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Abstract: The paper presents a new design strategy for industrial process control applications. The adaptive-robust 
control approach considers both adaptive control advantages and robust control benefits; the connection 
between the two concepts preserves the imposed performances for the closed loop nominal control system. 
The combined adaptive-robust solution introduces the same integral criterion for parameters identification of 
the process and for the control algorithm design. An optimal integral criterion and an appropriate robust 
measure for degradation of the system performances due to variation of the model are introduced in an 
iterative mechanism. The theoretical approach presented in this paper is validated on a close loop control 
system, the application being developed in simulation. The proposed strategy is aiming to implement 
adaptive-robust control in practical process applications. 

1 INTRODUCTION 

The 1960-1980s became the most important period 
for the development of control theory and in 
particular adaptive control. System identification and 
parameter estimation played a crucial role in the 
reformulation and redesign of adaptive control 
(Astrom & Wittenmark, 2008; Landau, 1995). 

Adaptive control systems can automatically adjust 
its parameters to compensate variations in the process 
ensuring imposed performances even when the 
system's dynamics change or uncertainties are 
present. This adaptive system identifies in closed loop 
parameters in real time, adapting the controller's 
action to the applications where process parameters 
are unknown or time-varying (Popescu & Gentil, 
1998; Foulloy et al., 2004; Popescu et al., 2008). 

As a difference from an adaptive control strategy, 
in robust control rather than relying on real-time 
adaptation to measured variations, the controller is 
designed a priori to maintain performance under the 
assumption that certain system parameters are 
uncertain, but within known bounds. 

The start of the theory of robust control took shape 
in the 1980s and is still active today. The modern 
theory of robust control system began in the late 

1990s and soon developed a number of techniques for 
dealing with bounded system uncertainty. 

Robustness is the ability to keep imposed 
performance unchanged under external disturbances 
and uncertainties. Robust control is a technique 
focused on ensuring a control system's performance 
despite uncertainties in the process or its 
environment. It aims to maintain imposed 
performance even when faced with disturbances, 
parameter or dynamic model structure variations. 
Robust control is crucial for applications with 
parameters and structure uncertainties, where 
stability and reliability are essential. 

2 CONTROL STRATEGIES 

2.1 Adaptive Control 

The evolution of systems theory during the 70s-80s 
allowed the growth of interest and progress in 
adaptive control strategies. The rapid development of 
numerical computing resources, programming and 
simulation facilities contributed to the emergence and 
development of numerical methods for data 
acquisition and processing, modelling and 
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identification of processes and design of control 
algorithms. Under these favourable conditions, the 
possibility of transferring the performance of control 
systems obtained in simulation to real applications in 
processes appeared. As a result, for real-time control, 
adaptive strategies were recommended and 
implemented in industrial process automation. 

The adaptive control strategy proposes for each 
sampling moment, a re-identification of the process 
and a re-design of the control system. It ensures the 
maintenance of nominal imposed performances on 
the physical system that drives the process, at each 
sampling moment. 

The computational effort is significant and 
demanding for processes with rapid evolution and 
these limitations were cancelled by the robust control 
strategy. The adaptive control mechanism is 
illustrated in Figure 1. 

 
Figure 1: Adaptive control scheme. 

The adaptive control mechanism is based on the 
recursive relationship for repeated estimation of 
model parameters and design of the control 
algorithm, after the relation: 
 

( ) ( )1 1, ,k k k kC M C M+ +→  (1)
 

where kC  and 1kC +  are the controllers at step k and 
k+1, kM  and 1kM +  are the models at step k and k+1. 

Adaptive control remains a recommended 
solution for processes with model parametric 
uncertainty (invariant structure and variable 
parameters) and for slowly variable processes 
described by low-order models (Astrom, 1983; 
Chalam, 1987; Anderson, et al., 1986). 

Successes after the 1980s, however, were soon 
followed by controversies over the practicality of 
adaptive control concerning the computational effort 
for the reidentification of model parameters and the 
redesign of the controller in real-time closed loop 
system. Thus, the robust control alternative began 
(Ogata, 1990; Lewis et al., 2012; Wang et al., 2013; 
Doelman et al., 2009). 

2.2 Robust Control 

Robust control is a field of automatic control theory, 
recommended for preserving the stability and 
performance of systems with parametric and/or 
structural model uncertainty. Robust design methods 
ensure a maximum uncertainty region through 
robustness corrections, in order to attenuate the 
effects of disturbances. The robust controller is 
tolerant to the action of disturbances and to the 
nonlinearities in the system for a collection of models 
associated with different operating regimes of the 
process (Dullerud & Paganini, 1999). 

Duncan McFarlane and Keith Glover of 
Cambridge University propose a design method for a 
robust H-infinity loop-shaping system in the 
frequency domain by minimizing the disturbance-
output sensitivity function (McFarlane & Glover, 
1992). The optimal-robust controller guarantees that 
the system ensures an invariance of the performance 
under the action of disturbances. 

An important approach for the design of robust 
systems in input-output representation is presented in 
(Popescu et al., 2017). Robustness indicators in the 
frequency domain (robustness margin and 
disturbance-output sensitivity function) are 
introduced to evaluate the robustness of the system 
and a design method based on the remarkable 
properties of the disturbance-output sensitivity 
function is proposed. The nominal control system is 
adjusted so that the sensitivity function respects, in 
the frequency domain, a template imposed by 
successive calibration techniques. 

From an application-oriented perspective, sliding 
mode control (SMC), represents an emerging area 
within robust control. Its inherent robustness to 
uncertainties, combined with its relative design 
simplicity, has led to its widespread adoption across 
a range of practical applications (Bojan-Dragos et al., 
2024). Other areas of application concern power 
control for renewable sources of energy (Ghalem et 
al., 2018). 

The robust control strategy is represented in 
Figure 2 and remains recommended for models with 
parametric and/or structural uncertainty and for 
nonlinear process models. Robust control preserves 
system stability of the system and tolerates model 
uncertainties caused by the action of disturbances or 
process nonlinearities. The robust controller 
preserves system performance for a class of models 
associated with possible process operating regimes 
(Popescu et al., 2017; Green & Limebeer, 2012; 
Popescu et al., 2008). 
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Figure 2: Robust control scheme. 

The robustness reported to system performance is 
expressed by relation (2), which expresses the 
performance difference between the physical system 
and the nominal system: 
 

1 1
CP CM small

CP CM
− →

+ +
 

(2)

 

where C  is the controller computed for process P , 
estimated by model M . 

2.3 Adaptive-Robust Control 

By the middle 1980s, several new redesigns and 
modifications were proposed and recommended, 
leading to a series of work known as robust adaptive 
control. 

The efficiency of integrated control systems in 
automation solutions dedicated to technological 
processes is determined by the process identification 
and the system control design, two extremely 
important concepts that ensure the performance of the 
system. The behaviour of control systems in 
industrial applications depends directly on the quality 
of the mathematical model that expresses the process 
dynamics and the control algorithm and therefore the 
interdependence between the two concepts to ensure 
the required performances is obvious. For a high level 
of performance, the model must adapt when it 
becomes uncertain for the process, and the control 
algorithm must be tolerant to the action of 
disturbances. Thus, starting with the 1990s, a new 
concept was highlighted under the name of 
identification for robust control, a concept that later 
supported the adaptive-robust control strategy 
(Athans et al., 2005; Ioannou & Sun, 2013; Narendra 
& Annaswamy, 1986). 

Important results on adaptive-robust control 
strategies are obtained after 1990s and involved the 
understanding of the various robust modifications and 
their unification under a more general framework. 
The adaptive–robust control strategy, proposed in this 

paper, combines the advantages of adaptive control 
and robust control respectively, by minimizing the 
computational effort and by increasing the transfer of 
simulation results in real time applications. This 
strategy is shown in Figure 3. 

 
Figure 3: Adaptive-robust control scheme. 

3 ADAPTIVE-ROBUST 
CONTROL METHODOLOGY 

The main objective for this strategy is to combine 
resources offered by adaptive and robust control in a 
complementary manner to obtain high-performance 
results in the automation of industrial processes. 

The identification mechanism must be integrated 
into an automatic control system and therefore a set 
of models attached to the process dynamics must be 
considered, if the nominal performances from the 
simulation are to be maintained for the operation of 
real processes. It is therefore proposed to perform an 
identification and calculate a real-time command, for 
the regulation of the process subjected to 
disturbances. 

Let us consider the nominal system (NS) with the 
nominal performances (NP) validated in simulation, 
represented in Figure 4: 

 
Figure 4: Nominal control system (NS). 

and the physical real system (RS) with performances 
to be achieved (RP) on the physical process, 
represented in Fig. 5: 

 
Figure 5: Real control system (RS). 
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It is desired that the performances obtained in the 
simulation are found as achieved performances, under 
the conditions in which the process changes its 
nominal operating point under the action of 
disturbances. 

In practice, the identification problem is solved by 
minimizing the criterion constructed with the 
estimation error and separately the optimal command 
is calculated by minimizing another optimality 
criterion depending on the regulation error system, as 
follows: 

• if a compensator C  is known, the optimal 
identification model M  can be determined using an 
identification criterion IJ : 
 

( )arg min ,I
M

M C M= J  (3)

 

• if an identification model M  is known, the 
optimal compensator C  can be determined using a 
control criterion CJ : 
 

( )arg min ,C
C

C C M= J  (4)

 
The complementary relationship between the 

problems of identification and control design is 
supported by an iterative process (Gliga et al., 2008; 
Levreetsky & Wise, 2024; Pham et al., 2025). The 
two problems above can be defined in a unified 
manner, which once again emphasizes the 
complementarity between the two optimization 
problems within the general problem of designing 
automatic control systems. 

Our approach is based on the idea that 
identification should be carried out for the purpose of 
control design and not separately. For this reason, a 
single criterion remains important, for example CJ . 

Given an optimization criterion J  (for example, J ≡ J஼) and a corresponding norm, its optimal value 
is obtained by minimizing ‖J‖ on the set of model-
compensator pairs associated with the process. 

 
In practice, the compensator built from an 

estimated model must lead to similar performances in 
simulation and on the operating process. There are 
thus two additional types of restrictions imposed by 
the criterion J : 
 ‖Jሺ𝐶,𝑀ሻ‖ < 𝛿 (5)‖Jሺ𝐶,𝑃ሻ − Jሺ𝐶,𝑀ሻ‖ ≪ ‖Jሺ𝐶,𝑀ሻ‖ (6)
 

where δ  is the degradation error. The norms in the 
above inequalities have natural interpretations, such 
as: 

• ‖Jሺ𝐶,𝑀ሻ‖  represents the nominal 
performance; 

• ‖Jሺ𝐶,𝑃ሻ‖  represents the performance 
achieved during operation; 

• ‖Jሺ𝐶,𝑃ሻ − Jሺ𝐶,𝑀ሻ‖  measures the 
degradation of the nominal performance, while the 
compensator   was built starting from the estimated 
model M  and not from the real model P . 

Constraint (5) ensures good nominal 
performance, while constraint (6) refers to 
robustness. The value of ‖Jሺ𝐶,𝑀ሻ‖  being 
sufficiently small, the performance degradation will 
also be reduced. 

We should also point out that this constraint does 
not necessarily have to be verified if the nominal 
performance ‖Jሺ𝐶,𝑀ሻ‖  is close to the realized 
performance ‖Jሺ𝐶,𝑃ሻ‖. As this is difficult to test, the 
robustness constraint (6) is imposed. If this is 
verified, then the nominal and realized performances 
are close. 

The criterion J  can be used to trigger an iterative 
calculation process aiming to obtain a model-
compensator pair as close as possible to the optimal 
pair. It is sufficient to use the performance 
degradation measure for both the optimization and 
identification criterion of the nominal performance 

IJ  and for the optimization function in the 

evaluation of the command ‖J஼‖ (Borne et al., 2013; 
Stefanoiu et al., 2014). 

The generic stage of this mecanism is described 
below (for all 𝑖 ∈ ℕ): 
 ൜𝑀௜ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛‖Jሺ𝐶௜ ,𝑃ሻ − Jሺ𝐶௜ ,𝑀ሻ‖𝐶௜ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛‖Jሺ𝐶௜ ,𝑀௜ାଵሻ‖  

(7)

 
For each iterative step, the constraints (5) and (7) 

must be verified, expressed in the form: 
 ‖Jሺ𝐶௜ାଵ,𝑀௜ାଵሻ‖ < 𝛿 (8)‖Jሺ𝐶௜ାଵ,𝑃ሻ − Jሺ𝐶௜ାଵ,𝑀௜ାଵሻ‖ ≪ ‖Jሺ𝐶௜ାଵ,𝑀௜ାଵሻ‖ (9)

 
Relations (7), (8) and (9) constitute the core of the 

iterative process. The recursive algorithm is shown in 
the diagram in Figure 6. 
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Figure 6: Recursive adaptive-robust algorithm. 

The recursive algorithm will stop while the 
conditions (8) and (9) are verified, otherwise it goes 
to the identification of the model, and the algorithm 
starts again. The controller that satisfies condition (8) 
is the robust adaptive controller implemented on the 
real system structure (RS). 

Let us consider: 
 

2min ( )J e t dt=   (10)

 

the optimal integral criterrion for designing the 
controller, where ( )e t  is the control error of the 
closed loop system. 

The expression (10) becomes: 
 𝐽 = 𝑚𝑖𝑛න𝑒ଶ(𝐶,𝑀)𝑑𝑡 (11)

 

which accepts a direct representation of the criterion 
as follows: 
 𝐽 = 𝑚𝑖𝑛(𝐶,𝑀) (12)
 

For a fixed model M , identified from the 
measure the robustness degradation, we can compute 
the new controller: 
 𝐽 = 𝑚𝑖𝑛(𝐶) (13)
 

The main steps of the proposed algorithm are the 
following: 

- A closed-loop control system (𝐶଴,𝑀଴), which 
ensures performance at a nominal operating point of 
the process 0P , is considered. 

- If the perturbed process changes the operating 
point iP  driven by the system (𝐶௜ ,𝑀௜) to the new 

point 1iP+ , a new model 1iM +  is re-identified by 
minimizing the performance degradation due to the 
model parametric uncertainty. 

- A new controller 𝐶௜ାଵ is recomputed using the 
optimality criterion J . 

- The recursive procedure ends if the performance 
degradation becomes insignificant. 

As mentioned earlier, the following optimal 
integral criterion J  is considered: 
 𝐽 = න 𝑒ଶ(𝑡)𝑑𝑡∞

௧ୀ଴  (14)

 
After some mathematical transformations, 

detailed in (Calin et al., 1979), the direct expression 
of the integral criterion is obtained as follows: 
 

2 (1 )
i r

r r

T K kJ
K k K k

+ τ=
+

 
(15)

 

The unique optimality criterion J  is used to 
identify the process model by minimizing the 
degradation measure and respectively to recompute 
the controller by minimizing the same criterion. After 
estimating the new model, the new controller is 
designed to preserve the system performance using 
the relations (7). Thus, the limitations of the closed-
loop model adaptation strategy given by the redesign 
of the control algorithm at each sampling moment are 
reduced by the effect of the robust strategy. 

4 STUDY-CASE AND 
SIMULATIONS 

A simple study case for understanding the adaptive-
robust approach is presented considering a first order 
process model and a PI controller for the system. For 
higher order systems, the design methodology 
remains the same, just the number of mathematical 
calculations increases with the order of the process 
model and of the controller complexity. 

Let us consider a process expressed using a first 
order transfer function: 
 

( )
1

kP s
sτ

=
+

 
(16)
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and the PI control algorithm which will be used for 
the system: 
 

1( ) 1r
i

C s K
T s

 
= + 

 
 

(17)

 
Let us consider the process from (16) given by the 

parameters 2k =  and 10τ = . We can initialize the 
controller by using a poles placement method, 
considering as performances: zero overshoot and 40 
sesonds response time. The computed controller is 
given by the parameters ,0 0.5rK =  and ,0 10iT = . 
The system response is represented in Figure 7. A 
10% disturbance is added to the output of the system 
at time t=250s, which is rejected. It should be noted 
that the computed controller will be maintained as 
long as the degradation error criterion given by (8) is 
verified. The degradation error in this case will be 𝛿 = J(𝐶଴,𝑀଴) = 5. 

 

 
Figure 7: System response for (𝐶଴,𝑀଴). 

 
Figure 8: System response for (𝐶௜ ,𝑀௜). 

By using the Cauchy gradient method with the 
ceriterion function given by (15), the algorithm will 
compute a new controller only when necessary. 
The optimum values for the controller at iteration i: 𝐾௥,௜* = 10.592  and 𝑇௜,௜* = 8.2574 . The degradation 
error will be given by the new value 𝛿 =J(𝐶௜ ,𝑀௜) = 1.0454. The system response is shown 
in Figure 8. 

In time the model of the process will change, such 
that the controller will not be able to assure the 
nominal performances. Such a case is represented in 
Figure 9, where the process is identified by a new 
model 1iM + . By applying the same principle, we 

obtained the controller 1iC +  and the system response 
is represented in Figure 10. The degradation error is 
given by 𝛿 = J(𝐶௜ାଵ,𝑀௜ାଵ) = 0.3885. 

It can be noticed that the system performances are 
verified; in fact, we obtained better response time 
compared with the initial response (the response time 
is about 33 seconds). 

 
Figure 9: System response for (𝐶௜ ,𝑀௜ାଵ). 

 
Figure 10: System response for (𝐶௜ାଵ,𝑀௜ାଵ). 

ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics

522



5 CONCLUSIONS 

The paper proposes a new adaptive-robust control 
strategy for the development of industrial automation 
applications. 

The main objective for this strategy is to combine 
the advantages offered by adaptive and robust control 
in a complementary manner to obtain high-
performance results in the automation of 
technological processes with parametric and/or 
structural uncertainties. 

Adaptive-robust control is recommended for 
processes with parametric and/or structural 
uncertainty, tolerant to the action of disturbances and 
nonlinearities in the process. 

Adaptive-robust control is based on the concept of 
robust degradation measure and uses a recursive 
calculation procedure, by using a single optimality 
criterion that minimizes the degradation measure for 
the identification operation, and which calculates the 
optimal command. 

The theoretical results validated in simulation can 
be transferred as efficient solutions for the automation 
of real technological processes and installations 
guaranteeing   superior performances in operation. 
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