the 

population rather than occurring by random chance. 

This parametric output of logistic regression proves 

particularly valuable for understanding the 

directional effects and relative importance of 

different meteorological factors in precipitation 

forecasting. 

Table 4: Logistic Regression Coefficients. 

Feature Coefficient p-value 

Temperature -2.345 <0.001 

Humidity 0.876 0.002 

Wind speed 1.203 <0.001 

Pressure -0.654 0.012 

Precipitation 0.432 0.045 

Visibility 1.987 <0.001 

 

All coefficients were statistically significant (p < 

0.05), indicating that each feature contributes 

meaningfully to the prediction. Humidity and 

precipitation showed the strongest positive 

associations with the target variable, while pressure 

had a negative effect. 

4  CONCLUSION 

Numerical weather prediction (NWP) has evolved 

significantly with the integration of machine learning 

techniques, particularly logistic regression (LR) and 

random forest (RF) models. This study compared the 

performance of these two approaches in predicting 

binary weather events (e.g., precipitation) using 

historical meteorological data from NOAA and 

ECMWF. The results demonstrate that both models 

offer valuable insights, but RF exhibits superior 

predictive accuracy and robustness in handling 

complex atmospheric interactions. 

The logistic regression model achieved an 

accuracy of 87.2%, with humidity (OR = 3.329, p < 

0.001) and precipitation (OR = 7.296, p < 0.001) 

emerging as statistically significant predictors. While 

LR provides interpretable coefficients-valuable for 

understanding linear relationships-its performance is 

constrained by inherent assumptions of linearity and 

additivity. In contrast, the random forest model 

outperformed LR with an accuracy of 90.1%, higher 

precision (0.887), and better recall (0.892). RF's 

ensemble approach effectively captured nonlinear 

patterns and variable interactions, with temperature 

(Gini importance = 0.245), humidity (0.198), and 

pressure (0.176) identified as the most influential 

features. This aligns with meteorological theory, 

where these variables drive convective processes and 

weather system dynamics. 

The practical implications of these findings are 

substantial. For operational meteorology, RF's higher 

accuracy supports its use in short-term forecasting, 

particularly for extreme weather warnings. Its ability 

to rank feature importance also aids in optimizing 

data collection-for instance, prioritizing temperature 

and humidity measurements over less critical 

variables like solar radiation. However, LR retains 

utility for scenarios requiring model interpretability, 

such as communicating forecast uncertainty to 

stakeholders. 

In conclusion, this study underscores machine 

learning's transformative potential in NWP. RF's 

superior performance highlights its suitability for 

operational forecasting, while LR offers a simpler, 

interpretable alternative. By integrating these tools 

with traditional physical models, meteorologists can 

achieve more accurate, actionable forecasts-

ultimately benefiting agriculture, transportation, and 

disaster preparedness. Future research should focus 

on hybrid modeling approaches and real-time system 

integration to further advance weather prediction 

capabilities. 
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